
Mı́mir: an Open-Source Semantic Search Framework for Interactive Information

Seeking and Discovery

Valentin Tablan, Kalina Bontcheva, Ian Roberts, Hamish Cunningham

University of Sheffield

Department of Computer Science

Regent Court, 211 Portobello

S1 4DP, Sheffield, UK

Abstract

Semantic search is gradually establishing itself as the next generation search paradigm, which meets better a wider

range of information needs, as compared to traditional full-text search. At the same time, however, expanding search

towards document structure and external, formal knowledge sources (e.g. LOD resources) remains challenging, espe-

cially with respect to efficiency, usability, and scalability.

This paper introduces Mı́mir – an open-source framework for integrated semantic search over text, document struc-

ture, linguistic annotations, and formal semantic knowledge. Mı́mir supports complex structural queries, as well as

basic keyword search.

Exploratory search and sense-making are supported through information visualisation interfaces, such as co-

occurrence matrices and term clouds. There is also an interactive retrieval interface, where users can save, refine,

and analyse the results of a semantic search over time. The more well-studied precision-oriented information seeking

searches are also well supported.

The generic and extensible nature of the Mı́mir platform is demonstrated through three different, real-world appli-

cations, one of which required indexing and search over tens of millions of documents and fifty to hundred times as

many semantic annotations. Scaling up to over 150 million documents was also accomplished, via index federation

and cloud-based deployment.

Keywords: Natural Language Processing, Semantic Search, Scalable Semantic Search Framework, Expressive

Semantic Queries, Integrated Semantic Search

1. Introduction

Traditional full-text search is no longer able to

address the more complex information seeking be-

haviour, which has evolved towards sense-making and

exploratory search [1]. In the latter cases, traditional

precision-oriented approaches from the field of Infor-

mation Retrieval (IR) are not sufficient. For exploratory

search, in particular, recall is paramount, as well as the

ability to carry out interactive retrieval [1].

Semantic search over documents aims to address

these new challenges by finding information that is not

based just on the presence of words, but also on their

meaning [2]. It is often referred to as hybrid or se-

mantic full-text search [3], in order to distinguish it

from semantic web search engines, concept search and

other types of semantic search (see Section 6 for de-

tails). Such systems support hybrid semantic queries,

which combine keywords and formal query syntax (e.g.

SPARQL [4]), in order to search jointly against docu-

ment content and ontologies.

Semantic full-text or hybrid search is a modification

of classical IR, where documents are retrieved on the ba-

sis of relevance to ontology concepts, as well as words.

While the basic IR approach considers word stems as

tokens, there has been considerable effort towards using

word-senses or lexical concepts (see [5, 6]) for indexing

and retrieval. In the case of semantic search, what is be-

ing indexed is typically a combination of words, formal

knowledge typically expressed in an ontology, and se-

mantic annotations mentioning ontological concepts in

the text [2].

Natural Language Processing (NLP) is commonly

Preprint submitted to Web Semantics October 7, 2014

used to derive semantics from unstructured content and

to encode it in a structured format, suitable for seman-

tic search. Since some of the most frequently used

searches are for persons, locations, organisations, and

other named entities [7], some of the most widely used

NLP techniques are named entity recognition [8, 9], en-

tity linking or disambiguation [10], and other types of

semantic annotation [11].

From a retrieval perspective, entity-annotated content

enables semantic search queries such as “LOC earth-

quake” which would return all documents mentioning

a location of an earthquake. Semantic annotation, on

the other hand, goes one step further by disambiguating

which specific real-world location is mentioned in the

text (e.g. Cambridge, UK vs Cambridge, Mass.). Typ-

ically a knowledge base or a Linked Open Data (LOD)

resource are used as a source of unique entity identifiers

(URIs) and formal knowledge about them. This enables

even more powerful semantic searches, based on knowl-

edge that is external to document collections. For ex-

ample, a query on flooding in the UK would retrieve a

document about floods in Cambridge, even though the

latter does not explicitly mention the UK. The knowl-

edge linking Cambridge to the UK would instead come

from, e.g. DBpedia [12] or Geonames1.

The focus of this paper is on Mı́mir2 – an open-

source framework for integrated semantic search over

text, document structure, linguistic annotations, and for-

mal semantic knowledge.

Typically semantic full-text search approaches en-

large standard IR indexes with semantic terms (e.g.

URIs), while still modelling documents as bags of to-

kens and disregarding their structure. In contrast, the

Mı́mir semantic search framework uses two additional

types of data: linguistic annotations created by NLP

tools (e.g. morphology, part-of-speech, and syntax) and

document structure annotations (e.g. paragraphs, sec-

tions, titles). In order to distinguish this from the bag-

of-words-based semantic full-text search approaches,

the term integrated semantic search is introduced.

The novelty of the Mı́mir semantic search frame-

work lies in its support for serendipitous information

discovery tasks, to complement information seeking

searches. Exploratory search and sense-making are sup-

ported through a number of visualisations, including co-

occurrence matrices and term clouds, as well as an in-

teractive retrieval interface, where users can save, re-

fine, and analyse the results of a semantic search over

1A geographical database available from http://geonames.org.
2http://gate.ac.uk/mimir/

time. The more well-studied precision-oriented infor-

mation seeking searches are also supported, including

ranking of search results. To the best of our knowledge,

the Mı́mir framework is the first open-source semantic

search platform of this kind.

The novel contributions of this paper are:

1. An in-depth description of the Mı́mir open-source

framework, including its architecture (Section 2),

the indexing and search over document text, struc-

ture, linguistic annotations, and formal semantic

knowledge (Sections 2.1 and 2.2 respectively). In

particular, direct indexes are created in addition to

the widely used inverted indexes, in order to sup-

port both information discovery and information

seeking searches. Direct indexes power the dy-

namic calculation of sets of frequently occurring

terms within relevant document lists. These term

sets underpin user interfaces that support the dis-

covery of new knowledge and relationships by dis-

playing term clouds and co-occurrence matrices as

part of interactive retrieval tasks.

2. Presentation of two semantic search interfaces for

information seeking tasks from two real-world ap-

plications (Section 3.1).

3. Presentation of a semantic search interface for in-

formation discovery, including a real-world appli-

cation in knowledge discovery from immunology

literature (Section 3.2). 9.5 million documents are

searched interactively, in conjunction with a medi-

cal domain ontology.

4. A comprehensive evaluation of the Mı́mir semantic

search framework. Firstly, intrinsic evaluation is

carried out, with respect to indexing and search ef-

ficiency (Section 5.1). This includes also the eval-

uation of a complex semantic search query against

9.5 million documents, 3.5 billion tokens, and 743

million linguistic and semantic annotations (Sec-

tion 5.2). Secondly, extrinsic evaluation is carried

out with users, as part of a semantic search appli-

cation which combines environmental science lit-

erature and Linked Open Data (Section 5.3).

5. Positioning Mı́mir with respect to the state-of-the-

art (Section 6), including a detailed comparison

against the Broccoli semantic full-text search sys-

tem, which is its nearest analogue.

2. Mı́mir: an Open-Source Semantic Search Frame-

work

Mı́mir3 is an integrated semantic search framework,

3Old Norse “The rememberer, the wise one”

2

Mímir
IndexM

ím
ir User Interface

Query
Engine

Indexing
Engine

Linked Data

Triple Store
(SPARQL)

Documents
Collection

NLP

Figure 1: Mı́mir life cycle.

which offers indexing and search over full text, doc-

ument structure, document metadata, linguistic anno-

tations, and any linked, external semantic knowledge

bases. It supports hybrid queries that arbitrarily mix

full-text, structural, linguistic and semantic constraints.

A key distinguishing feature are the containment opera-

tors, that allow flexible creation and nesting of full-text,

structural, and semantic constraints, as well as Mı́mir’s

support for interactive knowledge discovery.

Mı́mir has been designed as a generic and extensi-

ble, open source framework4. It can also be used as an

on-demand, highly scalable semantic search server, run-

ning on the GATECloud [13] platform.

The high-level concept behind Mı́mir is illustrated

in Figure 1. First a document collection is processed

with NLP algorithms, such as those provided by GATE

[14]. Typically the semantic annotations also refer to

Linked Open Data resources, accessed via a triple store,

such as OWLIM [15] or Sesame [16]. The semanti-

cally annotated documents are then indexed in Mı́mir,

4Download from http://gate.ac.uk/mimir/.

together with their full-text content, document meta-

data, and document structure markup. At search time,

the triple store is used as a source of implicit knowl-

edge, to help answer the hybrid searches that combine

full-text, structural, and semantic constraints. The latter

are formulated using a SPARQL query, executed against

the triple store.

Mı́mir’s architecture is shown in Figure 2. It is imple-

mented as a web application that runs server-side and

can optionally be distributed across multiple machines.

It includes both information seeking and information

discovery user interfaces, as well as a REST-style API

for programmatic access. Each Mı́mir instance manages

one or more indexes stored locally. Additionally, it can

also use the REST APIs to access any index served by

remote Mı́mir instances and make it available locally.

Any set of local and remote indexes can be grouped to-

gether in a federated index.

Figure 2: Overall Mı́mir architecture.

When used in combination with remote indexes, fed-

eration enables Mı́mir to scale to millions of documents,

through very large indexes, distributed across multiple

servers. Another use case for federation is enlargement

of existing indexes with newly indexed content (e.g.

new kinds of semantic annotations). Federation works

well, since all semantic searches are local to a docu-

ment. This enables:

• Faster indexing: less content in each Mı́mir index;

• Faster searches: search space is broken into slices

that are searched in parallel.

• Joining search results is trivial: union of result sets.

3

termID1 →

docID1
1
(pos, pos, . . . pos);

docID1
2
(pos, pos, . . . pos);

. . .

termID2 →

docID2
1
(pos, pos, . . . pos);

docID2
2
(pos, pos, . . . pos);

. . .

. . .

docID1 →
termID1

1
(count);

termID1
2
(count); ...

docID2 →
termID2

1
(count);

termID2
2
(count); ...

. . .

Figure 3: Inverted (above) and direct (below) index representations

• Scalability through adding more nodes and creat-

ing a federated index.

• Search speed stays almost constant while data in-

creases: each individual repository has the same

amount of data; there are just more repositories,

federated together.

2.1. Indexing Annotated Documents with Mı́mir

Mı́mir uses a compound index approach, where dif-

ferent types of content are stored in separate but aligned

inverted and direct indexes.

Inverted indexes are used to find which of the docu-

ments contain occurrences of search terms, where terms

may be words, annotations, or entity mentions. These

indexes are used to support information-seeking tasks

where each query is executed to produce a result set

comprising documents.

The inverted indexes include position information,

which is represented in terms of token offsets. Ignor-

ing implementation details, an inverted index is a list

of term IDs and associated posting lists (see top half of

Figure 3). The posting list for each term is a sequence of

postings, each including a document ID and a position.

Term and document IDs are long integers and consistent

between the corresponding direct and inverted indexes.

Term IDs are ordered by the lexicographic order of the

term strings; document IDs represent the indexing or-

der of the documents; and all posting lists are sorted by

document or term ID.

Mı́mir also provides direct indexes, which map doc-

uments to terms. Given a set of documents (typically

retrieved in an earlier search), direct indexes are used

to find which terms, of any type, occur in those doc-

uments, and with what frequency. This functionality

is used to support information discovery tasks, which

are exploratory in nature. In such cases, users typically

require visualisations of the most frequent terms, co-

occurrence matrices, and other interfaces for interactive

document retrieval and analysis (see Section 3.2).

The use of direct indexes is optional and can be con-

figured when a new index is being built. Direct in-

dexes are smaller than their inverted counterparts, be-

cause they are not required to include positional infor-

mation. The latter is already stored in the corresponding

inverted index. The two types of index are illustrated in

Figure 3.

The on-disk indexes are implemented using the

MG4J library5[17]; if required, similar indexing struc-

tures can be implemented using alternative IR engines,

such as Lucene[18].

Conceptually, a document that has been processed

with NLP tools comprises textual content and annota-

tions (some encode structural markup, whereas other

represent automatically created syntactic and semantic

information). Additionally, document metadata may

also be available (e.g. mime type, creation date). Mı́mir

uses the document representation format defined by the

GATE framework [14] as an interchange format, since

it can represent all these types of information.

The process of indexing a new document is shown

in the top part of Figure 4, which we describe in more

details next.

2.1.1. Indexing Document Text

Many indexing systems perform some form of pre-

processing of the input text prior to indexing, e.g. to-

kenisation, word stemming, elimination or normalisa-

tion of accented characters. Since Mı́mir is designed to

work with NLP pre-processed documents with linguis-

tic annotations, no additional document pre-processing

is carried out. There are two advantages to this ap-

proach. Firstly, NLP tools tend to be more sophisticated

and better at handling different languages and scripts.

Secondly, it brings flexibility, since pre-processing is

done prior to indexing and can be changed easily. Con-

sequently, Mı́mir does not index directly document text,

but instead assumes the presence of {Token} annota-

tions. Even though they are linguistic annotations, to-

kens are indexed differently from other annotations.

The simplest text token is a word, but tokens are

also used to represent symbols, numbers, or punctua-

tion. These are generated automatically by the NLP

pre-processing tools, which would also customarily as-

sociate some metadata with each token (e.g. orthogra-

phy, morphological root, part-of-speech). In GATE and

5http://mg4j.dsi.unimi.it/

4

In
d

e
x

in
g

 E
n

g
in

e

Annotated

Document
Tokens Annotations

...

Annotations AnnotationsTokens View Tokens View

...

In
d

e
x

Tokens

Index

Tokens

Index

Annotations

Index

Annotation

Templates
Annotation

Index

Annotation

Templates

Q
u

e
ry

 E
n

g
in

e

Token

Query

Executor

Token

Query

Executor

Token

Query

Executor

Annotation

Query

Executor

Annotation

Query

Executor

Annotation

Query

Executor

Compound

Query

Executor
Compound

Query

Executor

Compound

Query

Executor

Compound

Query

Executor

Query ParserQuery
Query

Tree
Results Presentation

... ...

Figure 4: High level view of the data and execution flow when creating and searching a Mı́mir index.

The upper part of the figure illustrates the indexing process, while the bottom refers to the execution of queries. The central band shows the types

of data stored into the compound index.

thus Mı́mir, these are coded as feature-value pairs asso-

ciated with the token annotations.

Each token feature, including the string can be se-

lected for indexing through configuration options. The

values for each indexed feature are used to produce each

of the different token sub-indexes, and all sub-indexes

are aligned to use the same token positions. Figure 5

shows indexing examples for some types of metadata,

typically associated with tokens.

2.1.2. Indexing Annotations

The other main kinds of data are the structural and

NLP-generated annotations. In Mı́mir both kinds are

represented in the same data structure, comprising a

start and end position, an annotation type (e.g. Loca-

tion, span, div), and an optional set of features.

For efficiency reasons, the standard GATE annota-

tion model was simplified through the introduction of

strongly typed features. In the standard GATE annota-

tion model there is no requirement that all permissible

5

Document: London is located on the Thames .

position: 0 1 2 3 4 5 6

string: london is located on the thames .

root: london be locate on the thames .

part-of-speech: NNP VBZ VBN IN DT NNP .

Location: type=city type=river

Token indexes Location templates Location index

root index

. 0(6)

be 0(1)

locate 0(2)

london 0(0)

on 0(3)

thames 0(5)

the 0(4)

PoS index

. 0(6)

DT 0(4)

IN 0(3)

NNP 0(0, 5)

VBN 0(2)

VBZ 0(1)

L1 ID type

1 city

2 river

L2 ID L1 ID instURI

1 1 dbpedia.org/resource/London

2 2 dbpedia.org/resource/Thames river

Mention ID L1 ID L2 ID length

Location:1 1 - 1

Location:2 1 1 1

Location:3 2 - 1

Location:4 2 2 1

Location:5 2 2 3

{Location} index

Location:1 0(0)

Location:2 0(0)

Location:3 0(5)

Location:4 0(5)

Figure 5: A very simple example document and the corresponding contents of a Mı́mir index. We assume that the only document ID is 0.

Different views of the document text are generated by different token features, which are stored in separate sub-indexes. The document string has

been down-cased prior to indexing; we do not show the string index, as it is very similar to the one for the root feature. The values used for

Part-of-Speech (PoS) are standard tags as produced by GATE’s PoS Tagger: DT=determiner, IN=preposition, NNP=proper noun, VBN=verb -

past participle, VBZ=verb - 3rd person singular present.

A single annotation type ({Location}) is being indexed, with two different occurrences, and we assume the only non-nominal feature to be the

DBpedia instance URI. Note that “Location:5” (i.e. a mention of the Thames that is 3-tokens long) does not actually occur in the document text,

so it is not present in the index. We have included it here as an example of an annotation of length greater than 1.

annotation types and features are declared explicitly. In-

stead, documents can have any number of annotation

types, and annotations can have any number of features,

with arbitrary names. Feature values can be any Java

object, and also features with the same name on differ-

ent annotations can take values of different kinds.

For Mı́mir indexing however, strong typing is en-

forced through an index definition file. More specifi-

cally, this specifies:

1. which annotation types should be indexed;

2. which features for each annotation type should be

included; and

3. the types of values that each feature takes.

The feature types are also limited to nominal (i.e. with

values from a pre-defined set of permitted string values),

string, number, or URI.

The type structure is used to infer annotation tem-

plates, i.e. tuples of values that describe classes of an-

notations that encode the same information, as follows.

For each input annotation the following IDs are re-

trieved (or generated on first occurrence):

Level-1 template ID The annotation type and the values

for all its nominal features form a tuple. The first time

each tuple configuration is seen, it is allocated a level-1

ID. Subsequent annotations that match an already exist-

ing tuple will re-use the same level-1 ID. For example,

in Figure 5 all annotations of type Location with feature

city will use the level-1 ID ‘1’.

Level-2 template ID The level-1 template ID together

with the values for all the remaining (i.e. non-nominal)

features form a second tuple. Unique configurations of

these tuples are allocated level-2 IDs. It should be noted

that most NLP annotations tend to include only nomi-

nal features, so they would not require a level-2 ID. The

{Location} annotations shown in Figure 5 have a non-

nominal feature, so they each get a level-2 ID allocated

to them. All further mentions of e.g. the Thames would

re-use the same IDs, even when phrased differently in

the text, e.g “the river Thames”, or “La Tamise”.

Mention ID The level-1 ID and the annotation length

(number of tokens) forms a tuple, which is associated

with a mention ID. In Figure 5 Location annotations

with feature city covering one token will take the men-

tion ID “Location:1”. If present, the level-2 ID and the

annotation length also get a mention ID. For example,

all mentions of “the River Thames” are associated with

mention ID “Location:5” (because they refer to the

Thames and are 3 tokens long).

6

Finally, the one or two mention IDs associated with

each annotation are added to an annotation index, using

the annotation start token as the position.

We index two separate mention IDs associated with

either level-1 or level-2 IDs, in order to speed-up

searches that only make use of nominal features. For an-

notation types that have non-nominal features, the num-

ber of level-2 IDs will be orders of magnitude greater

than that for level-1. If a search only relies on nomi-

nal constraints (a large proportion of searches tend to

fall into this category), then the query can be answered

much faster by only accessing the smaller number of

posting lists for the matching level-1 IDs.

Continuing the Figure 5 example, we see that all an-

notations of type Location with feature city can be en-

coded with a single level-1 ID and a small number of

mention IDs, one per length, regardless of what other

features the original annotation held. For example, a

search for all cities will only need to access the tables

for level-1 and mention IDs, and then search the index

for the term “Location:1”. Similarly, a search for all

locations (regardless of their type), will access the same

tables and then search the index for “Location:1 OR

Location:3”. By contrast, a search for mentions of

the river Thames will need to access the level-2 ID table

and then search for “Location:4 OR Location:5”.

Each Mı́mir sub-index is built using its own dedicated

execution thread. The configuration supplied when cre-

ating a new compound index allows the user to specify

which annotation types should be stored in which sub-

index. This enables load balancing, according to the

expected relative density for each type of annotation.

Indexing semantic annotations: In cases where doc-

uments have pre-existing (e.g. RDFa) or automati-

cally created semantic annotations, these will typically

have URIs as values for some of their features. At in-

dexing time, URI feature values are not treated differ-

ently. They simply become non-nominal features of

type string, which are indexed, as already described

above. At search time, however, a semantic knowledge

base is required, in order to resolve the indexed URIs,

e.g. as a SPARQL end-point (see Section 2.2.4).

Annotation templates: The annotation indexing pro-

cess needs to store some data that allows it to match

value tuples to level-1, level-2, and mention IDs. This

data becomes part of the Mı́mir index, and is labelled

as Annotation Templates in Figure 4. The Mı́mir

framework allows pluggable implementations for the

‘helpers’ that match tuples to IDs. The default imple-

mentation uses an H26 in-process relational database for

6http://www.h2database.com/

this. An alternative implementation exists, which uses a

Sesame7 triple-store.

At indexing time, one of the most time-consuming

operations is searching the list of known level-1 and

level-2 IDs, to check if the feature values for the current

annotation have been seen before, or whether new IDs

need to be generated. This indexing overhead though

pays off at search time: IDs allow us to use the same

single representation (the ID) for all input annotations

that are identical as described by the set of features be-

ing indexed. This results in annotation indexes with a

small set of quite dense posting lists, instead of a very

large set of very sparse ones. The latter would be sig-

nificantly more inefficient time- and space-wise.

The default implementation of annotation indexing

includes an in-memory cache, which stores the mapping

between feature value tuples and IDs. When enough

RAM is available for a sufficiently large cache, the in-

dexing process is significantly faster, typically in orders

of magnitude. This effectively removes the time penalty

associated with retrieving annotation IDs.

2.1.3. Document Metadata

Mı́mir distinguishes between document metadata that

needs to be searchable, and document metadata that

needs to be retrieved as part of the search results. For

example, some applications require searching for doc-

uments published between certain dates. Then once a

document is matched, the application would typically

obtain the original web URL of that document. In this

case, the document date becomes searchable metadata,

while the document URL is simply stored metadata.

Mı́mir offers support for searchable metadata through

document-mode annotations. These are virtual anno-

tations that are declared in the index configuration but

which do not actually exist in the input document. Their

position is always 0 (they are modelled as annotations

that start on the first token of the document), and no

length values are stored. At search time, document-

mode annotations behave as if they have the same length

as the document that ‘contains’ them. This allows all

search operators to work as if document-mode annota-

tions span the entire document content.

There is also support for storing document metadata

that is not searchable, but is available on request. This

can take the form of any serialisable Java object and is

stored in zip files within the index directory.

7http://www.openrdf.org/

7

2.2. The Mı́mir Query Language

Queries in Mı́mir are trees, with compound query op-

erators as intermediary nodes and base queries as leaves.

The latter address directly one of the sub-indexes. Of

the query operators described below, the basic types are

String and Annotation, while the rest are compound.

When executing a query, the first step is to parse the

query text and convert it into a query tree. For each

query operator, the query engine creates a query execu-

tor which executes the query and produces hits, if any

are found. Compound operators use the hits returned by

their constituents to calculate their own hit list. The hits

produced by the root executor constitute the results of

the entire query. A hit in Mı́mir is a document snippet

identified by a document ID, a start offset (a token in-

dex) and a length (the number of tokens). All operators

use minimal interval semantics: they always return the

shortest hit that satisfies the query. The search workflow

is illustrated in the lower part of Figure 4.

2.2.1. Base Operators

Base operators in Mı́mir are those that directly access

an index. Currently there are two types of base oper-

ator: string, which provides full text search, using the

token indexes, and annotation, which searches based on

annotations and their features.

String: a base operator which looks up the query

term in one of the token indexes. By default the first

token index listed in the configuration is used. Con-

ventionally this is the string index. If another index

should be used, this can be addressed by prefixing the

query with its name, e.g ‘root:be’ would match all

words for which the morphological root is ‘be’, whereas

‘pos:NNP’ would match all proper names, as detected

by the POS tagger.

Annotation: this query is based on an annotation

type and a set of constraints over the feature values.

For example, the query {Location type="city"}

matches annotations of type Location which have a

feature named type with value city.

The workflow for executing an annotation query is:

1. If the search constraints refer to any non-nominal

features, then construct the set of all level-2 IDs for

which the feature value tuples match the provided

constraints. Otherwise find the set of level-1 IDs

that match.

2. Retrieve the set of mention IDs associated with the

list of IDs found in step 1. For each mention ID

identified, keep track of the corresponding annota-

tion length.

3. Look up all identified mention IDs in the corre-

sponding annotation index and, for each match, re-

turn a hit with the appropriate location and length.

Other types of feature constraints are supported beyond

simple equality. Comparison operators <, <=, >= and

> can be used with numeric features and regular ex-

pression matching can be used for strings. A common

strategy to handle date expressions, for example, is to

normalise their values and encode these as numbers in

the form YYYYMMDD, supporting searches, such as

{Document date > 20120000 date < 20130000},

which would find documents from the year 2012.

2.2.2. Standard Compound Operators

AND(&), OR(|): These are n-ary Boolean operators

that return document intervals, which include hits from

all/either of the sub-node queries.

Repeats Kleene operator (+n, +n..m): finds se-

quences of hits for the same sub-query that are adja-

cent to each other. For example ‘{Person}+2’ finds 2

adjacent person mentions; ‘{Person}+1..5’ finds se-

quences of 1 to 5 such mentions. Unbound multiplici-

ties are not supported, i.e. an upper limit must always be

provided, which helps avoid run-away query executors.

Minus (−): The bounded negation operator finds all

hits for the left hand sub-query that are not also hits for

the right side sub-query. An unrestricted negation oper-

ator is not implemented, since it could match the entire

index. In the case of minus, the maximum number of

matches is restricted by the left side operand.

Sequence: this is the default operator and has no

syntactic representation, as it is implied between any

two queries that are not separated by any other opera-

tor. Gap markers ([n], or[n..m]) can be included to al-

low a limited number of arbitrary tokens at certain loca-

tions in the sequence. For example ‘{Person} [0..3]

{Organization}’ would match an annotation of type

Person, followed by up to three arbitrary tokens, fol-

lowed by an annotation of type Organization.

2.2.3. Structural Compound Operators

IN: A containment operator that returns hits from the

left hand side sub-node only if they are contained within

hits from the right hand side sub-node. For example, the

query {Location type="city"} IN {Abstract} would

match Location annotations of type city, which occur

in document abstracts (these can be either generated au-

tomatically by NLP tools, or be pre-existing structural

markup).

OVER: The reverse containment operator

that returns hits from the left hand side sub-

node only if they are overlapping hits from

8

the right hand side sub-node. For example,

{Reference type=publication} OVER nanomaterials

matches occurrences of Reference annotations with

type publication (e.g. in the bibliography of a

paper), which contain the word nanomaterials.

The two containment operators are useful for struc-

tural searches, such as filtering the results of an-

other query to only the ones occurring within a

document’s abstract. Another example is search-

ing for co-occurrences within the same sentence, e.g.

({Person} AND pos:verb) IN {Sentence}.

For all compound operators, the operands can be

complex queries themselves, recursively. There is no

operator priority, so explicit bracketing must be used

when building complex queries.

2.2.4. SPARQL-based Semantic Search Constraints

The search operators enumerated above provide

the necessary support for text- and annotation-based

queries. While this fully supports annotations with stan-

dard feature values, it is not sufficient for semantic an-

notations which have URI features.

In order to support structural search constraints

against a knowledge base, Mı́mir has a SPARQL plug-

in. It accesses a SPARQL endpoint at search time, in

order to add semantic constraints to annotation queries.

The plug-in is presented as a wrapper for any annotation

helper – the module responsible for converting annota-

tion constraints into mention IDs.

The SPARQL plug-in enables queries with seman-

tic constraints, which are evaluated against an exter-

nal knowledge repository. The dynamically retrieved

knowledge then acts as an additional semantic restric-

tion to the text- and annotation-based search.

One of the main uses of SPARQL queries is in

semantics-based query expansion. This enables Mı́mir

to retrieve documents based on information that is not

present explicitly in the indexed collection. For ex-

ample, a search for documents mentioning Norfolk

will also retrieve documents mentioning Norwich, if

SPARQL is used to query GeoNames, where the seman-

tic relation between the two is specified.

The second main use of the SPARQL queries is for

imposing semantic constraints, e.g. finding documents

mentioning floods in places within 50 miles of a given

location.

Section 4.2 provides a fully implemented use case,

which makes extensive use of SPARQL-based query ex-

pansion, as well as of DBpedia-based semantic search

constraints.
In order to explain how the SPARQL plug-in inter-

acts with the text- and annotation-based search con-

straints, let us assume a document collection annotated
with named entities. Each semantic annotation has an
‘inst’ feature with value – the corresponding DBpedia
URI. The index was then set up so that a SPARQL plug-
in is configured for all annotations with inst features.
Then the following semantic query would retrieve doc-
uments mentioning scientists born in London:

{Person

sparql="SELECT DISTINCT ?inst WHERE {

?inst :birthPlace

<http://dbpedia.org/resource/London>.

?inst a :Scientist. }"

}

Syntactically, this is a standard annotation query,

with a single feature-based constraint. However, the

SPARQL plug-in causes its execution to be different

from the usual annotation queries, as follows:

1. The SPARQL plug-in is configured to intercept all

annotation queries that make use of the ‘sparql’

virtual constraint. We call this constraint virtual

because input annotations do not actually have a

feature named ‘sparql’. When the query is posed,

the plug-in intercepts it, and uses the string value

of the sparql constraint to fire a SPARQL query

against the pre-configured endpoint.

2. If the SPARQL query returns a result set, then

each row is parsed to extract the values bound

to variables. Each variable=value pair is con-

verted into a Mı́mir query constraint. In the exam-

ple above there is only one query variable (?inst),

so each result row will produce a single query

constraint (e.g ‘inst=<http://dbpedia.org/-

resource/Rosalind Franklin>’).

3. For each obtained constraint, a standard annotation

query is generated. All annotations are grouped

into an OR compound query, which is then exe-

cuted directly against the wrapped underlying an-

notation helper. The latter supplies the query re-

sults.

This design provides a great degree of flexibility.

Arbitrary SPARQL queries can be used, and they are

served by a fully-featured SPARQL endpoint. The in-

dexed semantic annotations can have any number of

URI features, which can be used in queries separately

or in combination.

the configuration of the SPARQL plug-in specifies

the endpoint to be used, as well as the default set of

name spaces, so this information does not need to be

included in each query.

9

2.3. Ranking of Search Results

Mı́mir was designed originally for information dis-

covery searches, needed for example by intellectual

property search experts (see Section 4.1) and environ-

mental science researchers (see Section 4.2). The pri-

mary focus in this case is on enabling users to formu-

late very precise queries with elaborate semantic con-

straints. Once a matching document set is narrowed

down, such users would typically investigate the entire

result set. This is due to the information discovery na-

ture of their search, which is different from seeking to

retrieve a specific, best-matching document [1]. In such

applications, ranking can be disabled.

In information seeking applications, however, rank-

ing of search results is indeed necessary. Therefore,

Mı́mir provides implementations for a set of popular

ranking algorithms, and new ones can be implemented

on-demand through a plug-in mechanism. For each

Mı́mir index, a developer can choose between:

No scoring: All documents are ranked equally; re-

sults are returned in the order they are found in the in-

dex. This is the default setting, since Mı́mir was de-

signed initially for information discovery applications.

Later, when ranking algorithms were added, this default

behaviour was preserved for backwards compatibility.

Count scoring: Matching documents are ranked ac-

cording to the number of query matches contained.

BM25: Documents are ranked using the Okapi BM25

algorithm [19]. For text elements, the BM25 algo-

rithm is applied as usual. For annotations, it is con-

structed from an OR between all matching annotations.

For example, if a document collection contains an-

notations {Person gender=[male|female]}, and a

query is presented for {Person gender=male}, then

all occurrences of <Person gender="male"> anno-

tations in the document collection are treated as the

same term. When queries combine both text and an-

notations, ranking scores are combined. For example,

for the query “the name of {Person gender=male}”

“the name of” is scored against the text index, while

{Person gender=male} is scored against the annota-

tion index. The BM25 scores for each part are calcu-

lated independently, and then combined as a weighted

sum.

TF.IDF: Documents are ranked using the TF.IDF al-

gorithm [20], in a manner analogous to BM25 ranking.

Hit length scoring: Documents are ranked accord-

ing to the length of the matching snippets within. While

the other algorithms are provided by wrapping the

MG4J scorer implementations, this scoring algorithm

is a stand-alone implementation, that uses the Mı́mir

API directly. It is provided as a simple example of a

scorer implementation that developers can use as a start-

ing point for their own scoring algorithms. Its actual

suitability for scoring search results may be limited.

In order to help users with relevance judgements,

Mı́mir highlights matching textual snippets in each re-

turned document. Each snippet provides the textual

context around each search hit, separated by “...” if there

are more than one hit per document.

3. User Interfaces for Information Seeking and

Knowledge Discovery

As discussed in [3], designing easy to use and learn

semantic search interfaces is both a key requirement and

a major challenge.

This section discusses two kinds of semantic search

interfaces. The first set of UIs are aimed at information

seeking tasks, whereas the second UIs are for knowl-

edge discovery and interactive retrieval.

3.1. User Interfaces for Information Seeking

Mı́mir comes with a simple web-based user interface

which supports the testing and development of seman-

tic search applications, focused on information seek-

ing tasks. This development interface, shown in Fig-

ure 6, uses the Mı́mir query language which, analogous

to SQL and SPARQL, is too complex to be used directly

by end users. The query shown in this example is from

the patent retrieval application, described in more detail

in Section 4.1.

Figure 7 shows our form-based UI, which has been

customised for the environmental science application8.

This UI has a keyword search field, complemented with

optional semantic search constraints, through a set of

inter-dependent drop-down lists. Users can search for

specific entity types (in this case Locations, Organisa-

tions, Persons, Rivers) and also specify constraints on

document-level attributes. More than one semantic con-

straint can be added, through the plus button.

One limitation of these UIs is that they are very

document-centric and do not provide details about what

semantic annotations occur in the indexed document

collection, (e.g. which UK counties are mentioned). In

order to provide such entity-based overviews of the doc-

uments, one approach is to list all instances, for each

8For a different customisation of the form-based UI see

http://demos.gate.ac.uk/pin/.

10

Figure 7: The form-based semantic search UI

Figure 8: Knowledge discovery: frequently occurring terms

class, as done in KIM [2] and Broccoli [21]. This how-

ever, quickly becomes infeasible when users are search-

ing multi-million document collections and query re-

sults have thousands of instances.

An alternative is to supplement the information seek-

ing UI with tag clouds and other visualisations of entity

co-occurrences. Mı́mir has recently been extended with

such UIs, which we discuss next.

3.2. User Interfaces for Information Discovery

Information discovery tasks require more sophisti-

cated UIs, which enable users first to narrow down the

relevant set of documents through an interactive query

refinement process, and then to analyse these documents

in more detail, to gain useful insights. These two kinds

of actions require corresponding filtering and details-

on-demand information visualisations [22].

Interactive query refinement and document filtering

are carried out first with an information seeking UI (e.g.

the form-based UI above or the ontology-driven search

UI shown in Figure 10 in Section 4.3).

Once a set of documents is retrieved, they need to

be analysed in more detail. Mı́mir currently has two

generic information discovery UIs (more will be imple-

mented in ongoing work), which support dynamic anal-

ysis of retrieved document sets.

Figure 8 shows the general purpose Mı́mir UI for ex-

ploring frequently occurring terms within a dynamically

created result set. Here term is used to refer to any word

or any indexed annotation type. The results are lists

of matched terms, sorted by frequency of occurrence

11

Figure 6: The developer user interface. The index being searched con-

tains a collection of patent documents semantically annotated with rel-

evant domain concepts. One annotation type is {Measurement}, used

to mark expressions denoting physical measurements. The identified

measurements are also normalised, which allows the correct match-

ing of values even when the measurement unit used in the query is

different from the one in the original text.

within the set of documents retrieved by the original se-

mantic search query. Dynamically created term sets can

be saved or downloaded by the user.

For this particular example, 60,000 randomly se-

lected tweets and news pages from the UK were

searched for mentions of the company Apple and then

the matching documents were analysed for the 10 most

frequently mentioned people within them. The term

specification was in this case a SPARQL query (see Fig-

ure 8), but the UI can also show, e.g. the top most men-

tioned instances of a given class instead (see Figure 11

for an example of viruses).

This functionality makes use of Mı́mir’s direct in-

dexes which are able to find terms within a particular

result set. The matched term IDs are transformed into

user-friendly labels using the data stored in the annota-

tion templates. These labels are then used to populate

the term list and the term cloud.

Going one step further, the term sets constructed

above can be used to find associations, as shown in Fig-

ure 9. Here two term sets are mapped to the two di-

mensions of a matrix, while the colour intensity of each

cell conveys co-occurrence strength. The matrix can be

re-ordered by clicking on any term, which sorts the axis

according to the association strength with the clicked

term. In Figure 9, ‘Hepatitis C virus’ was first clicked,

causing the X axis to sort showing which terms asso-

ciate strongest with this disease. Not surprisingly, this

has caused the term ‘liver’ to move to the top. Next,

‘liver’ was clicked, reordering the Y axis, to show on

top diseases that correlate with liver.

It should be noted that this approach is data-driven

and relies on counting occurrences in the dynamically

retrieved document set. It can be seen, for example, that

‘Hepatitis A’ appears lower on the Y axis, and the cell

showing its correlation with liver is quite faint. This

is caused by the fact that the initial search (for docu-

ments published in 2009, which mention viral diseases)

includes only 83 documents that mention Hepatitis A,

and these co-occur with mentions of the word liver only

5 times. The matrix would look different, if a differ-

ent semantic query had been used initially, leading to a

different set of matching documents used for filtering.

In the following section we discuss how these user

interfaces were adapted to the requirements of three

semantic search applications, from three different do-

mains.

4. Three Semantic Search Applications

4.1. Prior Art and Due Diligence in Intellectual Prop-

erty

When researching new product ideas or filing new

patents, inventors need to retrieve all relevant pre-

existing know-how and/or to exploit and enforce patents

in their technological domain, i.e. they need high recall-

oriented searches. The standard practice is to perform

keyword searches that identify all potentially relevant

documents and then analyse these exhaustively. In this

set-up, ranking of results is not useful. While recall is

paramount, any improvement in precision has cost sav-

ing implications.

For example, physical measurements are particularly

challenging due to the many equivalent ways the same

value can be expressed through using different mea-

surement units, e.g. inches or millimetres, or differ-

ent multipliers, e.g. metres or millimetres. In the case

of keyword-based search, sufficient recall can only be

reached if queries are made very imprecise, which leads

to very large result sets and, thus, increase the human

analysis time.

12

Figure 9: Knowledge discovery: term associations

In order to test the benefits of semantic search in this

domain, the patent information extraction algorithms re-

ported in [23] are used. They enrich patents automati-

cally with linguistic and semantic annotations, mapped

to a patent-specific ontology, encoded in OWL [24].

Their patent processing pipeline [23] creates anno-

tations that fall into two broad categories: wide and

deep annotation types. Wide annotations cover meta-

data types that apply to patents in general, irrespective

of their subject area. Examples of such metadata in-

clude the identification of document sections and ref-

erences to other document parts (e.g. figures, claims),

or to other documents (e.g. cited literature, references

to other patents). Deep annotations are specific to one

or more subject areas and are of interest to specialised

patent searchers. The system [23] also identifies and

normalises physical measurement expressions.

For our experiments, the information extraction algo-

rithms of [23] were used to identify measurement ex-

pressions in a collection of patents, including annota-

tions with the normalised value of the recognised mea-

surement. We then indexed the measurements and all

other annotations with Mı́mir, where normalised values

are stored as numeric (non-nominal) features.

Thanks to these normalised values, searching for

measurement expressions becomes a standard Mı́mir

annotation search, where constraints are expressed in

relation to the normalised value. For example, one

could search for 1 inch measurements using the follow-

ing query: {Measurement normalisedUnit = "m"

normalisedValue = 0.0254}. However, this is not

particularly user-friendly, as it requires the user to know

the exact normalised unit to use (in this case metres and

not millimetres), and to perform the necessary conver-

sions themselves. Instead, we opted for exploiting the

open, extensible nature of the Mı́mir semantic search

framework and implemented a specialised query parser

plug-in to do the conversions automatically.

This works by wrapping the usual mechanism that
converts an annotation query to a set of mention IDs
(described in Section 2.2.1). The plug-in adds a virtual
annotation feature named ‘spec’, which can be used to
formulate measurement constraints in a manner familiar
to the user. If present at search time, constraints using
the spec feature are intercepted by the plug-in, parsed
using the same algorithm as used for the original docu-
ments, and converted into normalised measurement val-
ues. These are then used to formulate an underlying
Mı́mir query that uses the actual annotation features. An

13

example of this is shown in Figure 6: the user searches
for “2 to 3 inches” and the system finds documents that
contain the expressions ‘60mm’ and ‘2 inches’. The
user-supplied query was converted transparently into a
query similar to:

{Measurement normalisedUnit ="m"

normalisedValue >= 0.0508

normalisedValue <= 0.0762}

The actual query is more complex, since it also needs

to match measurement ranges in the original document

(e.g. between ‘75 and 150 mm’), for which not both

of the end-values fall within the query interval. As

can be seen in Figure 6, ‘75mm’ and ‘75-150mm’ were

matched, while ‘150mm’ was not.

Searching for measurements in this way arguably

benefits from the semantic interpretation of the original

text content, since the search is not based on the actual

words. For example, the query ‘2 to 3 inches’ and the

result ‘60 mm’ have no textual overlap at all. However,

due to special requirements, it does not do so through

the use of formal semantics and ontologies.

The next application demonstrates use of ontologies

and Linked Open Data to augment semantic search.

4.2. Environmental Linked Data

Environmental science is a broad, interdisciplinary

subject area where information discovery and manage-

ment is often a challenge [25].

Linked Open Data (LOD) offers an opportunity to im-

prove the process of information discovery and sharing

through unique, machine-readable, interlinked open vo-

cabularies. For example, a user searching for flooding

in Britain would be able to find a report with a chap-

ter on water levels at the Thames barrier, thanks to the

knowledge in Geonames which states that the Thames

barrier is located in England.

In other words, by exploiting additional semantic

knowledge from LOD resources, users were able to ben-

efit from Mı́mir’s semantic search and find reports that

would not have been picked up by full-text search alone

(see Section 5.3 on the user-based evaluation).

The first step in this joint project with the British

Library was to apply LOD-based semantic annotation.

We enriched 10,000 environmental science documents

and associated metadata with term and entity URIs from

DBpedia [12] and GeoNames, as well as with linguistic

information, such as part of speech.

The resulting documents, annotations, and URIs were

indexed in Mı́mir and it was configured to execute

SPARQL queries against two semantic repositories (one

for GeoNames and one for DBpedia). GeoNames was

used as a source of rich knowledge about locations (e.g.

NUTS administrative regions, latitude, longitude, par-

ent country, population count), while DBpedia provided

knowledge about people, organisations, and products.

The main challenge was to customise the form-based

semantic search user interface (Figure 7), so as to

hide the complexities of the Mı́mir query language

(SPARQL in particular), while allowing users to issue

powerful semantic search queries.

A specific requirement was support for location-

based queries, so users can narrow down results by

name, geographic coordinates, population, population

density and country code. Users also wished to search

for locations that a river flows through (see the corre-

sponding Mı́mir semantic query below), as well as doc-

uments mentioning locations near a given location.

{Mention dbpediaSparql =

"SELECT DISTINCT ?inst

WHERE {

?inst a dbont:River .

?inst dbprop:city ?x .

FILTER (REGEX(STR(?x),

\"Gloucester\", \"i\")) }"

}

For string-value properties, if is is chosen from the

third list in Figure 7 instead of none, then the value

must be exactly as specified (e.g. Oxford), whereas

contains triggers sub-string matching, (e.g. Oxford-

shire is matched as a location name containing Oxford).

In this way, a user searching for documents mentioning

locations with name containing Oxford, will be shown

not only documents mentioning Oxford explicitly, but

also documents mentioning Oxfordshire and other loca-

tions in Oxfordshire (e.g. Wytham Woods, Banbury).

In the latter case, knowledge from DBpedia and GeoN-

ames is used to identify locations in Oxfordshire.

4.3. Immunology Literature Review

In this project, the end users are immunology experts

performing systematic literature reviews. The target use

case is speeding up new vaccine development through

helping experts identify links and correlations between

domain concepts and entities that occur in previously

published research literature.

With this aim, a prototype was built that uses GATE

to annotate semantically a large document collection

(9.5 million documents), which comprises abstracts of

all potentially relevant papers from the PubMed library9

and the Cochrane Collaboration10.

9http://www.ncbi.nlm.nih.gov/pubmed
10http://www.cochrane.org/

14

Figure 10: The immunology document search interface. The top panels are used to formulate the search constraints. On the left, the principal query

is defined by picking an ontology class or instance; on the right additional constraints can be entered, based on document metadata.

The lower panels show (left to right): the list of matched documents, the content of the current document, and some additional document metadata.

A domain ontology was built with the users, cover-

ing concepts and properties relevant to immunology and

vaccine development. The same ontology is used by the

semantic annotation pipeline and Mı́mir.

The annotated documents are then indexed with

Mı́mir, and the resulting index is presented to the users

through a customised version of Mı́mir’s information

discovery user interfaces.

Figure 10 shows the semantic knowledge discovery

tool, running on the collection of over 9.5 million docu-

ments. Users formulate queries by selecting values from

a set of column browsers, drop-down lists and date pick-

ers; no actual query has to be entered manually.
In this example, a user has requested documents men-

tioning viral diseases, published in PubMed in 2009. As
a result, the system has generated the following query:

{Disease sparql = "SELECT ?inst WHERE {

?inst a :Viral_disease}"}) IN

{Document source = "PubMed"

type = "article"

date >= 20090101 date <= 20091231}

As can be seen, the use of semantics in the query has

allowed to match mentions of various types of hepatitis

and AIDS with the ‘viral disease’ query.

Once users have refined their information needs

through interactive semantic searches, they next use the

knowledge discovery UIs to get details on frequently oc-

curring terms (Figure 11) and important co-occurrences

(Figure 9).

In more detail, Figure 11 shows Mı́mir’s term fre-

quency UI (Figure 8), this time running over the im-

munology index. In this particular example, the user has

selected the ontology concept Virus which matches all

semantic annotations associated with that class. Instead

of showing the raw URIs, the UI has been configured to

show RDF labels instead, for user friendliness.

5. Evaluation

In this section we look at space cost for building in-

dexes, and at time efficiency for performing different

types of searches. Lastly, the results of a users-based

evaluation experiment are presented.

The experimental server had 24 cores (two AMD

Opteron 2.3GHz processors with 12 cores each) and

64GB RAM, using MG4J version 5.2.1.

15

Figure 11: Knowledge discovery: frequently occurring terms

The experimental setup for Section 5.1 was deliber-

ately single-threaded, opening the index files directly

using the lowest level Mı́mir API calls. In this way

we could ensure exact timing of only the search pro-

cess, isolated from any overheads introduced by the web

application. None of the experimental queries in Sec-

tion 5.1 involve any SPARQL.

The evaluation of complex semantic queries in Sec-

tion 5.2 used the live index instead of the low-level API.

The SPARQL queries were executed against Sesame

(version 2.3.3), running on the same server. The on-

tology was in ”Sesame native” format.

5.1. Indexing and Search Efficiency

Indexing efficiency is evaluated using the index from

the immunology application described above. Index

sizes are reported in Table 1. When compared to the

Wikipedia dumps used for evaluation of other semantic

search systems (e.g. [21]), our dataset is 3 times larger

in terms of number of tokens and 1.4 times larger in

terms of raw storage space.

As can be seen, the immunology index includes just

over 9.5 million documents (about 46 GB of uncom-

pressed text). The index configuration includes 36 an-

notation types, as well as 3 token features (string, mor-

phological root and part-of-speech). The document col-

lection included over 743 million individual annotation

occurrences, and 3.4 billion tokens.

The resulting annotation indexes and templates take

up a total of 2.3GB of disk space, while the largest token

index takes up 10GB. It can also be seen that, although

all token indexes include the exact same number of oc-

currences, their size differs according to how dense they

are. The part-of-speech index is the most dense (i.e. it

has the smallest number of terms, with longer average

posting lists) and it takes up about one third of the space

required by the string and root indexes. The fact that

the root and string indexes are of similar size is not sur-

prising, since most English words are not inflected, so

normalising words to their morphological roots does not

reduce information content significantly.

Annotation occurrences require, on average, similar

storage space to token strings. Conceptually, an annota-

tion contains more information than a word, so this re-

sult confirms our hypothesis that using annotation tem-

plate IDs results in very compact indexes. The only

penalty incurred in supporting level-1 and level-2 IDs

is the additional disk space for the template data, which

at 9.3MB is negligible. The resulting reduction in an-

notation index sizes also benefits the execution speed,

since a smaller index is also faster to search.

Exactly how these index sizes relate to the data size,

and thus the rate at which the index would grow as more

documents are added, is a complex question. There are

many different factors to consider, but all should be sub-

ject to linear upper bounds. For the token indexes the

document content store and the inverted index posting

lists will grow linearly with the total number of token

occurrences in the index. The direct index will grow lin-

early with the smaller total number of distinct tokens in

each document (because the direct index does not store

the positions at which a term occurs, only the number

16

Document Collection

Documents count 9, 551, 404

Annotation occurrences 743, 163, 979

Token occurrences 3, 400, 912, 569

Plain text size 46.28 GB

Index sizes

Annotation templates 9.3 MB

Annotation indexes 2.29 GB

Document content and metadata 17.3 GB

Token indexes 23 GB

part-of-speech index (3.27 GB)

morphological root index (9.73 GB)

string index (10 GB)

Total Index Size 42.6 GB

Table 1: Statistics for the immunology index. N.B. all multiples use

powers of 10, so the units are e.g. GB and not GiB.

All indexes were configured to include both inverted and direct in-

dexes. If only inverted indexes were used, the sizes would be 30..40%

smaller.

Document content and metadata includes the original document text

and stored metadata that is presented in the search results.

of times it occurs within each document). MG4J uses

various encoding schemes to store numeric data such

as term IDs and positions in as few bits as possible

while still maintaining good decoding performance, so

in practice the constant factors in these linear bounds

will be small, and depend on index density.

In order to evaluate the search-time execution speed

of Mı́mir, we used the same immunology index de-

scribed above. It is to be expected that the time taken

to answer a given query depends both on the complex-

ity of the query and the total number of result docu-

ments that are returned. To measure these effects, we

started by profiling the execution time of each of the

different query operators with regard to the number of

results generated.

For each operator we identified a query that was guar-

anteed to generate a large number of results. In each

case we ran the same query 20 times and selected the

best execution time. We also applied a delay of 1 sec-

ond between executions, to force the Java JIT compiler

to forget whatever optimisations it had applied to the

tight loops. Without this delay, subsequent execution

times can be up to 3 times shorter, but this would not be

a natural use case, as the exact same query is not usu-

ally executed repeatedly. Applying the delay has led to

a balanced set of values, eliminating the bias for small

values on the first measurement, and approximating a

Gaussian distribution.

For each query, execution times were then plotted

against the number of returned documents. The mea-

sured times include enumerating all returned document

IDs, but do not include the production of snippets. Snip-

pets, and other data needed to present the results to the

user would normally only be required for the first page

of results, typically the first 10 – 100 documents. Given

a fixed number of documents per page, the construction

of such results page is performed in constant time.

The queries we used are:

• ‘a’: the word ‘a’ is likely to occur in most docu-

ments.

• ‘{Document}’: each document in the collection

was annotated with a {Document} annotation, so

this annotation query is guaranteed to match all in-

dexed documents.

• ‘a AND a’, ‘a OR a’: simple Boolean queries that

will match the same document set as ‘a’ above.

• ‘{Document} IN {Document}’: containment query

that matches all documents as all {Document} an-

notations are co-extensive with a {Document} an-

notation. This is an abuse of the semantics of the

containment operator, but it allows us to construct

a query that will find results in all documents. The

the opposite containment operator ‘OVER’ would

perform the exact same logic so we have not mea-

sured it separately.

• ‘(a OR the) MINUS the’: an artificial query that

will match most documents whilst using the MI-

NUS operator. It finds all occurrences of either ‘a’

or t̀he’ which are not ‘the’. This is, of course, not

an optimal way to search for occurrences of ‘a’.

• ‘pos:DT pos:JJ pos:NN’: finds sequences of words

with parts of speech determiner, followed by an

adjective, and a noun. Effectively, this matches

noun phrases, which are very frequent in English,

thus ensuring a large number of results.

It should be noted that the Term and Annotation

queries are essentially wrappers around the MG4J

Index Iterator operator. All the others are imple-

mented by Mı́mir, even in cases where MG4J had an

equivalent operator (e.g. AND). This was done to allow

direct access to the compound Mı́mir index, and to re-

duce the number of format conversions that needed to be

performed between the MG4J representation of a result

set and the one used by Mı́mir.

The results are presented in Figure 12. It can be ob-

served that all operators behave linearly with regard to

the number of documents retrieved. As shown in the left

side plot, base operators (string and annotation), as well

17

0

200

400

600

800

1000

0 2 4 6 8 10

E
x
e
c
u
ti

o
n
 t

im
e
 (

m
il
li
s
e
c
o
n
d
s
)

Number of returned documents (millions)

Term: 'a'
Annotation: {Document}

AND: 'a AND a'
OR: 'a OR a'

0

20

40

60

80

100

0 2 4 6 8 10

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Number of returned documents (millions)

IN/OVER: {Document} IN {Document}
MINUS: '(a OR the) - the'

Sequence: 'pos:DT pos:NN'
Sequence: 'pos:DT pos:JJ pos:NN'

Figure 12: The execution times for different types of query. Each unit on the X axis represents a set of one million documents returned as a result

of each query. The two different graphs use different scales for their respective Y axes: the one on the left goes up to 1 second, while the one on the

right covers more complex queries and has a maximum value of 100 seconds. Shorter lines correspond to queries that do not return the maximum

number of results (9.55 millions), which can happen when a query does not find hits in every document in the index.

as Boolean ones, have response times of a few hundred

milliseconds, each being able to match seven million or

more documents in under one second.

The right side graph shows the statistics for the more

complex operators. The containment operators, that are

used for performing structural searches over document

annotations, are the most efficient with an execution

time of about 6 seconds. In this particular case, both

the left and right side operators are the annotation query

{Document}, which was separately measured at about

1 second, so the time used by the actual containment

operator is about 4 seconds (i.e. 6 − 1 − 1). The MINUS

and sequence operators are significantly slower, taking

between 54 and 74 seconds to match six million docu-

ments.

As expected, the execution time for the sequence op-

erator increases in line with the length of the sequence:

in order to match n + 1-length sequences, the system

has to find all n-length ones and try to expand them. To

investigate this further, we also tested sequence queries

of 4 and 5 terms. Because these queries are more con-

strained, they match far fewer documents. In order to

get comparable results we measured the time taken to

retrieve the first 100, 000 documents in each case. As

shown in Figure 13, the execution time increases with

the length of the sequence in a higher than linear fash-

ion. This suggests that sequence queries longer than 3

terms should be used with caution, and avoided wher-

ever possible. However, in practice, users tend to for-

0

2000

4000

6000

8000

10000

12000

14000

2 3 4 5

E
x
e
c
u
ti

o
n
 t

im
e
 (

m
s
)

Number of sequence terms

Figure 13: The execution times for retrieving the first 100,000 docu-

ments for sequence queries of different lengths.

mulate search queries of (on average) around 2.4 terms

[26], which indicates that in most cases there will be no

significant delay.

The reason for this higher than linear increase in ex-

ecution time is due to the way Mı́mir implements the

sequence operator:

1. First it finds all documents that contain all the

terms required for the sequence (essentially an

AND query), disregarding where in the documents

they occur;

2. For each such document, it retrieves the positions

of each of the query terms, and return as results

18

only occurrences where the terms occur in the cor-

rect sequence.

As the length k of the sequence query grows, the ex-

ecution time of the first step increases slower than lin-

early. In the second step, for every document found in

step 1, there are k sorted lists of positions within the

document. Then calculation of all valid sequences is

carried out, which is a complex operation resulting in

higher than linear increase in query execution time.

5.2. Evaluating a Complex Semantic Search Query

The queries above were chosen specifically to match

as large a fraction of the entire index as possible, in or-

der to allow us to profile search efficiency. However,

they are not representative of actual semantic search

queries formulated in practical applications.

Next we look in some detail at an actual user-

generated query. This was produced by an immunol-

ogy domain expert, who has been trained to use Mı́mir,

and has become a proficient user of the query language.

The expert was presented with the following informa-

tion need:

For the relevant pathogens, what antigens are

protective or associated with disease amelio-

ration or control of infection, in natural or ex-

perimental infection in Man?

Based on that request, they produced the Mı́mir query

shown in figure 14. When executed against the full in-

dex, this query returns 899 documents, and takes 35 sec-

onds to execute. In practice, users did not perceive this

response time as problematic, due to the information

discovery nature of their searches.

We look next at the main constituent parts of this

query, their intent, and their execution times.

The first query segment (lines 3-5, inclusive) finds

pathogens, described as either annotations of type

{Pathogen} or of type {Disease}, as long as they re-

fer to bacterial or viral diseases. In this case, the expert

was not concerned with diseases caused by parasites.

This query on its own matches 2, 375, 025 documents in

just under one second.

The next segment (lines 9-17, inclusive) finds rela-

tionships of type protection or control if they overlap

both a mention of a specific antigen and an immune re-

sponse. Furthermore, the results should only include oc-

currences inside sentences that express an assertion11.

This query segment matches 67, 769 documents, in 33

seconds.

11as opposed to a question, or a negation

1 (
2 (
3 {Pathogen} OR
4 {Disease sparql = "SELECT DISTINCT ?inst

֒→ WHERE {?inst a :Bacterial_disease }"} OR
5 {Disease sparql = "SELECT DISTINCT ?inst

֒→ WHERE {?inst a :Viral_disease }"}
6)
7 AND
8 (
9 (

10 (
11 {ProtectionAssociation} OR
12 {ControlAssociation}
13)
14 IN
15 {Sentence type = assertion}
16) OVER
17 ({SpecificAntigen} AND {ImmuneResponse})
18)
19 AND
20 (
21 {AnimalsAndModels sparql=
22 "SELECT DISTINCT ?inst WHERE { {?inst a

֒→ :Man} UNION {?inst a :Human_study}
֒→ }"}

23 IN
24 {Sentence type=" assertion "}
25)
26)
27 IN
28 (
29 {Document}
30 MINUS
31 (
32 {Document}
33 OVER
34 (
35 root:vaccinate OR root:immunize OR root:

֒→ immunise OR immunogen OR
36 vaccinogen OR {Vaccine} OR
37 {ImmuneResponse class = ":

֒→ Artificial_active_immunity "}
38)
39)
40)

Figure 14: Mı́mir query corresponding to a more complex semantic

search

The execution time for this segment is quite high, so

we decomposed it further. It turns out that most of the

time is taken by the IN {Sentence type = assertion} oper-

ation. It takes 14 seconds to enumerate all assertion

sentences in the entire collection, since almost all docu-

ments contain some. This creates a very large result set

on the right side of the IN operator, which causes it to

slow down.

As an experiment, we ran the same query segment

without the IN operation and the execution time was

reduced to 7.5 seconds. However, the number of doc-

uments matched has now increased to 73, 916, which

shows that the constraint we removed was actually nec-

essary.

The query segment at lines 21-22 is looking for men-

tions of the human species or human studies. It matches

19

1, 102, 517 documents in 0.2 seconds. As above, adding

the further constraint at lines 23-24 slows it down signif-

icantly to 16 seconds, but reduces the number of match-

ing documents to 994, 326.

Finally, the query segment at lines 29-39 finds all

the documents that do not contain mentions of vaccine-

induced infection or immunity. It must be noted that the

original query asked for natural or experimental infec-

tions, not the ones caused by vaccination. The expert

is using the MINUS operator to exclude all documents

that mention vaccination or related terms. This segment

matches 8, 724, 946 documents in just under 9 seconds.

The execution time for the full query is significantly

shorter than the sum of its constituents (35 seconds

compared to a sum of 1 + 33 + 16 + 9 = 59 seconds)

because when executed together the various operators

reduce each other’s search space.

A less rigorous but practically important efficiency

measurement is the time required to calculate the as-

sociation matrices, such as the one shown in Figure 9.

To populate each cell of this matrix, the user interface

fires an AND query, in which both terms are annota-

tion queries with semantic constraints. This particular

example includes 900 cells and was populated in under

3 seconds. The user interface allows the construction

of matrices of up to 100x100 cells, which are typically

visualised in less than 9 seconds.

5.3. User-based Evaluation

In order to evaluate the usability and learning over-

head of the form-based Mı́mir UI, a small-scale user

evaluation was conducted during a workshop, hosted by

the British Library. 23 participants attended the work-

shop, who could be broadly classified into environmen-

tal scientists (43%), users interested in applications of

semantic search to other domains (22%) and semantic

technology developers (35%).

Users were asked to compare the results from

keyword-based search against those produced by the

Mı́mir semantic search. All participants were asked to

complete four search tasks:

Task 1. Find documents on flooding on rivers flowing

through Gloucester

Task 2. Find documents on flooding in places near

Sheffield

Task 3. Find documents on flood risk management in

locations with population less than 15000 in-

habitants

Task 4. Find the areas at risk of surface water flooding

in London

Task 1 Task 2 Task 3 Task 4

Task

completion 100% 88.24% 88.24% 76.47%

rate

Keywords 47.06% 70.59% 35.71% 69.23%

Sem. search 82.35% 70.59% 96.43% 73.08%

Table 2: User Evaluation Results

Participants first completed each task using keyword

search only, and then re-formulated the query to include

also semantic search constraints from the form-based

semantic search interface. For each task, participants

were asked to write down the queries they used.

More formally, the experiment has a repeated mea-

sures, task-based design, i.e., the same participants in-

teracted with the two versions of the system, in order to

complete a given set of tasks. Prior to the experiment,

participants were shown a 10 minute demonstration of

the semantic search interface. Afterwards, participants

were given 30 minutes to complete the four tasks, using

the two search methods.

As can be seen from Table 2, task completion rates

vary. This is mainly due to the higher complexity of

tasks 2, 3, and 4, but also several users did not attempt

the later tasks, because they ran out of time. Neverthe-

less, each task was completed by at least 13 participants.

The percentage of participants who found relevant

documents using keyword search only (second row in

Table 2) also differs between tasks. The success rates for

tasks 1 and 3 are low, due to needing knowledge which

is not present explicitly in the documents. Namely, in

task 1 this is about which rivers flow through Glouces-

ter, and in task 3 – which places in the UK have pop-

ulation less than 15,000 inhabitants. Task 4 is about

searching for risk areas in London, where again some

relevant documents do not mention London explicitly.

Thirdly, participants stated that results obtained

through Mı́mir search were better than those from key-

word search alone. However, as task success rates indi-

cate, not all users were able to use the semantic search

interface effectively.

Lastly, we also evaluated the usability of the seman-

tic search UI, through a user questionnaire, which was

returned by 16 workshop participants (after they com-

pleted the search tasks). We used the SUS usability

questionnaire [27], with questions on usage and com-

plexity of the UI, and its ease of learning.

The mean questionnaire score is 72.3, which indi-

cates that the form-based semantic search UI has good

overall usability (a good SUS score needs to be over 68).

Standard deviation is 10.2. 69% of participants scored

20

the system above 68 overall.

In more detail, 9 of the 16 (56.3%) participants

agreed or strongly agreed that they would use the form-

based semantic search UI frequently. Another 6 par-

ticipants were neutral and only 1 participant strongly

disagreed. 14 of the participants (87.5%) disagreed or

strongly disagreed with the statement that the semantic

search UI is unnecessarily complex and 2 were neutral.

15 of the 16 participants (93.75%) felt they can use the

system without needing to learn more about it first.

Overall, from the questionnaire we can conclude that

there are no major issues with the form-based seman-

tic search UI, which make it complex or hard to use for

the majority of users. Almost all users learnt to use inte-

grated semantic search successfully after a short demon-

stration. However, an open question remains as to how

easy would users find it without any prior demonstra-

tion. This we plan to address in future work.

6. Related Work

Since Mı́mir is concerned with searching both full-

text and document structure, research on XML search is

broadly relevant (see [28] for a survey), including query

languages, such as TeXQuery [29], which combine full-

text predicates and an XML query language such as

XQuery[30]. Since linguistic annotations could be ex-

ported as XML markup on documents, it is also possible

to use such approaches for querying linguistic annota-

tions, in addition to full text and document structure.

Similarly, research on keyword search in databases (see

[31] for a survey) is also broadly relevant. However, se-

mantic full-text search approaches, such as Mı́mir and

other mentioned below, go one step further, by making

use of formal semantics and logical inference, in order

to interpret semantic annotations and queries by tapping

into knowledge external to the documents (e.g. DBpe-

dia and other LOD resources).

Semantic search is a term that has been used to de-

scribe a wide range of search approaches, that go be-

yond simple keyword-based search [32]. This section

discusses the most relevant, recent semantic search sys-

tems of each kind.

Concept search (e.g. [33]) is a modification of tradi-

tional full-text search, where concepts instead of words

are indexed and searched. Another example is the

ontology-based IR model proposed in [34], where se-

mantic entities are indexed in the documents where they

appear. Search is carried out via a natural language

query, which is transformed into SPARQL to retrieve

all matching entities from a given knowledge base, fol-

lowed by retrieval and ranking of documents contain-

ing these entities. These approaches differ from Mı́mir’s

integrated semantic search since they ignore document

structure and use text-only queries, which are analysed

to derive the corresponding concepts.

With respect to searching linguistic annotations, ded-

icated corpus search approaches have been developed

[35, 36], some of them inspired by research on XML

search [28]. For example, [36] propose a modification

of XPath, in order to account for the horizontal, in ad-

dition to the vertical structure present in linguistic an-

notations. Fundamentally, only the structured linguistic

data is searched, which falls short of integrated semantic

search, which also includes full-text content and exter-

nal knowledge sources.

Our semantic search approach also differs from se-

mantic web search engines, such as Swoogle [37] or

SemSearch [38], in its support for implicit semantics,

discovered through NLP techniques, rather than reliance

on explicitly encoded semantics in an ontology or RDFa

annotated documents. Similarly, semantic-based facet

search and browse interfaces, such as /facet [39], tend

to show the ontologies explicitly, whereas annotation-

based facet interfaces (see KIM below) tend to hide

the ontology and instead resemble more closely “tradi-

tional” string-based faceted search.

Much of the semantic search work has focused

specifically on searching knowledge graphs, typically

encoded in RDF [40] or OWL [24], and stored in a

database or a semantic repository. This problem has

been referred to as ad-hoc object retrieval [7] or entity(-

oriented) search [41, 42]. Methods include graph

traversal [43] and reasoning [44]. In this case, the search

need is formulated in a structured query language, such

as SPARQL [4]. There has also been work on mapping

keyword queries to semantic queries over RDF data, e.g.

[42, 7] for entity search and the QUICK system [45] for

building semantic search queries from keywords. This

kind of search could be referred to as structured seman-

tic search, because it operates on structured semantic

knowledge, coupled with inference techniques. It is par-

ticularly suited to answering instance-type queries, such

as “Which UK towns are within 100 miles of Sheffield”.

The semantic search systems most similar to Mı́mir

are the semantic full-text search or hybrid search ap-

proaches. The KIM (Knowledge and Information Man-

agement) platform [46, 2], was among the first such

systems to implement semantic search, both over RDF

knowledge bases via SeRQL (later SPARQL) and over

semantically annotated document content. KIM uses

hybrid queries mixing keywords and semantic restric-

tions and comes with a number of user interfaces for

semantic search and browsing. Mı́mir differs from KIM

21

in supporting structural compound operators, which en-

able semantic search also over linguistic annotations

and document structure markup.

GoNTogle [47] is a search system that provides key-

word, semantic and hybrid search over semantically an-

notated documents. The semantic search replaces key-

words with ontological classes. Results are obtained

based on occurrences of the ontological classes from

the query within the annotations associated with a doc-

ument. Finally, the hybrid search, comprises a stan-

dard Boolean AND or OR operation between the re-

sult sets produces by a keyword search and a semantic

search. The only type of annotation supported is associ-

ating an ontology class with a document segment. An-

other similar system is Semplore[48] which uses con-

junctive hybrid query graphs, similar to SPARQL, but

enhanced with a “virtual” concept called keyword con-

cept W. However, both GoNTogle and Semplore do not

have support for structural searches of any kind, nor for

other types of linguistic information.

Lastly, the Broccoli system [21] provides a user in-

terface for building queries, combining text-based and

semantic constraints (encoded as entity mentions in the

input text, with URIs). The association between text and

semantics is encoded by means of the occurs-with rela-

tion which is implied whenever mentions of words and

ontological entities occur within the same context. The

contexts are automatically extracted at indexing time,

and rely mainly on syntactic analysis of the document

sentences and extraction of syntactic dependency rela-

tions. The occurs-with relation is essentially a repre-

sentation of the underlying phrase structure of the input

document. This works well, and adds weight to the ar-

gument that structure is important in search.

One key difference between Broccoli and Mı́mir

is that, by default, Broccoli performs entity-oriented

search (although document search is also supported),

whereas Mı́mir returns documents.

Another difference is in the way document struc-

ture is modelled. Broccoli is only concerned with co-

occurrence of words or entity mentions within the same

context. It chooses a context definition that is aimed

at best representing relatedness. Having defined what

contexts are, it then uses that decision to influence the

design of the indexing system, in a way that maximises

performance.

By contrast, Mı́mir makes no assumptions about what

type of document structure will be most relevant to a

given semantic search application. It simply provides a

model for annotations over the input text, which repre-

sent arbitrary metadata associated with arbitrary text ex-

tents inside the input documents. These annotations can

be used to represent document structure (e.g. sentences,

sections, bibliography), entity mentions with links to an

ontology, linguistic information (e.g. noun phrases), or

simple plain ‘tags’ that are relevant to the user’s domain

(e.g. ProtectionAssociation). Mı́mir then provides a

generic implementation for indexing and interrogating

these annotations along with the textual content. This

makes Mı́mir a generic tool, that can be used with data

from any domain, as demonstrated by the quite different

use cases presented in Section 4. For any new applica-

tion, we require a representation of the target domain

(e.g. an ontology), and a text analysis pipeline that can

annotate input text to identify mentions of relevant enti-

ties and document structure. Given these, Mı́mir can be

used to power domain-relevant searches over any doc-

ument collection that was processed with the provided

analysis pipeline.

Unsurprisingly, this added generality comes with

added costs, the first victim being user-friendliness. Be-

cause of its more constrained task definition, Broccoli

can provide dedicated User Interfaces (UIs) that make

the interaction with the system simpler and more in-

tuitive. The UIs also provide context-sensitive sugges-

tions, while users type, e.g. class or relation names, to

lower the cognitive load and improve usability.

For Mı́mir, the query language is complex, combin-

ing the system’s own idiosyncrasies with the relatively

high complexity of SPARQL. The user is also required

to have a good familiarity with the domain ontology and

the annotation schema. This complexity can be miti-

gated through the development of reusable user inter-

faces, some examples of which are shown in Section 4.

However, these usually require some customisation ef-

fort to make them optimal for a given application and

domain.

Broccoli also takes advantage of its fixed definition

for contexts when designing the index structure. Its

indexes are optimised to represent co-occurrence of

terms (either words or entities) within the same con-

text. This gives it a very good performance profile when

answering queries. One could conceive of an annota-

tion schema that could be used with Mı́mir to repre-

sent that same occurs-with relation that Broccoli uses.

For example, one could use the Broccoli text processing

pipeline to identify entities, and also create {Context}

annotations, which are then all indexed in Mı́mir. The

occurs-with relation could then be interrogated using a

query like (#item1 AND #item2) IN {Context}, where

the two items can be terms or annotations represent-

ing entities. This will allow the formulation of queries

equivalent to the ones answered by Broccoli, and which

will return the same results. However, the execution

22

time will be significantly slower – in the order of sec-

onds for Mı́mir, compared to hundreds of milliseconds

for Broccoli.

Another difference comes from the way Mı́mir inte-

grates SPARQL-based semantic constraints. Because

the SPARQL side of the query is executed externally,

in isolation, it cannot be filtered based on non-SPARQL

constraints. For example, one cannot search for “men-

tions of a {Person} born in a {City} that occurs in the

same document as the word smog”. This would require

the list of cities that co-occur with smog to be fed into

the SPARQL query, and this is currently not supported

by Mı́mir, although we plan to add it in future work.

To summarise, the novelty of the Mı́mir semantic

search framework lies in its tailoring to serendipitous in-

formation discovery tasks, supported through a number

of visualisations, including co-occurrence matrices and

term clouds, as well as an interactive retrieval interface,

where users can save, refine, and analyse the results of a

semantic search over time. The more well-studied infor-

mation seeking searches are also supported, including

ranking of search results. To the best of our knowledge,

the Mı́mir framework is the first open-source semantic

search platform of this kind.

7. Conclusion

This paper introduced the Mı́mir semantic search

framework, which can index and search full-text con-

tent, document structure, linguistic annotations, and on-

tologies. This kind of semantic search is particularly

beneficial where search results require knowledge not

contained explicitly in the document content (e.g. docu-

ments about flooding in UK cities with population under

50,000 people).

Mı́mir combines conventional full text Boolean

retrieval, structural annotation graph search, and

SPARQL-based concept search. A major advantage is

Mı́mir’s extensible architecture, where new methods for

indexing, result ranking and query interpretation can

easily be added through pre-defined APIs.

Future work on Mı́mir will address utilising rele-

vance feedback, to train the retrieval algorithms under-

neath. Similarly, user adoption could be improved fur-

ther through a “more like this” functionality, to help

users with refining semantic search queries.

There is also ongoing work on extending the Mı́mir

framework towards indexing and search over content

streams, moving away from the classic offline indexing

and online search architecture.

Lastly, with respect to improving the usability of the

Mı́mir query language, we are planning to investigate

the use of a natural language query interface. This

would build on our earlier work on natural language in-

terfaces to ontologies [49].

Acknowledgements

This work was supported by the EU FP7-ICT Pro-

gramme under grant agreements No. 296322 AnnoMar-

ket and no.287863 TrendMiner, and a UK EPSRC grant

No. EP/I004327/1. We also wish to thank the editors

and reviewers for their extensive and constructive feed-

back, which helped us improve the paper significantly.

References

[1] P. Pirolli, Powers of 10: Modeling complex information-seeking

systems at multiple scales, IEEE Computer 42 (3) (2009) 33–40.

[2] A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov,

M. Goranov, Semantic annotation, indexing and retrieval, Jour-

nal of Web Semantics 1 (2) (2004) 671–680.

[3] H. Bast, F. Bäurle, B. Buchhold, E. Haussmann, A case for se-

mantic full-text search, in: Proceedings of the 1st Joint Inter-

national Workshop on Entity-Oriented and Semantic Search, JI-

WES ’12, ACM, 2012, pp. 4:1–4:3.

[4] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language

for RDF, W3C recommendation – 15 january 2008, W3C,

http://www.w3.org/TR/rdf-sparql-query/ (2008).

[5] K. Mahesh, J. Kud, P. Dixon, Oracle at TREC8: A Lexical Ap-

proach, in: Proceedings of the Eighth Text Retrieval Conference

(TREC-8), 1999.

[6] E. Voorhees, Using WordNet for Text Retrieval, in: C. Fellbaum

(Ed.), WordNet: an electronic lexical database, MIT Press,

1998.

[7] J. Pound, P. Mika, H. Zaragoza, Ad-hoc object retrieval in the

web of data, in: Proceedings of the 19th International Confer-

ence on World Wide Web, ACM, 2010, pp. 771–780.

[8] D. Maynard, V. Tablan, C. Ursu, H. Cunningham, Y. Wilks,

Named Entity Recognition from Diverse Text Types, in: Re-

cent Advances in Natural Language Processing 2001 Confer-

ence, Tzigov Chark, Bulgaria, 2001, pp. 257–274.

[9] L. Ratinov, D. Roth, Design challenges and misconceptions in

named entity recognition, in: Proceedings of the Thirteenth

Conference on Computational Natural Language Learning, As-

sociation for Computational Linguistics, 2009, pp. 147–155.

[10] D. Rao, P. McNamee, M. Dredze, Entity linking: Finding ex-

tracted entities in a knowledge base, in: Multi-source, Multi-

lingual Inf. Extraction and Summarization, Springer, 2013.

[11] K. Bontcheva, H. Cunningham, Semantic annotations and re-

trieval: Manual, semiautomatic, and automatic generation, in:

J. Domingue, D. Fensel, J. Hendler (Eds.), Handbook of Se-

mantic Web Technologies, Springer, 2011, pp. 77–116.

[12] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cy-

ganiak, S. Hellmann, DBpedia – a crystallization point for the

web of data, Journal of Web Semantics: Science, Services and

Agents on the World Wide Web 7 (2009) 154–165.

[13] V. Tablan, I. Roberts, H. Cunningham, K. Bontcheva, GATE-

Cloud.net: a Platform for Large-Scale, Open-Source Text Pro-

cessing on the Cloud, Philosophical Transactions of the Royal

Society A: Mathematical, Physical & Engineering Sciences

371 (1983) (2013) 20120071.

23

[14] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, GATE:

an Architecture for Development of Robust HLT Applications,

in: Proc. of the 40th Annual Meeting on Association for Com-

putational Linguistics, ACL’02, Philadelphia, USA, 2002, pp.

168–175.

[15] A. Kiryakov, OWLIM: balancing between scalable repository

and light-weight reasoner, in: Proceedings of the 15th Interna-

tional World Wide Web Conference (WWW2006), 23–26 May

2010, Edinburgh, Scotland, 2006.

[16] J. Broekstra, A. Kampman, F. Van Harmelen, Sesame: A

generic architecture for storing and querying RDF and RDF

Schema, in: The Semantic WebISWC 2002, Springer, 2002.

[17] P. Boldi, S. Vigna, MG4J at TREC 2005, in: E. M. Voorhees,

L. P. Buckland (Eds.), Proceedings of the Fourteenth Text

REtrieval Conference (TREC 2005), 15–18 November 2005,

Vol. 500 of Special Publications, NIST, 2005, pp. 266–271,

http://mg4j.dsi.unimi.it/.

[18] E. Hatcher, O. Gospodnetic, Lucene in Action (In Action series),

Manning Publications Co., Greenwich, CT, USA, 2004.

[19] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu,

M. Gatford, Okapi at trec-3, NIST SPECIAL PUBLICATION

SP (1995) 109–109.

[20] K. S. Jones, A statistical interpretation of term specificity and its

application in retrieval, Journal of documentation 28 (1) (1972)

11–21.

[21] H. Bast, F. Bäurle, B. Buchhold, E. Haussmann, Broccoli: Se-

mantic full-text search at your fingertips, CoRR abs/1207.2615.

[22] B. Shneiderman, The eyes have it: a task by data type taxon-

omy for information visualizations, in: Proceedings of the IEEE

Symposium on Visual Languages, 1996, pp. 336–343.

[23] M. Agatonovic, N. Aswani, K. Bontcheva, H. Cunningham,

T. Heitz, Y. Li, I. Roberts, V. Tablan, Large-scale, parallel au-

tomatic patent annotation, in: Proceedings of the 1st ACM

workshop on Patent information retrieval (PaIR ’08, 30 Octo-

ber 2008, PaIR ’08, ACM, New York, NY, USA, 2008, pp. 1–8.

[24] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.

McGuinness, P. F. Patel-Schneider, L. A. Stein, OWL web

ontology language reference, W3C recommendation, W3C,

http://www.w3.org/ (Feb 2004).

[25] R. G. Raskin, M. J. Pan, Knowledge representation in the se-

mantic web for earth and environmental terminology (sweet),

Computers and Geosciences 31 (9) (2005) 1119–1125.

[26] A. Spink, D. Wolfram, M. B. J. Jansen, T. Saracevic, Searching

the web: The public and their queries, Journal of the American

Society for Information Science and Technology 52 (3) (2001)

226–234.

[27] J. Brooke, SUS: a “Quick and Dirty” Usability Scale, in: P. Jor-

dan, B. Thomas, B. Weerdmeester, A. McClelland (Eds.), Us-

ability Evaluation in Industry, Taylor and Francis, 1996.

[28] S. Amer-Yahia, M. Lalmas, Xml search: languages, inex and

scoring, SIGMOD Rec. 35 (4) (2006) 16–23.

[29] S. Amer-Yahia, C. Botev, J. Shanmugasundaram, Texquery: A

full-text search extension to xquery, in: Proc, of the 13th Int.

Conf. on World Wide Web, WWW ’04, 2004, pp. 583–594.

[30] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie,

J. Simeon, Xquery 1.0: An xml query language (second edition),

Tech. rep. (14 December 2010).

[31] J. X. Yu, L. Qin, L. Chang, Keyword search in databases, Syn-

thesis Lectures on Data Management 1 (1) (2009) 1–155.

[32] T. Tran, P. Mika, H. Wang, M. Grobelnik, Semsearch’11: The

4th semantic search workshop, in: Proceedings of the 20th In-

ternational Conference Companion on World Wide Web, WWW

’11, ACM, 2011, pp. 315–316.

[33] F. Giunchiglia, U. Kharkevich, I. Zaihrayeu, Concept search, in:

The Semantic Web: Research and Applications, 6th European

Semantic Web Conference, Vol. 5554 of Lecture Notes in Com-

puter Science, Springer, 2009, pp. 429–444.

[34] M. Fernández, I. Cantador, V. López, D. Vallet, P. Castells,

E. Motta, Semantically enhanced information retrieval: An

ontology-based approach, Web Semantics 9 (4) (2011) 434–452.

[35] P. Chubak, D. Rafiei, Efficient indexing and querying over syn-

tactically annotated trees, PVLDB 5 (11) (2012) 1316–1327.

[36] S. Bird, Y. Chen, S. Davidson, H. Lee, Y. Zheng, Designing and

evaluating an xpath dialect for linguistic queries, in: Data Engi-

neering, 2006. ICDE ’06. Proceedings of the 22nd International

Conference on, 2006, pp. 52–52.

[37] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Red-

divari, V. C. Doshi, J. Sachs, Swoogle: A Search and Metadata

Engine for the Semantic Web, in: Proceedings of the Thirteenth

ACM Conference on Information and Knowledge Management,

2004.

[38] Y. Lei, V. Uren, E. Motta, Semsearch: A search engine for the

semantic web, in: S. Staab, V. Svátek (Eds.), Managing Knowl-

edge in a World of Networks, Vol. 4248 of Lecture Notes in

Computer Science, Springer Berlin, Heidelberg, 2006, pp. 238–

245.

[39] M. Hildebrand, J. van Ossenbruggen, J. Hardman, /facet: A

Browser for Heterogeneous Semantic Web Repositories, in:

Proceedings of the 5th International Semantic Web Conference,

2006.

[40] G. Klyne, J. Carroll, Resource description framework (RDF):

Concepts and abstract syntax, W3C recommendation, W3C,

available at http://www.w3.org/TR/rdf-concepts/ (2004).

[41] K. Balog, P. Serdyukov, A. P. de Vries, Overview of the

trec 2010 entity track, in: E. M. Voorhees, L. P. Buckland

(Eds.), Proceedings of The Nineteenth Text REtrieval Confer-

ence, TREC 2010, Gaithersburg, Maryland, USA, November

16-19, 2010, 2010.

[42] R. Blanco, P. Mika, S. Vigna, Effective and efficient entity

search in rdf data, in: Proceedings of the 10th International

Conference on The Semantic Web, ISWC’11, Springer-Verlag,

2011, pp. 83–97.

[43] C. Rocha, D. Schwabe, M. P. Aragao, A hybrid approach for

searching in the semantic web, in: Proceedings of the World

Wide Web Conference, 2004.

[44] G. Stoilos, B. C. Grau, I. Horrocks, How incomplete is your

semantic web reasoner?, in: Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence (AAAI), 2010.

[45] G. Zenz, X. Zhou, E. Minack, W. Siberski, W. Nejdl, From key-

words to semantic queries - incremental query construction on

the semantic web, Web Semantics 7 (3) (2009) 166–176.

[46] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff,

M. Goranov, KIM – Semantic Annotation Platform, in: 2nd In-

ternational Semantic Web Conference (ISWC2003), Springer,

Berlin, 2003, pp. 484–499.

[47] N. Bikakis, G. Giannopoulos, T. Dalamagas, T. Sellis, Integrat-

ing keywords and semantics on document annotation and search,

in: R. Meersman, T. Dillon, P. Herrero (Eds.), On the Move

to Meaningful Internet Systems, Vol. 6427 of Lecture Notes in

Computer Science, Springer, 2010, pp. 921–938.

[48] L. Zhang, Q. Liu, J. Zhang, H. Wang, Y. Pan, Y. Yu, Semplore:

An ir approach to scalable hybrid query of semantic web data,

in: The Semantic Web, 6th International Semantic Web Con-

ference, 2nd Asian Semantic Web Conference, ISWC 2007 +

ASWC 2007, 2007, pp. 652–665.

[49] D. Damljanovic, M. Agatonovic, H. Cunningham,

K. Bontcheva, Improving habitability of natural language

interfaces for querying ontologies with feedback and clarifca-

tion dialogues, Web Semantics: Science, Services and Agents

on the World Wide Web 19 (0), http://bit.ly/JWSsd.

24

