name:	date:

electron configuration - practice problems

An electron configuration is a list of the sub-levels that contain electrons for a given element. The sub-level designation is followed by a superscript number showing the number of electrons are found in that sub-level. For example, the element sodium, with the electron configuration of $1s^22s^22p^63s^1$ contains electrons in the 1s, the 2s, the 2p, and the 3s sub-levels and has a total of 11 electrons. The orbitals of an atom fill in a specific sequence. The pattern in which sub-levels fill is seen on periodic table when it is sectioned into the s block, p block, s block, and s block. The rows of each block are labeled as well.

Electron configurations can also be abbreviated by writing the element symbol for the previous noble gas in brackets, followed by the remaining valence (outer shell) electrons. For example, rather than writing all of the electrons in antimony, the first 36 electrons are represented by ³⁶[Kr].

Write the name and symbol for the atoms with the following electron configurations.

1. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁴

4. 1s²2s²2p⁶3s²3p¹

2. $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^1$

5. 86[Rn]7s²5f⁹

 $3.\ 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^7$

6. ⁵⁴[Xe] 6s²4f¹⁴5d¹⁰6p²

Write complete electron configurations for the following substances.

7. nitrogen

10. nickel

8. magnesium

11. tin

9. niobium

12. chlorine

Write abbreviated electron configurations for the following elements.

13. arsenic

19. sulfur

14. thulium

20. zirconium

15. rubidium

21. argon

16. einsteinium

22. iron

17. platinum

23. polonium

18. molybdenum

24. bohrium

name: suggested answers

electron configuration - practice problems

date: _____

An electron configuration is a list of the sub-levels that contain electrons for a given element. The sub-level designation is followed by a superscript number showing the number of electrons are found in that sub-level. For example, the element sodium, with the electron configuration of $1s^22s^22p^63s^1$ contains electrons in the 1s, the 2s, the 2p, and the 3s sub-levels and has a total of 11 electrons. The orbitals of an atom fill in a specific sequence. The pattern in which sub-levels fill is seen on periodic table when it is sectioned into the s block, p block, s block, and s block. The rows of each block are labeled as well.

Electron configurations can also be abbreviated by writing the element symbol for the previous noble gas in brackets, followed by the remaining valence (outer shell) electrons. For example, rather than writing all of the electrons in antimony, the first 36 electrons are represented by ³⁶[Kr].

Write the name and symbol for the atoms with the following electron configurations.

1. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁴ (selenium)

2. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s¹ (cesium)

3. 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d⁷ (rhodium)

4. 1s²2s²2p⁶3s²3p¹ (aluminum)

5. 86[Rn]7s²5f⁹ (berkelium)

6. ⁵⁴[Xe] 6s²4f¹⁴5d¹⁰6p² (lead)

Write complete electron configurations for the following substances.

7. nitrogen 1s²2s²2p³

8. magnesium 1s²2s²2p⁶3s²

9. niobium 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d³

10. nickel 1s²2s²2p⁶3s²3p⁶4s²3d⁸

11. tin 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p²

12. chlorine 1s²2s²2p⁶3s²3p⁵

Write abbreviated electron configurations for the following elements.

13. arsenic ¹⁸[Ar] 4s²3d¹⁰54p³

14. thulium ⁵⁴[Xe] 6s²4f¹³

15. rubidium ³⁶[Kr] 5s¹

16. einsteinium 86[Rn]7s²5f¹¹

17. platinum ⁵⁴[Xe] 6s²4f¹⁴5d⁸

18. molybdenum ³⁶[Kr] 5s²4d⁴

19. sulfur 10[Ne] 3s23p4

20. zirconium ³⁶[Kr] 5s²4d²

21. argon ¹⁸[Ar]

22. iron ¹⁸[Ar] 4s²3d⁶

23. polonium ⁵⁴[Xe] 6s²4f¹⁴5d¹⁰6p⁴

24. bohrium 86[Rn] 7s²5f¹⁴6d⁵