Name \qquad
\qquad
Period \qquad

Pirections: Use the word bank below to fill in the blanks in the passage that follows.			
	Group	Nonmetal	
Actinide series	Halogen	Period	
Alkali metal	Lanthanide series	Periodic law	
Alkaline earth metal	Metal	Periodic table	
Atomic mass	Metalloid	Transition element	
Atomic number	Noble gas		
Family			

Dmitri Mendeleev developed a chart-like arrangement of the elements called the \qquad . He arranged the elements in order of increasing \qquad , but what he discovered were many gaps. The chart was not that organized and easy to use. The arrangement used today differs from that of Mendeleev in that Henry Mosely arranged the elements in order of increasing \qquad . He called this the \qquad of the elements. Each horizontal row of elements is called a(n) \qquad . Each vertical column is called a(n)
\qquad , or because of the resemblance between elements in the same column, $a(n)$ \qquad .

In rows 4 through 7 , there is a wide central section containing elements, each of which is called $a(n)$
\qquad . Rows 6 and 7 also contain two other sets of elements that are listed below the main chart. These are called the \qquad and the \qquad respectively. In Group 13 between boron and aluminum, there is a "staircase." All elements to the left of that staircase are \qquad , and all elements to the right of that staircase are \qquad . All of the elements touching the staircase (except Al) have some but not all of the properties of metals, and are called \qquad .

Each of the elements in Group 1 is called a(n) \qquad
Each of the elements in Group 2 is called a(n) \qquad
Each of the elements in Group 17 is called a(n) \qquad
Each of the elements in Group 18 is called a(n) \qquad

