
ECE 362 Lab Verification / Evaluation Form

Experiment 4

Evaluation:

IMPORTANT! You must complete this experiment during your scheduled lab period. All

work for this experiment must be demonstrated to and verified by your lab instructor before

the end of your scheduled lab period.

STEP DESCRIPTION MAX SCORE

1 delay 4

2 clock 8

3 tdisp 4

4 prompt 6

5 Thought Questions 3

 TOTAL 25

Signature of Evaluator: __

Academic Honesty Statement:

IMPORTANT! Please carefully read and sign the Academic Honesty Statement, below. You

will not receive credit for this lab experiment unless this statement is signed in the presence of

your lab instructor.

“In signing this statement, I hereby certify that the work on this homework and experiment is

my own and that I have not copied the work of any other student (past or present) while

completing them. I understand that if I fail to honor this agreement, I will receive a score of

ZERO and be subject to possible disciplinary action.”

Printed Name: _____________________ Class No. __ __ __ __ - __

Signature: ____________________________________ Date: _______

ECE 362 - Experiment 4 Rev 9/15

Bigger Bytes Lab Manual -1- © 2015 by D. G. Meyer

Experiment 4: “Tick Tock” Clock Based on Software Delay

Instructional Objectives:

 To learn how to write a structured program

 To learn what is meant by top-down design

 To learn how to break a programming task into modules and to learn the advantages of such

an approach

 To enhance your ability to write, test, and debug HC(S)12 assembly code

Prelab Preparation:

 Read this document in its entirety

 Bring your own 9S12C32 board with you to lab – target systems will not be provided

 Write the code for all steps prior to coming to lab

Introduction:

As the jobs we desire the 9S12C32 to do become larger, it becomes more and more complicated

to write and debug the code. One technique for overcoming these complications (or at least

simplifying the problem) is modular programming. The idea behind modular programming is to

break the job into small tasks and, if needed, break these into even smaller sub-tasks. The basic

premise is that smaller tasks are easier to code, test, and debug.

The toughest part of modularizing your code is often deciding how to break it into appropriately-

sized modules. The technique we propose you use is top-down programming. “Top-down” simply

means start at the “top” (the “big picture”) and work your way “down” to the bottom (the “program

pieces”). In other words, first write a “main” (or “supervisor”) code module that calls various sub-

modules. Each of these sub-modules performs a specific task. Each task may be quite independent

of the others. This makes it easy to program each one separately. It may be helpful to even break

these sub-modules into several lower-level “chunks”. Each “chunk” will perform a single job and

will probably not exceed much more than 10 to 15 lines of code. These chunks will perform the

elementary tasks needed by the “main” program. For example, a “code chunk” may include

reading a value from the terminal keyboard or converting an ASCII value to a hex value. The

important thing to note is that most all of these “code chunks” can be independently tested,

debugged, and verified. As you test and verify various “code chunks”, you can successively

incorporate these modules into your main program (note that “include” files can be utilized to help

facilitate this process). For routines not yet written, simply write a “dummy module” that merely

returns or prints a message to the effect that the module has been reached. If you wish execution

to terminate when one of these yet-to-be-completed sub-modules is reached, simply set a

breakpoint in that “dummy module”.

In this experiment, you will create a (12 hour) time-of-day clock that executes out of flash memory

upon power-on/reset. The timing reference for this clock will be based strictly on software delay

loops. Once your clock is working, you will analyze the accuracy of your solution.

ECE 362 - Experiment 4 Rev 9/15

Bigger Bytes Lab Manual -2- © 2015 by D. G. Meyer

Program Description:

For this experiment, you will create a 12-hour time-of-day clock that updates its display every

second. The clock application should be loaded into flash memory and run upon reset (i.e., it should

function in a “turn key” fashion). Upon startup/reset, the user should be prompted for the initial

time setting as illustrated in the dialog box below; each user entry should be checked for validity

(i.e., “legal” time, only “a” or “p” for am/pm, etc.). The application should keep running until the

processor is reset.

Download and unzip the Code Warrior project folder Lab4 from the course website. Note that the

project is set up to communicate with the target system (9S12C32 microcontroller board) using a

USBDMLT pod (hence the selection of TBDML mode). The serial port on the 9S12C32 board

is set up to communicate with the host PC using a standard serial-to-USB adapter, in conjunction

with the Windows application TeraTerm (or most any other terminal emulator program).

Note: Be very careful when connecting your board to the USBDMLT pod (6-pin header) – in

particular, carefully note the location of “pin 1” and do not pull on the cable when removing the

header. The UBDMLT pods in lab are set up to power your board directly, so no external power

supply (wall wart) is necessary.

Follow the steps outlined below in creating your solution.

9S12C32 Tick Tock Clock V1.0

Created by: your name and class number

Last updated: date code was last updated

Enter hours: 00
*** ERROR *** Invalid entry – try again
Enter hours: 01
Enter minutes: A
*** ERROR *** Invalid entry – try again
Enter minutes: 30
Enter seconds: 99
*** ERROR *** Invalid entry – try again
Enter seconds: 2B
*** ERROR *** Invalid entry – try again
Enter seconds: 15
Enter a/p: x
*** ERROR *** Invalid entry – try again
Enter a/p: p
Starting...
01:30:15 pm
01:30:16 pm
01:30:17 pm
.
.
.

ECE 362 - Experiment 4 Rev 9/15

Bigger Bytes Lab Manual -3- © 2015 by D. G. Meyer

Step 1:

Examine main.asm and note the routines provided as well as the ones you will need to write.

Also, examine the flash memory “boot up” code, and note that the processor will be running at 24

MHz (which means each machine instruction cycle is 41.67 ns). Finally, note that variable

declarations provided (others may be added, but all variables must be in SRAM).

Write and test a delay subroutine that provides a variable delay (up to 1000 ms) based on the

value based to it via the X register. This can be accomplished using a doubly-nested loop similar

to the one used in the lecture notes, except note the extended “outer loop” range as well as the

difference in machine instruction cycle time (41.67 ns) based on a CPU clock speed of 24 MHz.

Test your delay subroutine by using the showcycles command in Code Warrior to test its

accuracy for different values passed in (X).

In the space provided below (or on an attached sheet), sketch a flowchart for your delay

subroutine.

ECE 362 - Experiment 4 Rev 9/15

Bigger Bytes Lab Manual -4- © 2015 by D. G. Meyer

Step 2:

Write and test a clock subroutine that increments the current time by one each time it is called.

Note that each time-related variable (hours, minutes, seconds) is stored as a packed BCD

number, and that the valid range for minutes and seconds is 00 to 59 while the valid range

for hours is 01 to 12. Also note that your clock routine should “toggle” the am/pm flag

(ampm) when hours changes from 11 to 12 (a flag is a single byte variable that is either 0 or 1).

Test your clock subroutine code by initializing the time variables using the debugger and setting

up a simple loop that calls clock to test its operation.

In the space provided below (or on an attached sheet), sketch a flowchart for your clock routine.

ECE 362 - Experiment 4 Rev 9/15

Bigger Bytes Lab Manual -5- © 2015 by D. G. Meyer

Step 3:

Write and test a tdisp subroutine that displays the current time in nn:nn:nn a/p format on a

new line of an emulated terminal each time it is called. Note that the subroutines disbyte,

htoa, and outchar are provided to assist with this task. To test your tdisp subroutine, simply

create an “infinite” loop that calls tdisp, clock, and delay on each iteration (which will

essentially become the heart of your “main” program).

Step 4:

Write and test a prompt routine that prompts the user for the initial time setting and checks the

validity of the user-entered responses as they are entered (see dialog box under the Program

Description section for an illustration of how it is to work). Note that the subroutines atoh,

inchar, and pmsg along with a print macro are provided to assist with this task. Once your

prompt subroutine is complete, the entire application should be ready to run.

Step 5:

Empirically measure the accuracy of your application over an extended period, and answer the

following “Thought Questions”:

(a) How much error accrues (vs. observed “wall clock” time) after 10 minutes of operation?

After 30 minutes of operation? Is your application running “fast” or “slow”?

__

__

__

(b) Based on the error measured in (a), estimate how far off your application will be after 24

hours of operation? After one year of operation?

__

__

(c) List some potential sources of timing error and describe how you could “tweak” your

application to make it more accurate. Also elaborate on the expected limits to the accuracy

of your application.

__

__

__

__

