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Apache and Jakarta Tomcat

If you've written any Java servlets or JavaServer Pages (JSPs), chances are that you've downloaded
Tomcat. That's because Tomcat is a free, feature-complete servlet container that servlet and JSP
developers can use to test their code. Tomcat is also Sun's reference implementation of a servlet
container, which means that Tomcat's first goal is to be 100% complaint with the versions of the Servlet
and JSP specification that it supports.

However, Tomcat is more than just a test server: many individuals and corporations are using Tomcat
in production environments because it has proven to be quite stable. Indeed, Tomcat is considered by
many to be a worthy addition to the excellent Apache suite of products.

Despite Tomcat's popularity, it suffers from a common shortcoming among open source projects: lack of
complete documentation. There is some documentation distributed with Tomcat (mirrored at
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/) and there's even an open source effort to write a
Tomcat book (http://tomcatbook.sourceforge.net/). Even with these resources, however, there is much
room for additional material.

We've created this book to fill in some of the documentation holes and use the combined experience of the
authors to help Java developers and system administrators make the most of the Tomcat product. Whether
you're looking to learn enough to just get started developing servlets or trying to understand the more
arcane aspects of Tomcat configuration, you should find what you're looking for within these pages.

The first two chapters are designed to provide newcomers with some basic background information that
will become prerequisite learning for future chapters. If you're a system administrator with no previous
Java experience, you are advised to read them; likewise if you're a Java developer who is new to
Tomcat. Finally, if you're well informed about Tomcat and Java, you'll probably want to jump straight
ahead to Chapter 3, although skimming this chapter and its successor is likely to yield some additions to
your present understanding.



Chapter 1

2

We will cover the following points in this chapter:

❑ The origins of the Tomcat server

❑ The terms of Tomcat's license and how it compares to other open source licenses

❑ How Tomcat fits into the Java big picture

❑ How Tomcat can be integrated with Apache and other web servers

Humble Beginnings: The Apache Project
One of the earliest web servers was developed by Rob McCool at the National Center for
Supercomputer Applications, University of Illinois, Urbana-Champaign, referred to colloquially as the
NCSA project, or NCSA for short. In 1995, the NCSA server was quite popular, but its future was
uncertain as Rob left NCSA in 1994. A group of developers got together and compiled all the NCSA
bug fixes and enhancements they had found and patched them into the NCSA code base. The
developers released this new version in April 1995, and called it Apache, which was a sort of acronym
for "A PAtCHy Web Server".

Apache was readily accepted by the web-serving community from its earliest days, and less than a year
after its release it unseated NCSA to become the most used web server in the world (measured by the
total number of servers running Apache), a distinction that it has held ever since (according to Apache's
web site). Incidentally, during the same period that Apache's use spread, NCSA's popularity plummeted
and by 1999 was officially discontinued by its maintainers.

For more information on the history of Apache and its developers, see
http://httpd.apache.org/ABOUT_APACHE.html.

Today the Apache web server is available on pretty much any major operating system – as of this
writing, downloads are available for 29 different operating systems. Apache can be found running on
the some of the largest server farms in the world as well as on some of the smallest devices (including
the Linux-based Sharp Zaurus hand-held). In Unix data centers, Apache is as ubiquitous as air
conditioning and UPS systems.

While Apache was originally a somewhat mangy collection of miscellaneous patches, today's versions
are state-of-the-art, incorporating rock-solid stability with bleeding edge features. The only real
competitor to Apache in terms of market share and feature set is Microsoft's Internet Information
Services (IIS), which is bundled free with certain versions of the Windows operating system. At the time
of writing, Apache's market share was estimated at around 56%, with IIS at a distant 32% (statistics
courtesy of http://www.netcraft.com/survey/, June 2002).

It is also worth nothing that Apache has a reputation of being much more secure than Microsoft IIS.
When new vulnerabilities are discovered in either server, the Apache developers fix Apache far faster
than Microsoft fixes IIS.
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The Apache Software Foundation
In 1999, the same folks who wrote the Apache server formed the Apache Software Foundation (ASF).
The ASF is a non-profit organization created to facilitate the development of open source software
projects. According to their web site, the ASF accomplishes this goal by:

❑ Providing a foundation for open, collaborative software development projects by supplying
hardware, communication, and business infrastructure

❑ Creating an independent legal entity to which companies and individuals can donate

resources and be assured that those resources will be used for the public benefit

❑ Providing a means for individual volunteers to be sheltered from legal suits directed at the
Foundation's projects

❑ Protecting the Apache brand, as applied to its software products, from being abused by other
organizations

In practice, the ASF does indeed sponsor a great many open source projects. While the best known of
these projects is likely the aforementioned Apache web server, the ASF hosts many other well-respected
and widely used projects.

Apache Projects
The following is a listing of the current Apache projects, all of which can be found at
http://www.apache.org/:

Project Name Description

HTTP (Web) Server The famous Apache web server.

Apache Portable Runtime (APR) A library of platform-independent C code that forms a
portability layer for compiling applications on multiple
platforms, such as Linux, Windows, BeOS, and OS/2.

Jakarta Apache's Java-related efforts; described in detail later in
this chapter.

Perl Umbrella for Apache's well-known mod_perl project, as well
as other Apache-specific Perl modules. mod_perl enables
highly efficient integration with Apache and Perl programs.

PHP PHP is a very popular scripting language for dynamically
creating HTML or performing business logic in HTML
pages. Like mod_perl, PHP can be efficiently integrated
with Apache.

TCL Umbrella for Apache's efforts to tightly integrate TCL with
the Apache web server (like mod_perl).

XML Umbrella for Apache's cross-platform XML projects, such
as the Xerces and Crimson XML parsers and the AXIS
SOAP engine.



Chapter 1

4

The Jakarta Project
Of most relevance to this book is Apache's Jakarta project, of which the Tomcat server is a subproject.
The Jakarta project is the umbrella under which the ASF sponsors the development of Java subprojects.
At the time of writing, there is an impressive array of more than twenty of these. They are divided into
three different categories: "Libraries, Tools, and APIs", "Frameworks and Engines", and "Server
Applications". We will highlight two projects from the first category (Ant and Log4J), one from the
framework category (Struts), and, of course, Tomcat.

Tomcat

The Jakarta Tomcat project has its origins in the earliest days of Java's servlet technology. Servlets plug
into special web servers, called servlet containers (originally called servlet engines). Sun created the first
servlet container, called the Java Web Server, which demonstrated the technology but wasn't terribly
robust. Meanwhile, the ASF folks created the JServ product, which was a servlet engine that integrated
with the Apache web server.

In 1999, Sun donated their servlet container code to the ASF, and the two projects were merged to
create the Tomcat server. Today, Tomcat serves as Sun's official reference implementation (RI), which
means that Tomcat's first priority is to be fully compliant with the Servlet and JSP specifications
published by Sun. JSP pages are simply an alternative, HTML-like way to write servlets. We will discuss
all this in more detail in the next chapter.

A reference implementation also has the side benefit of honing the specification. As developers seek to
put in code that has been defined in the specifications, problems in implementation requirements and
conflicts within the specifications are highlighted.

A reference implementation is in principal completely specification-compliant and therefore can be very
valuable, especially for people who are using very advanced parts of the specification. The reference
implementation is available at the same time as the public release of the specifications, which means
that Tomcat is usually the first server out there that provides the enhanced specification features when a
new specification version is completed.

The first version of Tomcat was the 3.x series, and it served as the reference implementation of the
Servlet 2.2 and JSP 1.1 specifications. The Tomcat 3.x series was descended from the original code that
Sun provided to the ASF in 1999.

In 2001, Tomcat 4.0 (codenamed Catalina) was released, and was a complete redesign of the Tomcat
architecture and had a new code base. The Tomcat 4.x series, which is current as of this writing, is the
reference implementation of the Servlet 2.3 and JSP 1.2 specifications.

At the time of writing, the latest stable version is 4.0.4. Hints of Tomcat 5.0 are on the horizon, as the
new Servlet 2.4 and JSP 2.0 specifications are nearing release and Tomcat 5.0 will need to implement
those specifications.

Ant

Ant is a tool to automate building and deploying applications that range from the very simple to the
extremely complex. If you're familiar with Unix, you might think this sounds like the ubiquitous make
tool. In fact, Ant was created by a group of people who wanted to create a replacement for make. You
can read about their comments on the subject at http://jakarta.apache.org/ant/.



Apache and Jakarta Tomcat

5

Ant can be used for building applications in any language, and it can be used on any platform that has a
Java 1.1 virtual machine or better. Ant's versatility can also be extended with Java plug-ins. Ant won
awards from both the Software Development and Java World magazines in 2002, and it is extremely
popular amongst developers.

Log4J

Developers generally use logging for two purposes: debugging during development and monitoring
when the system is in production. When developing systems, developers usually prefer logging to be as
verbose as possible, and aren't concerned with its impact on the system's overall performance.
However, when a system is deployed into production, developers want logging to impact performance
as little as possible.

Log4J represents more than five years of work towards creating the ideal logging solution for Java
programs, combining the desire for generation of rich data at development time with the need for
minimal performance degradation in production environments. If your current logging technique is
executing something like System.out.println(), you owe it to yourself to investigate this project
and see what else is possible with logging.

Log4J Versus JDK 1.4 Logging

Java 1.4 introduced a logging mechanism to Java as part of the standard J2SE platform. Log4J has been
in its present form since late 1999, and thus predates the JDK 1.4 logging mechanism by a little more
than 2 years (JDK 1.4 went final in early 2002). When it was learned that Java 1.4 would incorporate
logging, the Log4J group lobbied to have its product incorporated into Java as the official logging
mechanism for the platform. However, that did not happen.

With the release of Java 1.4, Log4J didn't disappear, and doesn't intend to. Log4J provides two
advantages over the Java 1.4 logging mechanism: it has more features and it can be used with Java 1.1
or later.

Struts

The current architectural best practice for web applications is the Model View Controller (MVC) design
pattern. Under this model, the application is divided into three logical layers (also called tiers): the View,
which represents the user interface; the Model, which represents the business logic specific to the application
including any persistent data store (for example, a database); and the Controller, which coordinates how the
View and the Model interact, and takes care of any other general application behavior (for example,
application lifecycle issues). We'll see more on the MVC architecture in the next chapter.

Servlets and JavaServer Pages are the standard Java way to create web applications. They provide an
efficient interface to the Web's HTTP protocol. However, developers who wish to create an MVC
architecture with servlets and JSP must still do quite a bit of work.

Many third-party frameworks have been created which attempt to relieve developers from the burden of
implementing their own MVC architecture, freeing them to instead focus on solving the unique business
problems of their organization. Struts is one of these frameworks. Struts has gained an excellent
reputation in the development community as being well-designed and very flexible.

Other Jakarta Subprojects

There are many other Jakarta subprojects, including: Lucene, a full-featured search engine; Jetspeed, a
portal server; and James, a mail server. See these and others at http://jakarta.apache.org/.
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Distributing Tomcat
Tomcat is open source software, and as such is free and freely distributable. However, if you have much
experience in dealing with open source software, you're probably aware that the terms of distribution
can vary from project to project.

Most open source software is released with an accompanying license that states what may and may not
be done to the software. There are at least forty different open source licenses out there, each of which
has slightly different terms.

Providing a primer on all of the various open source licenses is beyond the scope of this chapter, but the
license governing Tomcat will be discussed here and compared with a few of the more popular open
source licenses.

Tomcat is distributed under the Apache License, which can be read from the
$CATALINA_HOME/LICENSE file. The key points of this license state that:

❑ The Apache License must be included with any redistributions of Tomcat's sourcecode
or binaries

❑ Any documentation included with a redistribution must give a nod to the ASF

❑ Products derived from the Tomcat sourcecode can't use the terms "Tomcat", "The Jakarta
Project", "Apache", or "Apache Software Foundation" to endorse or promote their software
without prior written permission from the ASF

❑ Tomcat has no warranty of any kind

However, through omission, the license contains these additional implicit permissions:

❑ Tomcat can be used by any entity, commercial or non-commercial, for free without limitation

❑ Those who make modifications to Tomcat and distribute their modified version do not have to
include the sourcecode of their modifications

❑ Those who make modifications to Tomcat do not have to donate their modifications back to
the ASF

Thus, you're free to deploy Tomcat in your company in any way you see fit. It can be your
production web server or your test servlet container used by your developers. You can also
redistribute Tomcat with any commercial application that you may be selling, provided that you
include the license and give credit to the ASF. You can even use the Tomcat sourcecode as the
foundation for your own commercial product

Comparison with Other Licenses
Among the previously mentioned rather large group of other open source licenses, there are two
licenses which are particularly popular at the present time: the GNU General Public License (GPL) and
the GNU Lesser General Public License (LGPL). Let's take a look at how each of these licenses compare
to the Apache License.
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GPL
The GNU Project created and actively evangelizes the GPL. The GNU Project is somewhat similar to
the ASF, with the exception that the GNU Project would like all of the non-free (that is, closed source or
proprietary) software in the world to become free; the ASF has no (stated) desire to do this and simply
wants to provide free software.

What Does It Mean to Be Free?

Free software can mean one of two entirely different things: software that doesn't cost anything, and
software that can be freely copied, distributed, and modified by anyone (thus the sourcecode is included
or available); such software can be distributed either for free or for a fee. A simpler way to explain the
difference between these two types of free is "free as in free beer" and "free as in free speech". The
GNU Project's goal is to create free software of the latter category. All uses of the phrase "free software"
in the remainder of this section will use this definition.

The differences between the Apache License and the GPL thus mirror the distinct philosophies of the
two organizations. Specifically, the GPL has these key differences from the Apache License:

❑ No non-free software may contain GPL-licensed products or use GPL-licensed sourcecode. If
non-free software is found to contain GPL-licensed binaries or code, it must remove such
elements or become free software itself.

❑ All modifications made to GPL-licensed products must be released as free software if the
modifications are also publicly released.

These two differences have huge implications for commercial enterprises. If Tomcat were licensed
under the GPL, any product that contained Tomcat would also have to be free software.

Furthermore, while the Apache License permits an organization to make modifications to Tomcat and
sell it under a different name as a closed source product, the GPL would not allow any such act to
occur; the new derived product would also have to be released as free software.

LGPL
The LGPL is similar to the GPL, with one major difference: non-free software may contain LGPL-licensed
products. The LGPL license is intended primarily for software libraries that are themselves free software
but whose authors want them to be available for use by companies who produce non-free software.

If Tomcat were licensed under the LGPL, it could be embedded in non-free software, but Tomcat could
not itself be modified and released as a non-free software product.

For more information on the GPL and LGPL licenses, see http://www.gnu.org/.

Other Licenses

Understanding and comparing open source licenses can be a rather complex task. The explanations
above are an attempt to simplify the issues. For more detailed information on these and other licenses,
there are two specific resources that can help you:

❑ The Open Source Initiative (OSI) maintains a database of open source licenses. Visit them at
http://www.opensource.org/.

❑ The GNU Project, mentioned above, has an extensive comparison of open source licenses
with the GPL license. See it at http://www.gnu.org/licenses/license-list.html.
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The Big Picture: J2EE
As a servlet container, Tomcat is a key component of a larger set of standards collectively referred to as
the Java 2 Platform, Enterprise Edition (J2EE). J2EE defines a group of Java-based code libraries (called
APIs in the Java world) that are suited to creating web applications for the enterprise (that is, a large
company). To be sure, companies of any size can take advantage of the J2EE technologies, but J2EE is
especially designed to solve the problems associated with the creation of large software systems. Java
developers can download all of the J2EE APIs in a single ZIP archive, which comes complete with
binaries and documentation.

Distributed Systems
We saw in the previous section that J2EE is designed with the creation of large software systems in
mind. You, the reader, may ask, "What is so different about large software systems versus small
systems?" The answer lies in the notion of distributed systems.

A distributed system is one in which the various components of the system are distributed across
multiple different machines. For example, in a given web application, one server might handle receiving
and responding to HTTP requests while another server handles all the business logic, and another
server handles all the database I/O:

Client

Web Server

Business Logic

Database Access

Database

So why create a distributed system? Large web applications and enterprise systems can have enormous
demands placed upon them. Frequently, these demands are larger than a single server can meet. While
one may be tempted to simply upgrade the server, adding more processors and more memory to it,
these upgrades can only stretch the server's capacity so far. Every server, no matter how expandable
and efficient it may be, will run up against limitations.
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In these situations, where a single server simply cannot meet the needs of a software system, a
distributed system is ideal. Multiple servers can work together to meet demands that a single server
could not.

But, why bother creating a distributed system? Why not just copy the same application and deploy it on
multiple servers? Surely load balancing – splitting up the requests amongst the different servers – can
then handle the load?

It turns out that by separating the different logical components of an application, system administrators
are free to tune the various components of the distributed system according to their unique needs. For
example, the servers that read and write to the database will require different optimizations than those
servers which are communicating with web clients via HTTP over TCP.

The J2EE APIs
Creating the distributed systems that we've described in the preceding paragraphs is not an easy task.
We mentioned a few paragraphs ago that J2EE is a collection of code libraries called APIs. The J2EE
APIs are designed to work together to simplify the creation of robust and efficient distributed systems.
Here is a list of some of the key J2EE technologies and a brief description of each:

J2EE API Description

Enterprise JavaBeans (EJB) EJB technology provides a simple mechanism for
creating distributed business logic components. EJB
authors follow a simple pattern to write business
logic and the rest of the low-level details relating to
lifecycle, distribution, persistence, and so on are
handled automatically.

Java Message Service (JMS) JMS provides asynchronous messaging capability to
J2EE applications.

Java Naming and Directory Service (JNDI) JNDI enables J2EE applications to communicate
with registries and directories. A
registry/directory is a centralized location for
storing business information. JNDI supports the
industry standard LDAP protocol and interfaces
with many other popular registry standards. JNDI
makes it possible to centralize the configuration
of a distributed system.

Servlets As explained earlier in this chapter, servlets work
with special servers called servlet containers to
process HTTP requests and send HTTP responses.
Servlets often work directly with EJBs.

JavaServer Pages (JSP) JSP technology is an alternative, HTML-like
interface for creating servlets. At runtime, the servlet
container converts a JSP into a servlet.

Table continued on following page


