8.1 Investigation Interest: Simple Interest

Goal: Use the simple interest formula to solve problems.

Whenever you *invest* or *borrow* money you will either earn money on the investment or have to pay money on the loan. The money that is earned or paid is called *interest*.

Terminology

- Interest: the cost of borrowing money or the money earned from an investment
- *Principal*: an original sum of money that is borrowed or invested.

Calculating Simple Interest

Simple interest is calculated as a percentage of the <u>principal</u> on an investment or loan using the formula I = Prt where:

I =	Interest Amount	(accumulated over <u>time</u>)
P =	Principal	(the original amount)
r =	Interest rate	_(expressed as a)
<i>t</i> =	Time	(expressed in terms of

Simple interest is added to the principal at the end of the period using the formula A = P + I, where

 $A = \underline{Accumulated \ \underline{Amount}}$ (principal + interest)

Using these two formulas together, the amount can also be defined as:

$$A = P + I$$
$$A = P + Prt$$
$$A = P(1 + rt)$$

Interest Rate (r)

Show the following interest rates as they would appear in the simple interest formula as r. (*Hint: Divide by 100, or move decimal 2 spaces to the left*)

13% b) 2.5% c) 0.5%
$$=\frac{13}{100} = 0.13$$
 $=\frac{2.5}{100} = 0.025$ $=\frac{0.5}{100} = 0.005$

<u>Time</u> (**t**)

a)

Express the following lengths of time in terms of years (t in the simple interest formula)

a) 24 months b) 8 months c) 14 weeks d) 82 days $=\frac{24}{12}=2$ $=\frac{8}{12}$ $=\frac{14}{52}$ $=\frac{82}{365}$

** no need to convert to decimals

Example 1 Calculate how much interest is earned and the value of the investment if \$2 000 is invested at 4.5% **simple interest** for 26 weeks.

<i>I</i> = ?	I = Prt
<i>P</i> = 2000	$I = 2000 \times 0.045 \times \frac{26}{52}$
r = 4.5% = 0.045	= 45
$t = \frac{26}{52}$	Therefore interest earned is \$45

The Simple Interest Triangle

Use the simple interest triangle to find the formula for interest, principal, rate, and time.

I = Prt $P = \frac{I}{rt}$ $r = \frac{I}{Pt}$ $t = \frac{I}{Pr}$

Example 2 What principal is needed to earn \$500 interest in 2 years invested at 6% simple interest?

<i>I</i> = 500	$P = \frac{I}{I}$	
<i>P</i> = ?	rt	,
r = 6% = 0.06	$=\frac{500}{1000}=\frac{500}{1000}=4166.67$	
<i>t</i> = 2	(0.06)(2) 0.12	

Therefore, you need to invest \$4166.67

Example 3 What rate of simple interest is needed to get \$7 000 to grow to \$10 000 in 5 years?

I = 3000 P = 7000	$r = \frac{I}{Pt}$	Therefore the interest rate is 8.6%
<i>r</i> = ? <i>t</i> = 5	$=\frac{3000}{(7000)(5)}=\frac{3000}{35000}=0.08571=8.6\%$	Therejore, the thierest rule is 6.0%

Example 4 How long would it take \$1 500 to double at a simple interest rate of 3%?

<i>I</i> = 1500	$t = \frac{I}{I}$	
P = 1500	Pr	Therefore it would take approx 33 3 years
r = 3% = 0.03	$=\frac{1500}{1}=\frac{1}{33}$	Therefore a would take approx 55.5 years
t = ?	(1500)(0.03) 0.03 0.03	

Example 5 5 years ago, Dylan loaned Matt money. Matt repaid Dylan a total of \$2100, which included **simple interest** charged at 10%. How much did Dylan originally loan Matt?

I = 2100 - P P = ?	$P = \frac{I}{rt} = \frac{2100 - P}{(0.1)(5)}$	
r = 10% = 0.1	0.5P = 2100 - P	Therefore the loan was for \$1400
<i>t</i> = 5	0.5P + P = 2100	Therefore the tourn was for \$1400
	P(0.5+1) = 2100 -	$P = \frac{2100}{(01.5)} = 1400$

Class work / Homework: Pg 459 – 461 #1, 2, 4, 6 – 9