YSGOL BRYNREFAIL

The Numeracy Booklet

CONTENTS

1. Contents
2. Methods of Calculation
3. Mental Calculation
4. Fractions, Decimals and Percentages
5. Data Handling
6. Abbreviations
7. Metric and Imperial Units
8. Conversion Tables
9. Other Units
10. Symbols
11. Common Shapes
12. Common Solids
13. Mathematical Terms
14. Examples of the use of common terms
15. Subject Terms
\Rightarrow Terms that are common to a number of subjects
> Language
> Science
> Design and Technology
> Music
> Geography
> Religious Education
> Information Technology
> History
> Physical Education
> Art

1. METHODS OF CALCULATION

1. ADDITION

(a) Adding the most significant digits first.

In this method we will add the thousands, hundreds, tens and units separately.
Example

This is the usual method
(b) Carrying from one column to the next, starting with the units.

(c) We can use the methods above with decimals but we must remember to place the decimal points underneath each other and to fill every gap with ' 0 ' (zero) as required.

Example

124.90
$+\quad \underline{73.25}$
100.00 (only one number in the 100s)
$90.00 \quad(20+70)$
$7.00 \quad(4+3)$
$1.10 \quad(0.9+0.2)$
0.05 (only one number in the hundredths)
198.15

2. SUBTRACTION

(a) Counting on method

In this method we gradually add to the lower number.

Example

6467-2684
start with 2684, then add to get the nearest hundred, add to get the nearest thousand and then add to get 6467

Rewrite as
6467

- $\quad \frac{2684}{16}$
16 (2684 + $16=2700)$

300
$(2700+300=3000)$
$+\quad 3467$
3783
$(3000+3467=6467)$
add these
Therefore $6467-2684=3783$
(b) Compensation method

In this method we will take away more than is necessary and then add back a little to get the right balance.

Example

(c) Decomposition method

In this method we borrow from the next column.

Example

$$
\begin{aligned}
& { }^{5} G^{13} 4^{1} 67 \\
& 2684 \\
& \hline 3 \underline{783}
\end{aligned} \quad-\quad \begin{aligned}
& 5 \theta^{1} 4^{7} \theta^{1} 4 \\
& 2667 \\
& \hline 3817 \\
& \hline
\end{aligned}
$$

(d) We can use the above methods with decimals but we must remember to place the decimal points underneath each other and to fill every gap with ' 0 ' (zero) as required.

Example

(i) 324.90

7.25
$+\quad 14.90$
---:

$(7.25+2.75=10)$
add on
(ii) 324.90

- $\quad 7.25$
314.90
(324.90-10 = 314.90)
compensate
$+\quad 2.75$
$\frac{317.65}{1}$

$$
(10-7.25=2.75)
$$

(iii)

$3^{1} z^{1} 4 .^{8} q^{1} 0$
$-\quad 7.25$
317.65

3. MULTIPLICATION

(a) Doubling method

We need to know how to double numbers to use this method.

Example

$$
38 \times 25
$$

We always start with 1 and double following the pattern: $1,2,4,8,16,32$ etc.
We need to carry on doubling until we reach the nearest double that is LESS than the number chosen.
Then, the answers are placed underneath each other in columns.
(i) 38×25

(ii) 25×38

We get the same answer by doubling if we start with 25 .

$$
2+4+32=38
$$

The next double is 64, which is MORE THAN 38, therefore we stop doubling at 32 .

| 38 | $=$ | $32+4+2$ |
| :--- | :--- | :--- |\quad therefore we have

(b) Boxmethod / (Napier)

This method requires you to create a grid.
To multiply 43×26 we need to create a 2 by 2 grid, because we need to multiply a two-digit number by a two-digit number.
Multiplying 264×53 would mean creating a 3 by 2 grid etc.

Example

(i) 43×26

The diagrams below illustrate the multiplication method. We need to draw a diagonal in each box of the grid in order to place tens and units when multiplying each individual box. Always write the tens ABOVE the diagonal in each box.

The first box in the top row $4 \times 2=8$. Write 08 to show that there are no tens.

Add $3 \times 2=6$ to complete the top row of the grid.

Add the first box in the bottom row. $4 \times 6=24$ (remember to put the 2 above the diagonal).

Complete the grid with $3 \times 6=18$.

After completing the grid, we need to add the columns along the diagonals.

Note that we sometimes need to carry over from one column to the next.
To get the answer, read the totals down and to the right.
$43 \times 26=1118$
(ii) 264×53

Draw a 3×2 box and follow the guidelines in example (i)

$$
264 \times 53=13992
$$

Note that there is no need to carry over in this example.
You can also draw a 2 by 3 box to multiply $264 \times 53(53 \times 264)$.

(c) Partition Method

In this method the smaller number is partitioned.

Example

(i)

352
27
$\times \quad 40$
$352 \times 20 \quad 7040$
$352 \times 7 \quad 2464$
$352 \times 27=9504$
(ii) or 352
$352 \times 10 \times \frac{27}{3520}$
352×103520
$352 \times 7 \quad 2464$
$352 \times 27=9504$

The method of partitioning into tens as in (ii) simplifies the multiplication further because to multiply successively by 10 is to add a '0' as necessary.
(d) Factor Method

If a number (usually a two digit number) has factors, the factors can be used to multiply as follows.

Example
$21=3 \times 7$
264×21

21 can be written as 3×7.
Using $21=3 \times 7$ gives
264×21 as 264
$\times \quad 3$
792 (multiply by 3)
$\times \begin{array}{r}7 \\ 5544\end{array}$
(multiply the answer by 7)
(e) Area Method

In this method we will break down the numbers as the sides of a rectangle. The area of the rectangle will be the answer to the multiplication.

Example

The answer is the total area therefore:-
$56 \times 34=1500+180+300+24$
$=\underline{1904}$

$$
\begin{aligned}
236 \times 27 & =4000+600+120+1400+210+42 \\
& =\underline{6372}
\end{aligned}
$$

(f) Multiplying Decimals

We can adapt the previous methods of multiplication to multiply decimals.
To simplify the multiplication process we will eliminate the decimal point and then put it back in the right place at the end, after multiplying.

Example

(i) 3.8×2.5

Using the doubling method to calculate 38×25 we arrived at $38 \times 25=950$.
With 3.8×2.5 we see that there is a total of two digits after the decimal point, i.e. 8 after the 3 and 5 after the 2. This means that we need two digits after the decimal point in the answer.

Therefore $3.8 \times 2.5=9.50$ (place the decimal point so that there are two digits after it).

Similarly, we have
$38 \times 2.5=95.0$
also $3.8 \times 25=95.0$
and $3.8 \times 0.25=0.950$
(ii) with three digit numbers, the box method is the most suitable.

Consider 3.27×4.6 as 327×46 and create a 3 by 2 grid.

$327 \times 46=15042$
Therefore $3.27 \times 4.6=15.042$

3 digits are required after the decimal point in the answer to correspond to the three digits after the two decimal points in the question.
(iii) Using the factor and partition methods with decimals follows the same pattern.

Think about 368×1.8 as 2×9 (or 3×6)

> | 368 | If $368 \times 18=6624,368 \times 1.8=662.4$ (only one |
| ---: | :--- |
| $\times \frac{2}{736}$ | digit after the decimal point in the question, therefore |
| $\times \frac{9}{\frac{6624}{35}}$ | |
| $\times \begin{array}{l}\text { one digit is required after the decimal point in the answer). }\end{array}$ | |
| $\times \begin{array}{l}\text {. }\end{array}$ | |

Similarly we have
$36.8 \times 1.8=66.24$
$3.68 \times 18=66.24$

4 DIVISION

(a) Tower Method

In this method, we need to know how to nultiply by 10 and double (or find another multiple).
We will start the tower with the dividend (864 in the example below) and then subtract multiples of the divisor (36) out of the dividend.

Example
how many sets of 36 are there in 864 ?
(i) $864 \div 36$

864

- $\underline{360}=36 \times 10$ (864 is greater than 360 , therefore $\times 10$ and then 504 subtract)

10 more sets of 36

- $\frac{360}{144}=36 \times 10$ (504 is greater than 360 , therefore $\times 10$ and subtract
- $\frac{72}{72}=36 \times 2$ (144 is less than 360 , therefore we double and 72 subtract) 2 sets of 36
$\frac{72}{00}=36 \times \frac{2}{24}$ (double and subtract again)

To get the answer we add the multiples, i.e. $10+10+2+2=24$
Therefore $864 \div 36=24$

If the small number does not divide exactly we can show the answer with a remainder or as a mixed number.
(ii) $423 \div 32$

423			
$-\frac{320}{103}$	$=$	32×10	(423 is greater than 320, therefore $\times 10$ and subtract)
96	$=$	32×3	(103 is less than 320, therefore $\times 3$)
7		$\underline{13}$	

$$
\text { therefore } 423 \div 32=13 r 7 \text { or } 13^{7 /}{ }_{32} \text {. }
$$

13 remainder 7 or
13 and ${ }^{7 /}{ }_{32 .}=13^{7 /}{ }_{32 .}$

(b) Factor Method

If the divisor has factors, they can be used to divide.
As a general method, it is suggested that the divisor should be divided into only two factors, although more than two factors may sometimes exist. In addition, it should be divided by the largest factor first and then the answer should be divided by the other factor. This simplifies the process if the divisor does not divide exactly (remainder).

Example

(i) $864 \div 36$

36 can be written in a number of ways:-
$36=2 \times 2 \times 3 \times 3$
$36=4 \times 3 \times 3$
$36=4 \times 9$
$36=3 \times 12$
$36=6 \times 6$
$36=2 \times 18$
Choose a pair of factors (such as the pairs highlighted) and divide by the largest factor of the pair first.
(a) write $36=4 \times 9$

9	$86^{5} 4$	(divide by the largest factor first)
4	96	(divide the answer by the other factor)

Therefore $864 \div 36=24$
(b) or write $36=3 \times 12$

12	$86^{2} 4$	(divide by the largest factor first)
3	$\underline{72}$	(divide the answer by the other factor)

Therefore $864 \div 36=24$
(ii) $423 \div 32=24$
(a) write $32=4 \times 8$

8	$42^{2} 3$		(divide by the largest factor first)
4	52	97	(divide the answer by the other factor)
	$\underline{13}$	97	

Therefore $\quad 423 \div 32=13$ remainder 7
or $\quad 423 \div 32=13^{7 /}{ }_{32}$
(c) Long division method

In this method it is important that you set out work with the tens and units columns correctly underneath each other

Example

(i) $782 \div 34$

34 | $\frac{23}{782}$ | (answer line) |
| :--- | :--- |
| $-\frac{680}{102}$ | $(34 \times 20=680$, put 2 in the tens column on the answer line $)$ |
| $-\frac{102}{\underline{000}}$ | $(34 \times 3=102$, put 3 in the units column on the answer line $)$ |

Therefore $782 \div 34=23$
(ii) $977 \div 36$

$\frac{27}{977}$ (answer line) $-\frac{720}{257}$	$(36 \times 20=720$, put 2 in the tens column on the answer line)			
$-\frac{252}{5}$		\quad		$(36 \times 7=252$, put 7 in the units column on the answer line $)$
:---	:---			

Therefore $782 \div 36=27$ remainder 5
or $\quad 782 \div 36=27{ }^{5 /} 36$
(d) Dividing decimals

Dividing decimals has been limited to cases where the divisor is a whole number, and the dividend is a decimal.

With this combination we can adapt the previous three methods to divide decimals. The numbers must be placed in columns underneath each other so that the decimal points are aligned underneath each other.
We must remember how to multiply decimals such as $0.8 \times 10=8$ or $8.0 \quad 6 \times 10=60$ or 60.0

Example

(i) $87.5 \div 7$

This is the tower method
87.5

- $\underline{70.0}=7 \times 10$ (87.5 is greater than 70.0, therefore $\times 10$ and then 17.5 subtract)
- $\frac{14.0}{3 .}=7 \times 2$ (17.5 is less than 70.0, therefore we double and subtract)
$3.5=7 \times 0.5$ (3.5 is less than 7 , therefore $\times 0.5$ and subtract)
To arrive at the final answer, we add the multipliers,
i.e. $10+2+0.5=12.5$
therefore $875 \div 7=\underline{12.5}$
(ii) $94.5 \div 35$

Using the factor method, we get the following:-
Write 35 as 7×5
As previously, we divide by the larger factor first and then divide the answer by the other factor. Remember to place the decimal points underneath each other in the column.

7	$9^{2} 4 .{ }^{3} 5$	
5	$13 .{ }^{3} 5$	
	$\underline{2.7}$	

Therefore $\quad 94.5 \div 35=2.7$
(iii) $75.4 \div 29$

Using the long division method and remembering to put the decimal points in a column, we arrive at the following:-

29 | | 2.6 |
| ---: | ---: |
| 75.4 | (answer line) |

- $\frac{58.0}{} \quad(29 \times 2=58.0$, put 2 in the units column on the answer line $)$
17.4
- $17.4 \quad(29 \times 6=174$, therefore $29 \times 0.6=17.4$, put 6 in the tenths column on the answer line)
00.0

Therefore $75.4 \div 29=2.6$

MENTAL CALCULATION

1. RE-ARRANGING

When trying to add a row of numbers, we should look for pairs that add up to make a multiple of 10 or 100
e.g.

$20+10+6=36$
2. BRIDGING When adding two numbers, part of one number can be taken to make the other number a multiple of 10 , which is easier to handle; i.e. we bridge through the nearest ten.
e.9. $\sim_{\sim}^{47}+26$
+3
[Subtract 3 from the 26 (leaving 23) and add it to the 47 to make 50]
$=50+23=73$
e.g.
$+4$

We can also bridge through ten when subtracting:
We subtract 3 first in order to bridge the 10 and
e.g.

23-17
then we subtract the remainder, which is 14

$$
(23-3)-14=20-14=6
$$

e.g. 134-57

Method 1

$=(134-4)-53 \quad$ (subtract 4 first)
$=130-53$
$=(130-30)-23 \quad$ (then subtract 30$)$

Method 2

$=(134-34)-23$ (subtract 34 first)
$=100-23 \quad$ (then subtract the remainder - 23)
$=100-23=77$

3. COMPENSATION

We can sometimes add or subtract more than we should and then compensate. We usually round the number to the nearest 10 .
e.g. $37+19$ We can round up the 19 to 20 and then compensate by subtracting 1 , because we have added 1 too much

$$
=(37+20)-1=57-1=56
$$

e.g. $6.7+3.9$ We can round the 3.9 up to 4.0 and then compensate by subtracting 0.1 , because we have added 0.1 too much.
$=(6.7+4.0)-0.1=10.7-0.1=10.6$
A similar method can be used in subtraction:
e.g. 137-28 We can round the 28 up to 30 and compensate by adding 2, because we have subtracted 2 too many

$$
=(137-30)+2=107+2=\mathbf{1 0 9}
$$

e.g.	$138+69$	e.g. 405-399	e.g. $2 \frac{1}{2}+1 \frac{3}{4}$	e.g. $5.7+3.9$
$=$	138-70-1	$=405-400+1$	$=\quad 2 \frac{1}{2}+2-\frac{1}{4}$	$=5.7+4.0-0.1$
$=$	208-1	$=5+1$	$=\quad 4 \frac{1}{2}-\frac{1}{4}$	$=9.7-0.1$
	207	$=6$	$=\quad 4 \frac{1}{4}$	$=9.6$

4. NEAR DOUBLES

If we are adding two numbers that are near to each other, we can double one number and then compensate. We can double the smaller number and add or double the larger number and subtract.
e.g. $13+14$ This can be considered as double 13 add one or double 14 subtract one

```
13+13 + 1 = 26 + 1 = 27
or
14+14-1 = 28-1 = 27
```

Sometimes, the gap between the two numbers is more than one, but the method still works:
e.g. $18+16=18+18-2$ or $=16+16+2$

$$
=36-2=36-2
$$

$$
=34=34
$$

(Note that $18+16$ could be $17+17$, i.e. double 17; this always happens when there is a difference of 2 between the numbers)

$$
\begin{array}{rlr}
\text { e.g. } 60+70 & =60+60+10 \quad \text { (double } 60 \text { add } 10) \\
& =120+10 \\
& =130 \\
\text { e.g. } 1.5+1.6 & =1.5+1.5+0.1 \quad \text { (double } 1.5 \text { add } 0.1) \\
& =3.0+0.1 \\
& =3.1
\end{array}
$$

We sometimes double and compensate in 2 directions

$$
\text { e.g. } \quad \begin{aligned}
421+387 & =400+400+21-13 \\
& =800+8 \\
& =808
\end{aligned}
$$

MULTIPLICATION AND DIVISION

Most mental strategies for multiplication and division depend on a knowledge of tables. This must be extended to the multiplication and division of larger numbers:

$\times 2$	double	$2 \times 56=(2 \times 50)+(2 \times$ 6) $=100+12=112$
$\times 3$	double, then add the number	$\begin{aligned} & 3 \times 125=(2 \times 125)+125 \\ &=250+125= \\ & 375 \end{aligned}$
$\times 4$	double and double again	$\begin{aligned} 4 \times 34 & =(2 \times 34) \times 2 \\ & =68 \times 2=136 \end{aligned}$
$\times 5$	multiply by 10 and halve	$\begin{aligned} & 5 \times 240=(240 \times 10) / 2 \\ &=2400 / 2= \\ & 1200 \end{aligned}$
$\times 6$	multiply by 5 and add the number	
$\times 7$	double, double and double again and subtract the number	
$\times 8$	double, double again and double again	$\begin{aligned} 8 \times 24 & =(24 \times 2) \times 2 \times 2 \\ & =(48 \times 2) \times 2 \\ & =96 \times 2=192 \end{aligned}$
$\times 9$	multiply by 10 and subtract the number	$\begin{aligned} 9 \times 57 & =(10 \times 57)-57 \\ & =570-57 \\ & =513 \end{aligned}$
$\times 10$	move the numbers to the left	$\begin{aligned} & 10 \times 12=120 \\ & 10 \times 3.75=37.5 \end{aligned}$

3. FRACTIONS, DECIMALS AND PERCENTAGES

3.1 FRACTION

The fraction here is $\frac{3}{4}$ - three shaded pieces and four equal pieces altogether.

Here are some other examples

Equal / Equivalent Fractions

The shaded parts are the same size in the three diagrams, therefore $\frac{1}{2}=2 / 4=4 / 8$.

We can create equal fractions by multiplying or dividing.

3.1 PERCENTAGES

10%	10%	10%	10%	10%
10%	10%	10%	10%	10%

The strip has ten equal parts, therefore each part is worth: $100 \% \div 10=10 \%$. Therefore the shaded parts are $10 \% \times 7=70 \%$.

By comparing the shaded parts in the fractions and percentages diagrams, we observe a relationship between percentages and fractions.

$$
{ }^{5} / 8=12 \frac{1}{2} \%+12 \frac{1}{2} \%+12 \frac{1}{2} \%+12 \frac{1}{2} \%+12 \frac{1}{2} \%=62 \frac{1}{2} \%
$$

3.3 CHANGING A FRACTION INTO A PERCENTAGE

Expressing 7/20 as a percentage
$\frac{7 \times 10 \theta}{2 \theta}=\frac{70}{2}=35 \%$

3.4 FINDING A PERCENTAGE OF A NUMBER

(a) What is 10% of $£ 40$?
10% is $£ 40.00 \div 10=£ 4$
(b) What is 5% of 50 kg ?
10% is $50 \mathrm{~kg} \div 10=5 \mathrm{~kg}$
$5 \% \quad=2.5 \mathrm{~kg}$ (5% is half of 10%)
(c) What is $17 \frac{1}{2} \%$ of $£ 80$?
10% is $£ 8$
5% is $£ 4$
$2 \frac{1}{2} \%$ is $£ 2$
$17 \frac{1}{2} \%$ is $£ 14$
(ch) What is 8% of 250 kg ?
10% is 25 kg
1% is 2.5 kg
2% is 5 kg
8% is $10 \%-2 \%$ i.e. $25 \mathrm{~kg}-5 \mathrm{~kg}=20 \mathrm{~kg}$

3.5 FRACTIONS AND DECIMALS

(a) Expressing $3 / 8$ as a decimal

$$
3 \div 8=0.375
$$

(b) Expressing $4 \frac{2}{5}$ as a decimal

$$
2 \div 5=0.4
$$

therefore $4 \frac{2}{5}=4+0.4$

$$
=4.4
$$

To change a decimal into a fraction we must create a fraction over 10, 100, 1000 etc. and then cancel if necessary.
(c) Expressing 0.54 as a fraction

$$
0.54=\frac{54}{100}=\frac{27}{50}
$$

(ch) Expressing 3.6 as a fraction

$$
3.6=3+0.6
$$

$$
0.6=\frac{6}{10}=\frac{3}{5}
$$

$$
3.6=3+3 / 5=33 / 5
$$

3.6 DECIMALS AND PERCENTAGES

To change a decimal into a percentage we must multiply by 100. This moves the decimal point 2 places to the right.

Expressing 0.35 as a percentage
$0.35 \times 100=35 \%$

Expressing 1.275 as a percentage
$1.275 \times 100=127.5 \%$

To change a percentage into a decimal, we divide by 100. This moves the decimal point 2 places to the left.

Expressing 45\% as a decimal
$45 \% \div 100=0.45$

Expressing $17 \frac{1}{2} \%$ as a decimal
$17 \frac{1}{2} \%=17.5 \%$
$17.5 \% \div 100=0.175$

3.7 TABLES

(a) A table of common fractions, decimals and percentages.

FRACTION	DECIMAL	PERCENTAGE
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$1 / 8$	0.125	12.5%
$1 / 10$	0.1	10%
$1 / 5$	0.2	20%
$3 / 10$	0.3	30%
$3 / 5$	0.6	60%

(b) A table of common fractions.

1												
1/2						1/2						
1/4			1/4			1/4			1/4			
1/8	1/8		1/8		1/8	1/8	1/8		1/8		1/8	
16		16		$1 / 16{ }^{1 /}$	$16{ }^{1 / 16}$	1/16 ${ }^{1}$	$16{ }^{1 / 16}$	1/16	1/16			$16{ }^{1 / 16}$
1/3				1/3				1/3				
1/6		1/6		1/6		1/6		1/6		1/6		
1/12			1/12	1/12	1/12	1/12	1/12	1/12	1/12	1/1		1/12
1/5		$1 / 5$			1/5		1/5			1/5		
1/10	1/10	1/1		1/10	1/10	1/10	1/10	1/1	10	1/10		1/10

4. DATA HANDLING

COLLECTING DATA

The method we use to collect data depends on the sort of data that is collected.
(a) Listing the Data

We list the data when the sample of information is small.
Here is an example of a situation where we list data.
The eye-colour of ten babies in a hospital:
Blue, Blue, Green, Brown, Green, Blue, Green, Blue, Brown, Blue.
(b) Frequency Table (Tally chart)

When we have a lot of information in the sample we can use a frequency table. The table tells us how often each value appears.
Here is an example of a frequency table:

The number of goals scored by 30 football teams on one Saturday is:

1	3	2	3	4	2	1	3	0	5
3	0	1	4	0	4	4	3	3	4
1	3	4	3	1	2	1	3	4	3

Here is the tally for the ten numbers in the first row:

No. of Goals	Tally	Frequency
0	1	
1	11	
2	11	
3	$1 \div 1$	
4	1	
5	1	

Here is the completed frequency table:

No. of Goals	Tally	Frequency
0	111	3
1	$\pi N 11$	6
2	111	3
3	$\pi N 1+11$	10
4	$\pi 1111$	7
5	1	1

Every fifth tally (or notch) is drawn across the other four tallies.
Four tallies like this 1 ill
Five tallies like this TNL
The frequency column is the total number of ticks in the tally column.
(c) Grouping Data

Sometimes there are very many different values in the table of data. In this case, it is better to arrange the data into classes or groups.
Here is an example of grouping data.
In a science test 30 children gained the following marks:

29	16	18	44	41	24	28	39	34	32
63	67	70	72	81	85	50	51	90	89
48	48	60	58	52	52	67	80	63	61

Here is the frequency table noting the ten marks in the first row.

Test Mark	Tally	Frequency
$1-20$	11	
$21-40$	$T N 11$	
$41-60$	11	
$61-80$		
$81-100$		

Note
The groups do not overlap and they are usually the same width

Here is the completed frequency table. Again the notches have been grouped in fives in the tally column.

Test Mark	Tally	Frequency
1-20	11	2
21-40	TTH 1	6
41-60	TोN Tnt	10
61-80	T1T 111	8
81-100	1111	4

REPRESENTING DATA

Here are different methods of representing data on a diagram or a graph.
(a) Here is a vertical line graph showing the number of goals scored by 30 football teams on Saturday.

Vertical Line Graph (Frequency diagram)

(a) How many teams failed to score any goals?
(b) What was the modal number of goals scored?
(c) What was the total number of goals scored?

The height of the lines is the frequency from the table.
(b) (i) Bar Chart

In the bar chart, the height of each bar represents the frequency from the frequency table.

We usually draw a line graph and a bar chart for data that display specific values such as examination marks, shoe sizes, the score when throwing dice. There are no values in between the specific values. This sort of data is called discrete data.

Here is a bar chart

(c) Line Graph / Curve Graph

In a line graph, we join particular points with straight lines or a curve. The graph can be used to estimate values between the specific points.

The graph can be used to estimate the temperature after $4 \frac{1}{2}$ minutes. From the graph we see that it would be 25°.

(d) Pie Chart

We usually use a pie chart to display categorised data. The frequency of each category is graded so that the total adds up to 360°. Each sector of the pie chart is drawn with a protractor.

Here are some examples of how to draw a pie chart:
(i) In a car park, there are 13 red cars, 10 blue cars, 5 white cars and 2 black cars.

Step 1
Add the frequencies
$13+10+5+2=30$

Step 2
Divide 360° (a whole circle) by the total frequencies to
give a value for 1 car in terms of the circle.
$360^{\circ} \div 30=12^{\circ}$
Therefore each car is 12°
Step 3
Exchange the number of cars in each category for a circular angle to find out the size of each sector of the pie chart.

Note

You will
sometimes have to round to the nearest degree.

We can now draw a pie chart:

We sometimes note the \% too.

It is a good idea to state the size of the angle in the middle of each sector as well as labelling each sector.
(ii) Here is a pie chart showing which fruit children preferred to eat.

a) How big is the angle of the plum sector?
b) What fraction of children preferred apples?
c) If 20 children were questioned, how many children preferred oranges?

(e) Scatter Diagram

We draw a scatter diagram when trying to discover a connection or a relationship between two variables (something that changes or varies in size). If there is a connection, i.e. if a change in one influences the other, we say that there is a correlation between the two variables.

STEP 1 Plot a series of points with crosses, with one variable on each axis. The points should not be joined up.
STEP 2 Notice if there is a pattern or a trend in the position of the crosses.
STEP 3 If there is a correlation, we can draw the line of best fit, i.e. the line that shows the trend and is as close as possible to each point, without necessarily going through every point.

Note

If we know the mean of the two variables, the line of best fit should go through the point where the two means were plotted.

Here is an example of a scatter diagram:

The line of best fit shows a positive correlation between marks in the two papers, namely that a high mark in the science paper suggests a high mark in the mathematics paper. The same number of points lie above and below the line of best fit.
The line goes through the mean mark of the two papers, point C, and extends beyond all the points.
We can use a line to estimate the mark in one paper given the mark in the other paper. A mark of 70 in the science paper suggests a mark of 65 in the mathematics paper.

Here is a scatter diagram showing the price of second hand bikes and their age. This is a scatter diagram showing a negative correlation:

In negative correlation, as one value increases, the other decreases, e.g. using the line of best fit gives the price of a 6 year old second hand bike as $£ 200$ and the price of a 3 year old second hand bike as £450.

A scatter diagram showing that there is no correlation.

When the points are scattered on the map there is no correlation, i.e. there is no connection, e.g. height does not influence a test mark.

The convolution shows a break in the x axis.

5. ABBREVIATIONS

a.m.	ante meridiem/in the morning
${ }^{\circ} \mathrm{C}$	degree centigrade/Celsius
cm	centimetre
cm^{2}	square centimetre
cm^{3}	cubic centimetre
E	east
${ }^{\circ} \mathrm{F}$	degree Fahrenheit
9	gram
kg	kilogram
km	kilometre
1	litre
L.C.M.	lowest common multiple
m	metre
mg	milligram
ml	millilitre
mm	millimetre
m.p.h.	mile per hour
N	north
NE	north-east
NW	north-west
p	penny/pence
p.m.	post meridiem/in the afternoon
S	south
SE	south-east
SW	south-west
V.A.T.	Value Added Tax
W	west
2-D	two-dimension
3-D	three-dimension

6. METRIC AND IMPERIAL UNITS

Metric Units

Weight		
1 kilogram	=	1000 grams
1 metric tonne	=	1000 kilogram
Length		
1 kilometr e	=	1000 metres
1 metre	=	100 centimetres
1 metre	=	1000 milimetre
Capacity		
1 litre	$=$	1000 millilitres
1 litre	=	100 centilitres
1 centilitre	$=$	10 millilitres

7. CONVERSION TABLES

Converting between metric units and imperial units

These are some rough equivalent imperial and metric measures.
The meaning of this symbol \approx is 'approximztely equal to ' or about

Length		
8 Kilometre	\approx	5 miles or 1 kilometr ≈ 0.675 mile 1 mile ≈ 1.6 kilometr
1 metre	\approx	40 inches
1 inch	\approx	2.5 centimetres
1 foot	\approx	30 centimetres
Pwysau		
1 kilogram	\approx	2.2 pounds (lbs)
Capacity		
4 litres	\approx	$\begin{aligned} 7 \text { pints or } 1 \text { litre } & \approx 1.75 \text { pints } \\ 1 \text { pint } & \approx 0.6 \text { litres } \end{aligned}$
1 gallon	\approx	4.6 litres
1 litres	\approx	0.22 gallons

8. OTHER UNITS

Time	
60 seconds	$=1$ minute
60 minutes	$=1$ hour
24 hours	$=1$ day
7 days	$=1$ week
12 months	$=1$ year
52 weeks	$=1$ year
365 days	$=1$ year (366 in a leap year)
10 years	$=1$ decade
100 years	$=1$ century

Angular Measures

60 seconds	$=$	1 minute $\left(1^{\prime}\right)$
60 minutes	$=$	1 degree $\left(1^{\circ}\right)$
360 degrees $\left(360^{\circ}\right)$	$=$	1 full turn

Temperature

Boiling point of water: $212^{\circ} \mathrm{F}$ or $100^{\circ} \mathrm{C}$
Freezing point of water: $32^{\circ} \mathrm{F}$ or $0^{\circ} \mathrm{C}$

Thirty days hath September
April, June and November
All the rest have thirty-one
Excepting February alone
Which has but twenty-eight days clear
And twenty nine in each leap year.
10. SYMBOLS

$=$	equal sign/equals	\checkmark	square root
\#	is not equal to	$\sqrt{3}$	cube root
\approx	approximately equals	π	'pi' (3.142)
三	is identical to	10^{0}	10 degrees
>	greater than	26^{\prime}	26 minutes
<	less than	42"	42 seconds
\geq	greater than or equal to	\%	percent/percentage
\leq	less than or equal to	.	decimal point
+	add/plus	L	right angle
-	subtract/minus	\angle	angle
\times	multiply/times	Δ	triangle
\div	divide by	\triangle	equal lines
/	divide by		parallel lines
\pm	add or subtract (plus or minus)	11	parallel to
$£$	pound(s)	\perp	perpendicular to
5^{2}	5 squared, $5 \times 5=25$	\therefore	therefore
5^{3}	5 cubed, $5 \times 5 \times 5=125$:	Ratio

9. COMMON SHAPES

Equilateral Triangle

Square

Rhombus
(opposite sides are parallel, all sides are equal)

Circle

Heptagon

Right-angled Triangle

Rectangle

Isosceles Triangle (two equal sides)

Parallelogram (two pairs of opposite sides are parallel and equal)

Kite

Hexagon

11. COMMON SOLIDS

Table of Regular Shapes

A regular shape has all sides the same length and all angles equal.

NAME OF THE SHAPE	NUMBER OF SIDES	TOTAL OF ANGLES	ONE INTERNAL ANGLE
Equilateral Triangle	3	180°	60°
Square	4	360°	90°
Pentagon	5	540°	108°
Hexagon	6	720°	120°
Heptagon	7	900°	128.6°
Octagon	8	1080°	135°
Nonagon	9	1260°	140°
Decagon	10	1440°	144°
Dodecagon	12	1800°	150°

Cube

Cylinder

Cuboid

Triangular Prism
(Regular cross-section along its length)

Pyramid

Tetrahedron

Octahedron
12. MATHEMATICAL TERMS

Examples of uses of the terms surrounded by a solid line are given in the next section.

Acute angle	Ongl lem
Angle	Ongl
Anti-clockwise	Gwrthglogwedd
Area	Arwynebedd
Average	Cyfartaledd
Axis	Echelin
Balance	Cydbwysedd
Benefits	Budd-daliadau
Bills	Biliau
Calculator	Cyfrifiannell
Capacity	Cynhwysedd
Cash	Arian parod
Cheque	Siec
Cheque card	Cerdyn Siec
Circle	Cylch
Circumference	Cylchyn
Clockwise	Clocwedd
Column	Colofn
Compass	Cwmpas
Compass	Cwmpawd
Computer	Cyfrifiadur
Cone	Côn
Co-ordinates	Cyfesurynnau
Credit card	Cerdyn credyd
Cube	Ciwb
Curve	Cromlin
Cylinder	Silindr
Decimal	Degolyn
Deposit	Blaendal
Diameter	Diamedr
Dice	Dis
Digit	Digid
Discount	Disgownt
East	Dwyrain
Electricity Bill	Bil Trydan
Equal/Unequal	Hafal/Anhafal
Estimate	Amcangyfrif
Even Number	Eilrif
Factor	Ffactor
Fraction	Ffracsiwn
Frequency	Amlder
Gas Bill	Bil Nwy
Gradient (slope)	Graddiant
Hexagon	Hecsagon
Hire purchase	Hurbwrcas
Horizontal axis	Echelin lorwedd
Income Tax	Treth Incwm
Index (power)	Indecs (pwer)
Interest (rate)	Llog (cyfradd Ilog)
Invest	Buddsoddi
Invoice	Archeb
Loan	Benthyciad
Loss	Colled

Lowest common multiple (L.C.M.)	Lluosrif cyffredin Ileiaf (LL.C.LL)
Mean	Cymedr
Measure	Mesur
Median	Canolrif
Mode	Modd
Multiple	Lluosrif
North	Gogledd
North-east	Gogledd-ddwyrain
North-west	Gogledd-orllewin
Obtuse angle	Ongl aflem
Octagon	Octagon
Odd Number	Odrif
Overtime	Goramser
Parallel	Paralel
Percentage	Canran
Perimeter	Perimedr
Perpendicular	Perpendicwlar
Phone Bill	Bil Ffôn
Pound	Punt
Pressure	Gwasgedd
Prime number	Rhif cysefin
Prism	Prism
Probability	Tebygolrwydd
Profit	Elw
Pyramid	Pyramid
Radius	Radiws
Range	Amrediad
Rate of exchange	Cyfradd cyfnewid
Ratio	Cymhareb
Receipt	Derbynneb
Rectangle	Petryal
Reflection	Adlewyrchiad
Reflex angle	Ongl atblyg
Right angle	Ongl sgwâr
Round off	Talgrynnu
Row	Rhes
Salary (income)	Cyflog (incwm)
Save	Cynilo
Scale	Graddfa
South	De
South-east	De-ddwyrain
South-west	De-orllewin
sphere	Sffêr
Square	Sgwâr
Square number	Rhif Sgwâr
Square Root	Ail Isradd
Symmetry	Cymesuredd
Total	Cyfanswm
Triangle	Triongl
Triangular number	Rhif Triongl
Value Added Tax (VAT)	Treth ar Werth (TAW)
Vertical axis	Echelin fertigol
Volume	Cyfaint
Weigh	Pwyso
West	Gorllewin

RANGE \quad Difference within the set of data.
Range $=$ largest datum-smallest datum.
$1,2,3,3,5,6,8$.
Range $=8-1=7$.

MEDIAN The central value after placing the numbers in order. 1,2,3,3,5,6,8.

Median $=3$

VOLUME Volume is the measure of space. Volume is measured in cubic units.

AVERAGE
There are three ways of calculating average value: Mean, median and mode.

CIRCUMFERENCE Circumference is the line around the outside of a circle (Cy/chyn)
and
also refers to the length of the line around the outside of a circle (Cy/chedd).

MEAN The total of the numbers divided by the number of numbers.
1,2,3,3,5,6,8.
Mean $=\frac{1+2+3+3+5+6+8}{7}=\frac{28}{7}=4$
PRIME
A number with only two factors - itself and 1. e.g. 2,3,5,7,11,13,17,19,

CAPACITY

MODE
The amount of liquid a container can hold.

The value that occurs most often, i.e. the value with the greatest frequency. 1,2,3,3,5,6,8.

Mode $=3$

ACUTE ANGLE

OBTUSE ANGLE

REFLEX ANGLE

RIGHT ANGLE

PERIMETER

PERPENDICULAR

SQUARE NUMBER

When two lines intersect at a right angle.

When a number is multiplied by itself, it forms a square number.
e.g. $1 \times 1=1,2 \times 2=4,3 \times 3=9,4 \times 4=16$, \ldots. .

1,4,9,16, \qquad are all square numbers.

TRIANGULAR NUMBER
The number of spots in a triangular arrangement.
1
3

13. EXAMPLES OF THE USE OF COMMON TERMS

GEOGRAPHY - Mean / Range / Total

Temperature and Rainfall in Bethesda

	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
${ }^{\circ} \mathrm{C}$	5	6	7	9	11	13	15	15	13	11	8	7
mm	125	100	65	65	65	70	80	90	115	120	120	120

a) What is the mean temperature?
(add the temperatures of each month and then divide by 12)

```
Answer = 120}\div=1
(5+6+7+9+11+13+5+15+13+11+8+7)\div12
= 10 }\mp@subsup{}{}{\circ}\textrm{C
```

b) What is the temperature range?
(subtract the lowest temperature from the highest)

$$
\begin{aligned}
\text { Answer } & =15{ }^{\circ} \mathrm{C}-5^{\circ} \mathrm{C} \\
& =10^{\circ} \mathrm{C}
\end{aligned}
$$

c) What is the total rainfall?
(add the rainfall for each month)
$(125+100+65+65+65+70+80+90+115+120+120+120)$

Answer $=1135 \mathrm{~mm}$

There are 4 seasons in a year

There are 365 days in a normal year, but every four years we have a leap year, which has 366 days.

DESIGN AND TECHNOLOGY - FOOD - Ratio

Using a recipe for Shortbread to explain ratio.

These ingredients are enough to make eight biscuits.

This pattern is called a RATIO
Step 1 What is the smallest amount ?
Answer (50g)
Step 2 How many times does 50 divide into the other two amounts?

$$
\begin{aligned}
& 100 g \div 50 g=2 \text { times } \\
& 150 g \div 50 g=3 \text { times }
\end{aligned}
$$

They display the ratio $1: 2: 3$

Task

You are working for a biscuit manufacturer and need to mass-produce the original biscuits.

By adapting the original recipe, work out the total ingredients necessary to make 64 biscuits

......... caster sugar
......... margarine
........ plain flour

DESIGN AND TECHNOLOGY - TEXTILES - Estimate

A question to test pupils' understanding of the difference between the length and the width of fabric.

Imagine that you are going to make a $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ cushion with a zip opening in the middle of the back. The pattern pieces, which include a seam allowance of 1.5 cm are shown below.

Place the different pieces of the cushion on the picture of the fabric that is 150 cm wide, and then calculate how much fabric you need.

Correct answer 43 cm (0.43 m) An estimate is 0.5 metre

DESIGN AND TECHNOLOGY - FOOD - Weighing and measuring ingredients

The exact amount of each ingredient is not important with dishes such as stir-fry vegetables or a stew. With other dishes, you must make detailed measurements in order to achieve successful results. For example, in a sponge mixture, the proportions of the ingredients must be accurate in order for the cake to rise.

Each ingredient must be measured to get the right proportions. The two main methods of measuring ingredients are by weight and by volume.

Weighing

Kitchen scales are used to weigh ingredients. Most scales measure in grams (g) and kilograms (kg) and are correct to the nearest gram. If your recipe is in Imperial weights - ounces (oz) or pounds (lb) - it can be converted by saying that 1 ounce $=25 \mathrm{~g}$ and 1 pound (16 ounces) $=500 \mathrm{~g}$

Measuring Volume

Use a jug to measure large volumes of liquid. Jugs are usually marked in millilitres (ml) and pints.
They are only accurate to the nearest 20 ml . Use measuring spoons to measure small amounts of liquid or powder. Four sizes of measuring spoons are available $2.5 \mathrm{ml}, 5 \mathrm{ml}, 10 \mathrm{ml}$ ac 15 ml .

DESIGN AND TECHNOLOGY - RESISTANT - Measuring and marking

You will need to transfer your drawings very carefully to the materials in order to be able to cut and shape them correctly. If you do not measure and mark accurately it will be difficult to make a good product.

Begin with the straightest edge

Your material will usually have at least one surface or edge that is already correct. Confirm this with a steel rule.
Use this surface or edge as a starting point when marking

Marking

Use different markers on different materials. Use a sharp pencil on wood or the protective paper on a sheet of plastic.
Use a scriber or a spirit-based marker on metal or uncovered sheets of plastic.

Marking and Checking Angles

Equipment to help you to mark and check 90° angles

- Use a try square with wood
- Use an engineer's square with metal or plastic
- Draw or check other angles with an adjustable bevel

Marking lines parallel with a straight edge Use a marking gauge on wood.
Use jenny callipers on metal or sheets of plastic.

The door is not as smooth as the mirror. It sends light in all directions.
Mirrors reflect light so that they produce images.

Laws of reflection

A ray of light bounces off a flat mirror. Here are some of the words used to describe the reflection of the ray:

Normal: line at a right angle with the mirror

When a ray of light is reflected from a mirror, it obeys two simple rules:

1. The angle of reflection equals the angle of incidence. The ray is reflected from the mirror at the same angle as it arrives.
2. The ray that strikes the mirror, the reflected ray and the normal all lie in the same plane. You can draw the three lines on the same piece of flat paper.

These are the rules of reflection.
How a flat mirror creates an image.

Thousands of rays come from the lamp. But to keep things simple, only two of them are shown in the picture. The rays are reflected into the eye. It appears as though they come from a position behind the mirror. This is where you would see an image of the lamp.

The rays do not actually pass through the image. They only appear to come from it. The image is called a virtual image. I \dagger cannot be displayed on a screen.

SCIENCE - Pressure

Which causes the most damage?

Believe it or not, the stiletto heel.
It can damage carpets and make holes in floors. Not only because of the large downward force, but because the force acts on such a small area. It produces a high pressure.

Pressure tells us how concentrated a force is. It is calculated by using the equation
pressure $=\underline{\text { force }}$
and is measured in newtons/metre ${ }^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ or pascals (Pa).

For example:

The meaning of the figures

Pressure under the concrete floor of a garage: $8000 \mathrm{~N} / \mathrm{m}^{2}$ (newtons per square metre of ground)

Pressure under a stiletto heel: 2000000 $\mathrm{N} / \mathrm{m}^{2}$. There is much less than a square metre here of course. But the heel has the same pressure effect on the floor as a force of 2000000 newtons spread over one square metre.

Pressure Problems

Rearrange the pressure equation, and you get
force $=$ pressure \times area

This equation is useful if you know the pressure, and the area on which it acts, but you want to find out the force.

BUSINESS - Hire Purchase

If a person does not have enough money to pay for goods in cash, they can pay monthly (or weekly). This method is called HIRE PURCHASE.

A sum of money is usually required at the start as a DEPOSIT (a percentage of the cash price).

The total of the deposit and all the other payments is greater than the normal price, as you have to pay for borrowing the money.

Example

A colour television set costs £200. It can be bought on hire purchase with a deposit of 10% of the cost price together with 12 monthly payments of $£ 18$. What will the hire purchase price be?

Hire purchase price $=$ Deposit + Payments

Deposit

$$
10 \% \text { of } £ 200 \text { is } £ 200 \div 10=£ 20
$$

Payments

The payments are $12 \times £ 18=£ 216$

Hire purchase price

$$
\begin{aligned}
\text { Hire purchase price } & =\text { Deposit + Payments } \\
& =£ 20+£ 216 \\
& =£ 236
\end{aligned}
$$

This shows that the hire purchase price is $£ 36$ more than the cash price, i.e. an additional $£ 36$ for borrowing the money.

BUSINESS - Value Added Tax (VAT)

As the title suggests, VAT is tax on sales or services. At present, most items covered by this tax are taxed at a rate of $17 \frac{1}{2} \%$. It is charged on costs of repairs, new equipment, petrol, etc. There is no tax on basic foodstuffs, children's clothing and books at present.

Here is an example of calculating the additional VAT on the price of goods.

A washing machine costs $£ 480$ together with $17 \frac{1}{2} \%$ Value Added Tax. How much will the washing machine cost including VAT?

Method 1

Calculating VAT without a calculator

$$
\begin{array}{rll}
10 \% & = & £ 480 \div 10=£ 48 \\
5 \% & = & £ 24 \text { (half } 10 \% \text {) } \\
2 \frac{1}{2} \% & = & £ 12 \text { (half } 5 \% \text {) } \\
17 \frac{1}{2} \% & =10 \%+5 \%+2 \frac{1}{2} \% \\
& =£ 48+£ 24+£ 12 \\
& =£ 84
\end{array}
$$

Therefore the price including VAT $=£ 480+£ 84=£ 564$

Method 2

To calculate the price of the washing machine including VAT with a calculator, we can use a multiplication machine.

Original Price
Price including VAT

The price including VAT is $£ 480 \times 1.175=£ 564$

14. SUBJECT TERMS

Terms that are common to a number of subjects

add	adio	pattern	patrwm
calendar	calendr	pay	talu
chart	siart	penny	ceiniog
cheap	rhad	pentagon	pentagon
circle	cylch	point	pwynt
count	cyfrif	polygon	polygon
day	diwrnod	position	safle
diagram	diagram	pound	punt
diameter	diamedr	price	pris
discount	disgownt	questionnaire	holiadur
divide	rhannu	rectangle	petryal
double	dwbl	remainder	gweddill
east	dwyrain	represent	cynrychioli
expensive	drud	row	rhes
graph	graff	season	tymor
group	grîp	sell	gwerthu
guess	dyfalu	sequence	dilyniant
half	hanner	shape	siâp
halve	haneru	short	byr
horizontal	llorwedd	side	ochr
hundreds	cannoedd	size	maint
journey	taith	slow	araf
label	label	south	de
last	diwethaf	spend	gwario
length	hyd	square	sgwâr
likely	tebygol	subtract	tynnu
list	rhestr	tens	degau
maximum	uchafswm	tenth	degfed
measure	mesur	thousands	miloedd
minimum	Ileiafswm	thrice/three times	teirgwaith
money	arian	time	amser
month	mis	total	cyfanswm
movement	symudiad	triangle	triongl
multiply	Iluosi	unit	uned
net	rhwyd	vertical	fertigol
north	gogledd	week	wythnos
octagon	octagon	west	gorllewin
pair	pâr	year	blwyddyn
parallelogram	paralelogram		

Language

buy	prynu		quarter	chwarter
circle	cylch		second	eiliad
column	colofn		sell	gwerthu
cost	cost		sets of	setiau o
discount	disgownt		smallest	Ileiaf
first	cyntaf		square	sgwâr
hour	awr		statistics	ystadegau
line	llinell	table	tab/	
long	hir		total	cyfanswm
minute	munud		twentieth	ugeinfed
more than	mwy na		triangle	triongl
organize	trefnu		weigh	pwyso
per cent	y cant		weight	pwysau
percentage	canran		width	Iled
price	pris			

Science

angle	ongl		least	lleiaf
area	arwynebedd		line	llinell
average	cyfartaledd		long	hir
axis	echelin		low	isel
calculator	cyfrifiannell		lower	is
centimetre	centimetr		metre	metr
classify	dosbarthu		metre rule	ffon fetr
column	colofn		milimetre	milimetr
concave	ceugrwm		more than	mwy na
convex	amgrwm		parallel	paralel
data	data		predict	rhagfynegi
decrease	lleihau		reflect	adlewyrchu
degree	gradd		second	eiliad
distance	pellter		solid	araf
equal to	hafal i		surface	arwyneb
estimate	amcangyfrif		total	cyfanswm
factor	ffactor			lled
fast	cyflym			
formula	fformiwla			
kilometre	cilometr			anglydd

Design and Technology

angle	ongl		net	rhwyd
area	arwynebedd		parallel	paralel
average score	sgôr cyfartalog		pependicular	perpendicwlar
bar graph	graff bar		percentage	canran
centimetre	centimedr		pie chart+	graff pei
centre	canolbwynt		protractor	onglydd
circle	cylch		radius	radiws
compass	cwmpas		ratio	cymhareb
count	cyfrifo	rectangular	petryal	
cube	ciwb	right angle	ongl sgwâr	
cylinder	silindr		rough estimate	bras amcan
diameter	diamedr		scale	graddfa
equal shares	rhannau			
cyfartal	amcangyfrif		sphere	gofod
estimate	gram		square	straight line
gram	cylchyn		sllinell syth	
hoop	cilogram		three dimension	tri dimensiwn
kilogram	litr	triangle	triongl	
litre	cymedr	two dimension	dau ddimensiwn	
mean	medr	unitary method	dull unedol	
metre	milltir		worth	gwerth
mile	milimedr			
milimetre			symesuredd	

Music

balance	cydbwysedd	low	isel
fast	cyflym	lower	is
fifth	pumed	metre	mesur
first ... eighth	cyntaf ... wythfed	more	yn fwy
high	uchel	octave	wythfed
how much less? (Interval)	faint yn Ilai? (Cyfwng)	one whole pattern	un cyfan patrwm
how much more? (Interval)	faint yn fwy? (Cyfwng)	slow	araf
long	hir	value	gwerth

Geography

above	uwchben	equal to	hafal i
anti clockwise	gwrthglocwedd	equivalent	cyfwerth
area	arwynebedd	estimate	amcangyfrif
axis	echelin	fraction	ffracsiwn
bar chart	siart bar	height	uchder
calculate	cyfrifo	irregular	afreolaidd
calculator	cyfrifiannell	label	label
centre	canolbwynt	left	chwith
classify	dosbarthu	map	map
clockwise	clocwedd	maximum	uchafswm
closed	caeedig	most popular	mwyaf poblogaidd
column	colofn	predict	rhagfynegi
compass	cwmpawd	pyramid	pyramid
concave	amgrwm	regular	rheolaidd
count	cyfrif	relation	perthynas
data	data	representing	yn cynrychioli
data base	cronfa ddata	scale	graddfa
decrease	Ileihau	set	setio
degree	gradd	sort	didoli
depth	dyfnder	statistics	ystadegau
direction	cyfeiriad	survey	arolwg
divide equally	rhannu'ngyfartal	unlikely	annhebygol

Religious Education

bar chart	siart bar	tally chart	siart marciau rhifo
data	data	ten times	deg gwaith
day	diwrnod	twentieth	ugeinfed
five times	pum gwaith	week	wy thnos
four times	pedair gwaith	year	blwyddyn
set	set		

Information Technology

average	cyfartaledd		integer	cyfanrif
binary digit	digid deuaidd		kilobite	cilobeit
cells	celloedd		megabite	megabeit
characters	nodau		minimum	isafswm
decimals	degolion		number	rhif
estimate	amcangyfrif		percentages	canrannau
finance	cyllido		point size	maint pwynt
formula	fformiwla		size	maint
gigabite	gigabeit			

History

average	cyfartaledd	label	label
buy	prynu	least common	Ileiaf cyffredin
century	canrif	millenium	mileniwm
classification	dosbarthiad	million	miliwn
compare	cymharu	money	arian
compass point	pwynt cwmpawd	more than	yn fwy na
correct	cywir	most common	mwyaf cyffredin
cost	cost	opposite	cyferbyn
decade	degawd	pound	punt
estimate	amcangyfrif	price	pris
exchange	cyfnewid	scale	graddfa
factor	ffactor	sell	gwerthu
fifth, sixth, etc.	pumed, chweched a.y.y.b.	sure	sicr
first	cyntaf	survey	arolwg
five times	pum gwaith	table	tabl
foot	troedfedd	ten thousand	deg mil
four times	pedair gwaith	total	cyfanswm
fourteenth, fifteenth etc.	pedwerydd ar ddeg, pymthegfed a.y.b.	twenties, thrities etc.	dau ddegau, tri degau a.y.b.
how often?	pa mor aml?	twentieth	ugeinfed
hundred thousand	can mil	unlikely	annhebygol
inch	modfedd	year	blwyddyn
incorrect	anghywir		

Physical Education

above	unchben		metre rule	ffon fetr
angle	ongl		mile	milltir
anti clockwise	gwrthglocwedd		milimetre	milimetr
balance	cydbwysedd		more than	mwy na
centimetre	centimetr		parallel	paralel
chance	siawns		percentage	canran
clockwise	clocwedd		radius	radiws
compass	cwmpas		reflection line	llinell ddrych
diametr	diamedr		right angle	ongl sgwar
estimate	amcangyfrif		ruler	pren mesur
exchange	cyfnewid	score	sgôr	
fast	cyflym		shape	siâp
fold	plygu		straight / direct	union
foot	troedfedd		strategy	strategaeth
fraction	ffracsiwn		symmetry	arwyneb
half-cymesuredd				
inch	hanner cy/ch	modfedd		symmetry line
killinell gymesuredd				
measuring tape	tấp mesur		vertex	fertig
meter	metr		lled	

Art

angle	ongl	lower	gostwng
area	arwynebedd	milimetre	milimetr
centimetre	centimetr	millenium	mileniwn
centre	canolbwynt	minute	munud
century	canrif	mirror line	llinell ddrych
circumference	cy/choedd	negative	negatif
closed	caeedig	parallel	paralel
column	colofn	path	llwybr
compass	cwmpas	perimeter	perimedr
corner	cornel	perpendicular	perpendicwlar
corresponding	cyfatebol	point	pwynt
cross-section	trawstoriad	positive	positif
cube	ciwb	protractor	onglydd
cylinder	silindr mesur	range	amrediad
depth	dyfnder	reflect	adlewyrchu
diagonal	croeslin	regular	rheolaidd
display	arddangos	remainder	gweddill
distance	pellter	ruler	pren mesur
draw a line	tynnu llinell	second	eiliad
edge	ymyl	shape	siâp
equal parts	rhannau cyfartal	short	byr
estimate	amcangyfrif	sketch	bras/unio
fold	plygu	solid	solid
form	Ilunio	space	gofod
formula	fformiwla	straight line	llinell syth
height	uchder	symmetry	cymesuredd
hour	awr	three dimension	tri dimensiwn
layer	haen	two-dimension	dau ddimensiwn
left	chwith	width	lled

