\qquad
\qquad

electron configuration - practice problems

An electron configuration is a list of the sub-levels that contain electrons for a given element. The sub-level designation is followed by a superscript number showing the number of electrons are found in that sub-level. For
 $\mathbf{2 p}$, and the $\mathbf{3 s}$ sub-levels and has a total of 11 electrons. The orbitals of an atom fill in a specific sequence. The pattern in which sub-levels fill is seen on periodic table when it is sectioned into the \mathbf{s} block, \mathbf{p} block, \mathbf{d} block, and \mathbf{f} block. The rows of each block are labeled as well.

Electron configurations can also be abbreviated by writing the element symbol for the previous noble gas in brackets, followed by the remaining valence (outer shell) electrons. For example, rather than writing all of the electrons in antimony, the first 36 electrons are represented by ${ }^{36}[\mathrm{Kr}]$.

Write the name and symbol for the atoms with the following electron configurations.

1. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} p^{4}$
2. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{105} p^{6} 6 s^{1}$
3. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{7}$
4. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
5. ${ }^{86}[R n] 7 s^{25 f}{ }^{9}$
6. ${ }^{54}[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$

Write complete electron configurations for the following substances.
7. nitrogen
10. nickel
8. magnesium
11. tin
9. niobium
12. chlorine

Write abbreviated electron configurations for the following elements.

13. arsenic	19. sulfur
14. thulium	20. zirconium
15. rubidium	21. argon
16. einsteinium	22. iron
17. platinum	23. polonium
18. molybdenum	24. bohrium

\qquad

electron configuration - practice problems

An electron configuration is a list of the sub-levels that contain electrons for a given element. The sub-level designation is followed by a superscript number showing the number of electrons are found in that sub-level. For
 $\mathbf{2 p}$, and the $\mathbf{3 s}$ sub-levels and has a total of 11 electrons. The orbitals of an atom fill in a specific sequence. The pattern in which sub-levels fill is seen on periodic table when it is sectioned into the \mathbf{s} block, \mathbf{p} block, \mathbf{d} block, and \mathbf{f} block. The rows of each block are labeled as well.

Electron configurations can also be abbreviated by writing the element symbol for the previous noble gas in brackets, followed by the remaining valence (outer shell) electrons. For example, rather than writing all of the electrons in antimony, the first 36 electrons are represented by ${ }^{36}[\mathrm{Kr}]$.

Write the name and symbol for the atoms with the following electron configurations.

1. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} p^{4}$ (selenium)
2. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} p^{6} 5 s^{2} 4 d^{105} p^{6} 6 s^{1}$ (cesium)
3. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} p^{6} 5 s^{2} 4 d^{7}$ (rhodium)
4. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ (aluminum)
5. ${ }^{86}[\mathrm{Rn}] 7 \mathrm{~s}^{25 f 9}$ (berkelium)
6. ${ }^{54}[\mathrm{Xe}] 6 s^{2} 4 \mathrm{f}^{145} \mathrm{~d}^{10} 6 \mathrm{p}^{2}(\mathrm{lead})$

Write complete electron configurations for the following substances.
7. nitrogen $1 s^{2} 2 s^{2} 2 p^{3}$
10. nickel $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$
8. magnesium $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
11. tin $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} 4 p^{6} 5 s^{2} 4 d^{105} p^{2}$
9. niobium $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{104} p^{6} 5 s^{2} 4 d^{3}$
12. chlorine $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$

Write abbreviated electron configurations for the following elements.
13. arsenic ${ }^{18}[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1054} \mathrm{p}^{3}$
19. sulfur ${ }^{10}[\mathrm{Ne}] 3 s^{2} 3 p^{4}$
14. thulium $54[\mathrm{Xe}] 6 \mathrm{~s}^{24 f^{13}}$
20. zirconium ${ }^{36}[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{2}$
15. rubidium ${ }^{36}[\mathrm{Kr}] 5 \mathrm{~s}^{1}$
21. $\operatorname{argon}{ }^{18}[\mathrm{Ar}]$
16. einsteinium ${ }^{86}[\mathrm{Rn}] 7 \mathrm{~s}^{25 f 11}$
22. iron ${ }^{18}[\mathrm{Ar}] 4 \mathrm{~s}^{23} \mathrm{~d}^{6}$
17. platinum ${ }^{54}[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{8}$
23. polonium ${ }^{54}[\mathrm{Xe}] 6 s^{24} f^{14} 4 \mathrm{~d}^{10} 6 \mathrm{p}^{4}$
18. molybdenum ${ }^{36}[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{4}$
24. bohrium ${ }^{86}[R n] 7 s^{25 f+14} 6 d^{5}$

