8.1 Investigation Interest: Simple Interest

Goal: Use the simple interest formula to solve problems.

Whenever you invest or borrow money you will either earn money on the investment or have to pay money on the loan. The money that is earned or paid is called interest.

Terminology

- Interest: the cost of borrowing money or the money earned from an investment
- Principal: an original sum of money that is borrowed or invested.

Calculating Simple Interest

Simple interest is calculated as a percentage of the \qquad principal on an investment or loan using the formula $\boldsymbol{I}=\boldsymbol{P r t}$ where:

$$
\begin{array}{ll}
\boldsymbol{I}=\text { Interest Amount } & \text { (accumulated over time } \\
\left.\boldsymbol{P}=\begin{array}{l}
\text { Principal } \\
\boldsymbol{r}=\text { Interest rate } \\
\boldsymbol{t}=\text { The original } \\
\text { Time }
\end{array} \text { (expressed as a decimal }\right) \\
\text { (expressed in terms of YEARS })
\end{array}
$$

Simple interest is added to the principal at the end of the period using the formula $\boldsymbol{A}=\boldsymbol{P}+\boldsymbol{I}$, where

$$
A=\text { Accumulated Amount (principal + interest) }
$$

Using these two formulas together, the amount can also be defined as:

$$
\begin{aligned}
& A=P+I \\
& A=P+P r t \\
& \boldsymbol{A}=\boldsymbol{P}(\mathbf{1}+\boldsymbol{r} \mathbf{t})
\end{aligned}
$$

Interest Rate (r)

Show the following interest rates as they would appear in the simple interest formula as \boldsymbol{r}.
(Hint: Divide by 100, or move decimal 2 spaces to the left)
a) 13% $=\frac{13}{100}=0.13$
b) $\begin{aligned} 2.5 & \\ & =\frac{2.5}{100}=0.025\end{aligned}$
c) 0.5%
$=\frac{0.5}{100}=0.005$

Time (t)

Express the following lengths of time in terms of years (\boldsymbol{t} in the simple interest formula)
a) 24 months

$$
=\frac{24}{12}=2
$$

b) 8 months
$=\frac{8}{12}$
c) 14 weeks $=\frac{14}{52}$
d) 82 days

$$
=\frac{82}{365}
$$

Example 1 Calculate how much interest is earned and the value of the investment if $\$ 2000$ is invested at 4.5% simple interest for 26 weeks.

$$
\begin{aligned}
& I=? \\
& P=2000 \\
& r=4.5 \%=0.045 \\
& t=\frac{26}{52}
\end{aligned}
$$

$$
I=\operatorname{Pr} t
$$

$$
I=2000 \times 0.045 \times \frac{26}{52}
$$

$$
=45
$$

Therefore interest earned is $\$ 45$

The Simple Interest Triangle

Use the simple interest triangle to find the formula for interest, principal, rate, and time.
$I=P r t$
$P=\frac{I}{r t}$
$r=\frac{I}{P t}$
$t=\frac{I}{P r}$

Example 2 What principal is needed to earn $\$ 500$ interest in 2 years invested at 6% simple interest?

$$
\begin{array}{ll}
I=500 & P=\frac{I}{r t} \\
P=? & =\frac{5}{(0 . C} \\
r=6 \%=0.06 & \\
t=2 &
\end{array}
$$

Therefore, you need to invest $\$ 4166.67$

Example 3 What rate of simple interest is needed to get $\$ 7000$ to grow to $\$ 10000$ in 5 years?

$$
\begin{array}{ll}
\boldsymbol{I}=\mathbf{3 0 0 0} & \boldsymbol{r}=\frac{\boldsymbol{I}}{\boldsymbol{P} \boldsymbol{t}} \\
\boldsymbol{P}=\mathbf{7 0 0 0} & =\frac{3000}{(7000)(5)}=\frac{3000}{35000}=0.08571=8.6 \% \\
\boldsymbol{r}=\boldsymbol{?} & \boldsymbol{t}=\mathbf{5}
\end{array}
$$

Therefore, the interest rate is 8.6\%

Example 4 How long would it take $\$ 1500$ to double at a simple interest rate of 3% ?
$I=1500$

$$
P=1500
$$

$$
\begin{aligned}
\boldsymbol{t} & =\frac{\boldsymbol{I}}{\boldsymbol{P} \boldsymbol{r}} \\
& =\frac{1500}{(1500)(0.03)}=\frac{1}{0.03}=33.3
\end{aligned}
$$

Therefore it would take approx 33.3 years
$\begin{array}{ll}\boldsymbol{r}=\mathbf{3 \%}=\mathbf{0 . 0 3} \\ \boldsymbol{t}=\text { ? }\end{array} \quad=\frac{1500}{(1500)(0.03)}=\frac{1}{0.03}=33.3$
Example 55 years ago, Dylan loaned Matt money. Matt repaid Dylan a total of $\$ 2100$, which included simple interest charged at 10%. How much did Dylan originally loan Matt?

$$
\begin{array}{ll}
\boldsymbol{I}=\mathbf{2 1 0 0}-\boldsymbol{P} & \boldsymbol{P}=\frac{\boldsymbol{I}}{\boldsymbol{r} \boldsymbol{t}}=\frac{2100-P}{(0.1)(5)} \\
\boldsymbol{P}=\boldsymbol{?} & 0.5 P=2100-P \\
\boldsymbol{r}=\mathbf{1 0 \%}=\mathbf{0 . 1} & 0.5 P+P=2100 \\
\boldsymbol{t}=\mathbf{5} &
\end{array}
$$

$$
P(0.5+1)=2100 \rightarrow P=\frac{2100}{(01.5)}=1400
$$

Class work / Homework:

$$
\operatorname{Pg} 459-461 \# 1,2,4,6-9
$$

