Chapter 3: Inequalities

St. Anthony's Canossian Secondary School Secondary 3 Mathematics

Semester 1 Tutorial 4: Inequalities

Name:		 ()
Class: _			

Date: _____

<u>Summary</u>

Simultaneous Linear Inequalities

Suppose a < b.

Inequalities	Solution	Solution on a number line	
1. $x < a$ and $x \leq b$	x < a	$x \le b$	
2. $x > a$ and $x \ge b$	x ≥ b	x > a	
3. $x < a$ and $x \ge b$	no solution	x < a	
4. $x > a$ and $x \le b$	a < x ≤ b	$x \leq b$ x > a a b	

Basic Questions

- 1) Solve the following inequality $x 7 \le 5 2x$.
- 2) Solve the inequality $\frac{7x-1}{2} \le 2x+3$.
- 3) Solve the inequality $3x > \frac{x}{2} + 20$.
- 4) Find the smallest prime number y for which 3(y-4) > 24.
- 5) (a) Solve the inequality $-7 \le 2x 5 < 9$. Show your solution on the number line in the answer space.
 - (b) Write down the integer values of x which satisfy the inequality.

6) Given that
$$\frac{9}{a+1} < 4, a \ge 0$$
.

- (a) Solve this inequality.
- (b) If *a* is an integer, what is the least value of *a*?

Average Questions

- 7) (a) Solve $-5 \le 2x + 3 \le 10$,
 - (b) Hence, write down the greatest and least integer values of x which satisfy $-5 \le 2x + 3 \le 10$.

8) Solve the inequalities
$$3(x-3) < 4x - \frac{1}{2} < 2(8-x)$$
.

- 9) Find the greatest integer value of x that satisfies the inequality $\frac{3-2x}{3} < \frac{3x+1}{7} < 5-x.$
- 10) (a) Solve the inequality $3 2x \le \frac{1}{3}(x-2) < \frac{1}{4}(x+3)$.
 - (b) Write down the greatest prime number which satisfies the inequality.

Nizam/Sec_3E/Mathematics/Tutorial_4_Inequalities

- 11) Solve $\frac{8x+9}{2} \le 3(x+1) < 2(3x+6)$, illustrating your answer using the number line. Hence, list the integer values of *x*.
- 12) Find the integer values of x for which $1-x < 3x+5 \le \frac{4x+15}{2}$.
- 13) (a) Solve the following inequality, $-1 < \frac{x-3}{3} \le \frac{4}{5}$.
 - (b) Hence, state the largest rational number *x*.

Challenging Questions

- 14) Mrs. Lim buys x apples at \$0.40 each and (x-5) oranges at \$0.50 each. She wishes to spend less than \$10.
 - (a) Form an inequality in *x*.
 - (b) Solve the inequality and hence, find the largest possible integer value of x.
- 15) Mr Goh bought 188 oranges for \$35.40. He sold each orange at 35 cents each. By forming an inequality, find the minimum number of oranges that Mr Goh must sell in order to make a profit of not less than \$8.

[Answer	Key]
---------	------

1)	$x \le 4$	2)	$x \le \frac{7}{3}$
3)	<i>x</i> > 8	4)	13
5)	(a) $-1 \le x < 7$ (b) $-1, 0, 1, 2, 3, 4, 5, 6$	6)	(a) $a > 1\frac{1}{4}$ (b) 2
7)	(a) $-4 \le x \le 3.5$ (b) 3, -4	8)	-8.5 < x < 2.75
9)	<i>x</i> = 3	10)	(a) $\frac{11}{7} \le x < 17$ (b) 13
11)	$-3 < x \le -1.5, x = -2$	12)	0, 1 and 2
13)	(a) $0 < x \le 5\frac{2}{5}$ (b) $5\frac{2}{5}$	14)	(a) $40x + 50(x - 5) < 1000$ (b) $x = 13$
15)	124		

© Instead of giving myself reasons why I can't, I give myself reasons why I can. ©

Nizam/Sec_3E/Mathematics/Tutorial_4_Inequalities