
Professional Apache Tomcat

Amit Bakore
Debashish Bhattacharjee

Sandip Bhattacharya
Vivek Chopra
Chad Fowler
Ben Galbraith
Romin Irani

Sing Li
Chanoch Wiggers

Summary of Contents

Chapter 1: Apache and Jakarta Tomcat 1

Chapter 2: JSP and Servlets 15

Chapter 3: Tomcat Installation 31

Chapter 4: Tomcat Installation Directory and Architecture 65

Chapter 5: Basic Tomcat Configuration 77

Chapter 6: Web Application Administration 109

Chapter 7: Manager Configuration 131

Chapter 8: Advanced Tomcat Features 163

Chapter 9: Class Loaders 201

Chapter 10: HTTP Connectors 221

Chapter 11: Web Server Connectors 235

Chapter 12: The WARP Connector 243

Chapter 13: The AJP Connector 257

Chapter 14: Tomcat and IIS 285

Chapter 15: JDBC Connectivity 311

Chapter 16: Tomcat Security 335

Chapter 17: Additional Uses for Ant 381

Chapter 18: Log4J 405

Chapter 19: Shared Tomcat Hosting 425

Chapter 20: Server Load Testing 461

Appendix A: Axis 491

Appendix B: Apache SSL Setup 497

Index 513

Professional Apache Tomcat

Amit Bakore
Debashish Bhattacharjee

Sandip Bhattacharya
Vivek Chopra
Chad Fowler
Ben Galbraith
Romin Irani

Sing Li
Chanoch Wiggers

Professional Apache Tomcat

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Card Number: 2003107064

ISBN: 0-7645-4372-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QV/QW/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-Mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR
HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD
CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR
AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAM-
AGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER
DAMAGES.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, the Wrox Programmer to Programmer
logo and related trade dress are trademarks or registered trademarks of Wiley in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits

Authors Commissioning Editors

Amit Bakore Paul Cooper
Debashish Bhattacharjee Ranjeet Wadhwani
Sandip Bhattacharjee
Vivek Chopra Technical Editors

Chad Fowler Kedar Kamat
Ben Galbraith Unnati Kulkarni
Romin Irani Matthew Moodie
Sing Li Nilesh Parmer
Chanoch Wiggers

Author Agents

Additional Material Shivanand Nadkarni
Matthew Moodie Safiulla Shakir
Peter Wainwright

Indexers

Technical Reviewers Bill Johncocks
Subrahmanyam
Allamaraja
Kapil Apshankar Proof Reader

Steve Baker Agnes Wiggers
Yogesh Bhandarkar
Vivek Chopra Production Coordinators

Kris Dahl Rachel Taylor
Richard Huss Pip Wonson
Romin Irani
Meeraj Kunnumpurath Illustrations

Massimo Nardone Santosh Haware
Neil Matthew Manjiri Karande
Richard Stones
Sameer Tyagi Cover

Keith Wannamaker Dawn Chellingworth

About the Authors

Amit Bakore
Amit is a Sun Certified Java Programmer with a couple of other certifications. Currently based in
Pune (India), he works as a System Analyst for Sansui Software. He has been working mainly on
J2EE and XML on Linux. Before landing in the world of software, he graduated from Pune
University, with Electronics as a major, with first class.

I humbly dedicate this work to 'HIM' and his parents, Dr.Ramkrishna & Sau. Vaijayanti. I sincerely thank
all my friends, colleagues, and wellwishers for their extensive support and guidance.

Debashish Bhattacharjee
Debashish Bhattacharjee is a Principal Consultant with the Management Consulting Services
unit of PriceWaterhouseCoopers. He has 10 years of experience implementing projects for
Fortune 500 clients in the United States and Canada. His areas of expertise are systems
integration and project management. He has served as chief architect and led technical teams
tasked with the implementation of e-commerce applications, portal implementations, web
infrastructure, ERP, and client-server applications.

In his role as consultant, Debashish is often responsible for advising clients on best practices and
the adoption of technology. He is the published author of several industry articles.

Sandip Bhattacharjee
Sandip is an open source enthusiast and an active participant in various open source
communities in India, especially his local LUG – Indian Linux Users Group, Delhi (ILUGD),
http://www.linux-delhi.org/. He has been programming right from his school days in 1991, and
carries an engineering degree in Textile technology and an MBA in marketing.

He has been professionally involved in open source technologies for the past three years. He is
currently a freelance programmer and advises businesses on ways to use the open source
revolution to their advantage.

Vivek Chopra
Vivek has eight years of experience in software design and development, the last two years of
which have been in web services and various XML technologies. He is the co-author of
Professional ebXML Foundations (ISBN 186100-590-3) and Professional XML Web Services (ISBN 1-
86100-509-1) both from Wrox Press. He is also a committer for UDDI4J, an open source Java
API for UDDI. His other areas of experience and interest include compilers, middleware,
clustering, GNU/Linux, and mobile computing. He is currently consulting in the domain area of
web services.

Vivek holds a Bachelor's degree in Electronics and a Master's in Computer Science, both from
Pune University, India. He lives and works in the beautiful San Francisco Bay Area, and can be
reached at vivek@soaprpc.com.

Chad Fowler
Chad Fowler is CTO of GE Appliances Bangalore, India office. For the past four years, he has
been an active advocate of open source Java technologies in the enterprise, revolving around the
Enhydra suite of software. Driven into software development by a less-than-healthy addiction to
the video game Doom, he dropped his professional music career and never looked back. His
current interests focus on the Ruby programming language, learning the Hindi (spoken/written –
not programming) language, and Agile Software Development methodologies.

Ben Galbraith
Before graduating from High School, Ben Galbraith was hired by a major Silicon Valley
computer manufacturer to develop Windows-based client-server applications with international
deployments and hundreds of users. In 1995, he began developing for the Web and fell in love
with Unix, vi, and Perl. After building countless web applications with Perl, Ben discovered
server-side Java in 1999 and his relationship with Perl has since become somewhat estranged.

He is presently a consultant in Provo, Utah. He regularly lectures, evangelizes, and gives classes
on Java technology. Ben has no college degree but if he had the time he would study both
ancient and modern history.

Romin Irani
Romin Irani is a Senior Software Engineer with InSync Information Systems, Inc in Fremont,
California. He graduated with a Bachelors degree in Computer Engineering from University of
Bombay, India. He has around seven years of experience, starting out in the Microsoft world but
now fully immersed into Java technologies. He welcomes your comments at
romin@rocketmail.com.

I am most thankful to my wife Devayani, whose cooperation and love made this possible. And of course
due credits to my parents, Khushru and Gulrukh for all that they have taught me in life.

Sing Li
First bitten by the computer bug in 1978, Sing has grown up with the microprocessor and the
Internet revolution. His first PC was a $99 do-it-yourself COSMIC ELF computer with 256 bytes
of memory and a 1 bit LED display. For two decades, Sing has been an active author, consultant,
instructor, entrepreneur, and speaker. His wide-ranging experience spans distributed
architectures, web services, multi-tiered server systems, computer telephony, universal
messaging, and embedded systems.

Sing has been credited with writing the very first article on the Internet Global Phone, delivering
voice over IP long before it became a common reality. Sing has participated in several Wrox
projects in the past, has been working with (and writing about) Java, Jini, and JXTA since their very
first available releases, and is an active evangelist for the unlimited potential of P2P technology.

Chanoch Wiggers
Chanoch is a Java Programmer working with JSP and Servlets who until recently worked at
Wrox Press as a Technical Architect (writing this stuff is even more fun than writing about this
stuff). Chanoch would like to thank the reviewers and the guys at Wrox Press, especially
Shivanand Nadkarni.

Table of Contents

Chapter 1: Apache and Jakarta Tomcat 1

Humble Beginnings: The Apache Project 2

The Apache Software Foundation 3
Apache Projects 3

The Jakarta Project 4

Distributing Tomcat 6

The Big Picture: J2EE 8

Using Tomcat with the Apache Web Server 11

Summary 13

Chapter 2: JSP and Servlets 15

First Came CGI... 15

Then Servlets Were Born... 16

And On To JSPs… 20

Web Application Architecture 26

Java Site Architecture 27

Summary 29

Chapter 3: Tomcat Installation 31

Installing a JVM 31

Tweaking the JVM for Performance 36

Tomcat Installation 38
Tomcat Windows Installer 39

Installing Tomcat On Windows Using the ZIP File 47

Installing Tomcat from Source 48

Installing Tomcat On Linux 48

Running Tomcat with the Server Option 51

Table of Contents

ii

The Tomcat Installation Directory 52

Ant Installation 54
Installing Ant On Windows 54

Installing Ant On Linux 55

Installing Tomcat from Source 55
The Ant Build File 57

Building Tomcat 59

Troubleshooting and Tips 60

Summary 63

Chapter 4: Tomcat Installation Directory and Architecture 65

The Installation Directory 65
The bin Directory 66

The classes, lib, server, and common Directories 67

The conf Directory 67

The logs Directory 67

The webapps Directory 68

Tomcat Architecture 69
The Server 70

The Service 71

The Connectors 71

The Engine 72

The Remaining Classes in the Tomcat Architecture 74

Summary 74

Chapter 5: Basic Tomcat Configuration 77

Component-Based Configuration 78

Files in $CATALINA_HOME/conf 78

Basic Server Configuration 79
Authentication and the tomcat-users.xml File 97

The Default Deployment Descriptor – conf/web.xml 97

Fine-Grained Access Control: catalina.policy 103

Summary 107

Chapter 6: Web Application Administration 109

The Contents of a Web Application 109
URL Mappings 110

Public Resources 111

The META-INF Folder 112

The WEB-INF Folder 113

The classes Folder 113

The tlds Folder 113

The lib Folder 114

Table of Contents

iii

The web.xml File 114
The XML Header 116

The DTD Declaration 116

<web-app> 116

Summary 128

Chapter 7: Manager Configuration 131

Sample Web Application 131

Tomcat 3.x Administration Tool 132
Enabling Permissions for the Admin Tool 133

admin Application Tasks 133

Tomcat 4.x Manager Application 137
Enabling Access To the Manager Application 139

Manager Application Configuration 140

Manager Application Commands 142

Tomcat Web Application Manager (4.1.7 Beta Only) 150
Managing Applications with Ant (Tomcat 4.1 Only) 154

Tomcat Administration Tool (Tomcat 4.1 Only) 158
Admin Application Configuration 159

The Future 160

Summary 160

Chapter 8: Advanced Tomcat Features 163

Valves – Interception Tomcat Style 164

Standard Valves 164

Access Logs Implementation 165

Single Sign-On Implementation 169

Restricting Access Via a Request Filter 172

Persistent Sessions 175
Configuring a Persistent Session Manager 176

JNDI Resource Configuration 178

Realms 188
What Is a Realm? 188

Container Managed Security 189

Configuring JDBC Realms 190

Configuring JNDI Realms 193

Memory Realm 194

UserDatabase as a Realm 196

Summary 198

Table of Contents

iv

Chapter 9: Class Loaders 201

Class Loader Overview 202
Standard J2SE Class Loaders 203

Class Loader Attributes 207

Creating a Custom Class Loader 207

Security and Class Loaders 208
Class Loader Delegation 209

Core Class Restriction 209

Separate Class Loader Namespaces 209

Security Manager 209

Tomcat and Class Loaders 210
System Class Loader 211

Common Class Loader 211

Catalina Class Loader 213

Shared Class Loader 214

Web Application Class Loader 215

Dynamic Class Reloading 215

Common Class Loader Pitfalls 216

Summary 218

Chapter 10: HTTP Connectors 221

HTTP Connectors 222
Tomcat 3.x: HTTP/1.0 Connector 222

Tomcat 4.0: HTTP/1.1 Connector 225

Tomcat 4.1: Coyote HTTP/1.1 Connector 226

Running Tomcat Behind a Proxy Server 230

Using Coyote HTTP with Tomcat 3.3.x 231

Using Coyote HTTP with Tomcat 4.0 231

Performance Tuning 232

Summary 233

Chapter 11: Web Server Connectors 235

Connector Architecture 236
Connector Protocols 237

WARP Protocol 237

AJP Protocol 238

Choosing a Connector 239
JServ 239

jk 240

jk2 240

webapp 240

Summary 241

Table of Contents

v

Chapter 12: The WARP Connector 243

Introducing webapp 243

webapp Configuration 244
webapp Binaries 244

Building webapp from Source 245

Configuration Changes in Apache 249

Configuration Changes in Tomcat 251

Testing the Installation 253

webapp Bugs and Issues 253

Summary 255

Chapter 13: The AJP Connector 257

mod_jk 257
The Apache JServ Protocol 258

The AJP Connector 258

Worker Implementations with mod_jk 259

Plug-In vs. In-Process 259

Multiple Tomcat Workers 260

Getting mod_jk 260

Integrating Tomcat with Apache 262
Configuring the AJP Connector in server.xml 262

Setting the workers.properties File 264

Configuration Settings for Apache 267

Tomcat Load Balancing with Apache 273

Summary 282

Chapter 14: Tomcat and IIS 285

Concepts 286

Configuring IIS for Tomcat Out-of-Process 287

Adding Your Own Web Applications 296

Scalable Architectures with IIS and Tomcat 297

Running Tomcat In-Process 299

Log Files 302

Performance Tuning 304

Summary 308

Table of Contents

vi

Chapter 15: JDBC Connectivity 311

JDBC Basics 312
Basic JDBC Operations 313

Tomcat and JDBC 317
Web Containers and RDBMSs 318

Preferred Configuration: JNDI Resources 319

Alternative JDBC Configuration 328

Summary 332

Chapter 16: Tomcat Security 335

Some Basic Security Considerations 335

Securing the Filesystem 337
Users, Groups, and Permissions 337

Recommended File Security Practices 343

Securing Tomcat's Permissions 344

The Java Security Manager 344
Overview of the Security Manager 344

Using the Security Manager with Tomcat 348

Recommended Security Manager Practices 351

Security Realms 354
Message Digests 354

Users and Roles 355

File-Based Realms 357

JDBC Realms 360

SSL 365
JSSE 366

PureTLS 370

Protecting Resources with SSL 372

SSL with Apache 373

Summary 378

Chapter 17: Additional Uses for Ant 381

Introduction To Ant 382

Ant Build Process 384

Ant Build Status – E-Mail Notifications 389

Table of Contents

vii

Tomcat Ant Tasks 392
Install 394

List 396

Stop 397

Start 398

Reload 399

Remove 399

Deploy 400

Undeploy 401

Resources 402

Roles 403

Summary 403

Chapter 18: Log4J 405

Log4J 405
Loggers 406

Levels 406

Appenders 407

Layouts 407

Configurators 407

Hierarchies 410

Log4J in a Web Application 411
Configuring a Logger in a Web Application 411

Logging To Files 413

Logging To the Console 416

Logging To Multiple Destinations 417

Summary 422

Chapter 19: Shared Tomcat Hosting 425

Virtual Hosting 425
IP-Based Virtual Hosting 426

Name-Based Virtual Hosting 428

Virtual Hosting with Tomcat 430

Virtual Hosting with Tomcat 3.3 432
Tomcat 3.3 As a Standalone Server 433

Tomcat 3.3 with Apache 436

Virtual Hosting with Tomcat 4.x 441
Tomcat 4.x As a Standalone Server 441

Tomcat 4.0 with Apache 444

Fine-Tuning Shared Hosting 453
Separate JVM for Each Virtual Host 453

Setting Memory Limits To the Tomcat JVM 457

Summary 459

Table of Contents

viii

Chapter 20 Server Load Testing 461

Elements of Scalability 461
Software Configuration 462

Deployment Architecture 464

Application Code 465

Load Testing with JMeter 465
Installing and Running JMeter 465

Making and Understanding Test Plans 466

JMeter Features 470

Interpreting Test Results 482

Distributed Load Testing 484

Server Load Testing vs. Application Load Testing 485

Summary 487

Appendix A: Axis 491

Installing Axis 491

Implementing Axis 493

Appendix B: Apache SSL Setup 497

SSL and Apache 498
Building and Installing the OpenSSL Library 499

Building and Installing mod_ssl for Apache 2.0 502

Building and Installing mod_ssl for Apache 1.3 503

Basic SSL Configuration 505

Installing a Private Key 507

Creating a Certificate Request and Temporary Certificate 508

Getting a Signed Certificate 510

Summary 511

Index 513

Table of Contents

ix

Table of Contents

x

Apache and Jakarta Tomcat

If you've written any Java servlets or JavaServer Pages (JSPs), chances are that you've downloaded
Tomcat. That's because Tomcat is a free, feature-complete servlet container that servlet and JSP
developers can use to test their code. Tomcat is also Sun's reference implementation of a servlet
container, which means that Tomcat's first goal is to be 100% complaint with the versions of the Servlet
and JSP specification that it supports.

However, Tomcat is more than just a test server: many individuals and corporations are using Tomcat
in production environments because it has proven to be quite stable. Indeed, Tomcat is considered by
many to be a worthy addition to the excellent Apache suite of products.

Despite Tomcat's popularity, it suffers from a common shortcoming among open source projects: lack of
complete documentation. There is some documentation distributed with Tomcat (mirrored at
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/) and there's even an open source effort to write a
Tomcat book (http://tomcatbook.sourceforge.net/). Even with these resources, however, there is much
room for additional material.

We've created this book to fill in some of the documentation holes and use the combined experience of the
authors to help Java developers and system administrators make the most of the Tomcat product. Whether
you're looking to learn enough to just get started developing servlets or trying to understand the more
arcane aspects of Tomcat configuration, you should find what you're looking for within these pages.

The first two chapters are designed to provide newcomers with some basic background information that
will become prerequisite learning for future chapters. If you're a system administrator with no previous
Java experience, you are advised to read them; likewise if you're a Java developer who is new to
Tomcat. Finally, if you're well informed about Tomcat and Java, you'll probably want to jump straight
ahead to Chapter 3, although skimming this chapter and its successor is likely to yield some additions to
your present understanding.

Chapter 1

2

We will cover the following points in this chapter:

❑ The origins of the Tomcat server

❑ The terms of Tomcat's license and how it compares to other open source licenses

❑ How Tomcat fits into the Java big picture

❑ How Tomcat can be integrated with Apache and other web servers

Humble Beginnings: The Apache Project
One of the earliest web servers was developed by Rob McCool at the National Center for
Supercomputer Applications, University of Illinois, Urbana-Champaign, referred to colloquially as the
NCSA project, or NCSA for short. In 1995, the NCSA server was quite popular, but its future was
uncertain as Rob left NCSA in 1994. A group of developers got together and compiled all the NCSA
bug fixes and enhancements they had found and patched them into the NCSA code base. The
developers released this new version in April 1995, and called it Apache, which was a sort of acronym
for "A PAtCHy Web Server".

Apache was readily accepted by the web-serving community from its earliest days, and less than a year
after its release it unseated NCSA to become the most used web server in the world (measured by the
total number of servers running Apache), a distinction that it has held ever since (according to Apache's
web site). Incidentally, during the same period that Apache's use spread, NCSA's popularity plummeted
and by 1999 was officially discontinued by its maintainers.

For more information on the history of Apache and its developers, see
http://httpd.apache.org/ABOUT_APACHE.html.

Today the Apache web server is available on pretty much any major operating system – as of this
writing, downloads are available for 29 different operating systems. Apache can be found running on
the some of the largest server farms in the world as well as on some of the smallest devices (including
the Linux-based Sharp Zaurus hand-held). In Unix data centers, Apache is as ubiquitous as air
conditioning and UPS systems.

While Apache was originally a somewhat mangy collection of miscellaneous patches, today's versions
are state-of-the-art, incorporating rock-solid stability with bleeding edge features. The only real
competitor to Apache in terms of market share and feature set is Microsoft's Internet Information
Services (IIS), which is bundled free with certain versions of the Windows operating system. At the time
of writing, Apache's market share was estimated at around 56%, with IIS at a distant 32% (statistics
courtesy of http://www.netcraft.com/survey/, June 2002).

It is also worth nothing that Apache has a reputation of being much more secure than Microsoft IIS.
When new vulnerabilities are discovered in either server, the Apache developers fix Apache far faster
than Microsoft fixes IIS.

Apache and Jakarta Tomcat

3

The Apache Software Foundation
In 1999, the same folks who wrote the Apache server formed the Apache Software Foundation (ASF).
The ASF is a non-profit organization created to facilitate the development of open source software
projects. According to their web site, the ASF accomplishes this goal by:

❑ Providing a foundation for open, collaborative software development projects by supplying
hardware, communication, and business infrastructure

❑ Creating an independent legal entity to which companies and individuals can donate

resources and be assured that those resources will be used for the public benefit

❑ Providing a means for individual volunteers to be sheltered from legal suits directed at the
Foundation's projects

❑ Protecting the Apache brand, as applied to its software products, from being abused by other
organizations

In practice, the ASF does indeed sponsor a great many open source projects. While the best known of
these projects is likely the aforementioned Apache web server, the ASF hosts many other well-respected
and widely used projects.

Apache Projects
The following is a listing of the current Apache projects, all of which can be found at
http://www.apache.org/:

Project Name Description

HTTP (Web) Server The famous Apache web server.

Apache Portable Runtime (APR) A library of platform-independent C code that forms a
portability layer for compiling applications on multiple
platforms, such as Linux, Windows, BeOS, and OS/2.

Jakarta Apache's Java-related efforts; described in detail later in
this chapter.

Perl Umbrella for Apache's well-known mod_perl project, as well
as other Apache-specific Perl modules. mod_perl enables
highly efficient integration with Apache and Perl programs.

PHP PHP is a very popular scripting language for dynamically
creating HTML or performing business logic in HTML
pages. Like mod_perl, PHP can be efficiently integrated
with Apache.

TCL Umbrella for Apache's efforts to tightly integrate TCL with
the Apache web server (like mod_perl).

XML Umbrella for Apache's cross-platform XML projects, such
as the Xerces and Crimson XML parsers and the AXIS
SOAP engine.

Chapter 1

4

The Jakarta Project
Of most relevance to this book is Apache's Jakarta project, of which the Tomcat server is a subproject.
The Jakarta project is the umbrella under which the ASF sponsors the development of Java subprojects.
At the time of writing, there is an impressive array of more than twenty of these. They are divided into
three different categories: "Libraries, Tools, and APIs", "Frameworks and Engines", and "Server
Applications". We will highlight two projects from the first category (Ant and Log4J), one from the
framework category (Struts), and, of course, Tomcat.

Tomcat

The Jakarta Tomcat project has its origins in the earliest days of Java's servlet technology. Servlets plug
into special web servers, called servlet containers (originally called servlet engines). Sun created the first
servlet container, called the Java Web Server, which demonstrated the technology but wasn't terribly
robust. Meanwhile, the ASF folks created the JServ product, which was a servlet engine that integrated
with the Apache web server.

In 1999, Sun donated their servlet container code to the ASF, and the two projects were merged to
create the Tomcat server. Today, Tomcat serves as Sun's official reference implementation (RI), which
means that Tomcat's first priority is to be fully compliant with the Servlet and JSP specifications
published by Sun. JSP pages are simply an alternative, HTML-like way to write servlets. We will discuss
all this in more detail in the next chapter.

A reference implementation also has the side benefit of honing the specification. As developers seek to
put in code that has been defined in the specifications, problems in implementation requirements and
conflicts within the specifications are highlighted.

A reference implementation is in principal completely specification-compliant and therefore can be very
valuable, especially for people who are using very advanced parts of the specification. The reference
implementation is available at the same time as the public release of the specifications, which means
that Tomcat is usually the first server out there that provides the enhanced specification features when a
new specification version is completed.

The first version of Tomcat was the 3.x series, and it served as the reference implementation of the
Servlet 2.2 and JSP 1.1 specifications. The Tomcat 3.x series was descended from the original code that
Sun provided to the ASF in 1999.

In 2001, Tomcat 4.0 (codenamed Catalina) was released, and was a complete redesign of the Tomcat
architecture and had a new code base. The Tomcat 4.x series, which is current as of this writing, is the
reference implementation of the Servlet 2.3 and JSP 1.2 specifications.

At the time of writing, the latest stable version is 4.0.4. Hints of Tomcat 5.0 are on the horizon, as the
new Servlet 2.4 and JSP 2.0 specifications are nearing release and Tomcat 5.0 will need to implement
those specifications.

Ant

Ant is a tool to automate building and deploying applications that range from the very simple to the
extremely complex. If you're familiar with Unix, you might think this sounds like the ubiquitous make
tool. In fact, Ant was created by a group of people who wanted to create a replacement for make. You
can read about their comments on the subject at http://jakarta.apache.org/ant/.

Apache and Jakarta Tomcat

5

Ant can be used for building applications in any language, and it can be used on any platform that has a
Java 1.1 virtual machine or better. Ant's versatility can also be extended with Java plug-ins. Ant won
awards from both the Software Development and Java World magazines in 2002, and it is extremely
popular amongst developers.

Log4J

Developers generally use logging for two purposes: debugging during development and monitoring
when the system is in production. When developing systems, developers usually prefer logging to be as
verbose as possible, and aren't concerned with its impact on the system's overall performance.
However, when a system is deployed into production, developers want logging to impact performance
as little as possible.

Log4J represents more than five years of work towards creating the ideal logging solution for Java
programs, combining the desire for generation of rich data at development time with the need for
minimal performance degradation in production environments. If your current logging technique is
executing something like System.out.println(), you owe it to yourself to investigate this project
and see what else is possible with logging.

Log4J Versus JDK 1.4 Logging

Java 1.4 introduced a logging mechanism to Java as part of the standard J2SE platform. Log4J has been
in its present form since late 1999, and thus predates the JDK 1.4 logging mechanism by a little more
than 2 years (JDK 1.4 went final in early 2002). When it was learned that Java 1.4 would incorporate
logging, the Log4J group lobbied to have its product incorporated into Java as the official logging
mechanism for the platform. However, that did not happen.

With the release of Java 1.4, Log4J didn't disappear, and doesn't intend to. Log4J provides two
advantages over the Java 1.4 logging mechanism: it has more features and it can be used with Java 1.1
or later.

Struts

The current architectural best practice for web applications is the Model View Controller (MVC) design
pattern. Under this model, the application is divided into three logical layers (also called tiers): the View,
which represents the user interface; the Model, which represents the business logic specific to the application
including any persistent data store (for example, a database); and the Controller, which coordinates how the
View and the Model interact, and takes care of any other general application behavior (for example,
application lifecycle issues). We'll see more on the MVC architecture in the next chapter.

Servlets and JavaServer Pages are the standard Java way to create web applications. They provide an
efficient interface to the Web's HTTP protocol. However, developers who wish to create an MVC
architecture with servlets and JSP must still do quite a bit of work.

Many third-party frameworks have been created which attempt to relieve developers from the burden of
implementing their own MVC architecture, freeing them to instead focus on solving the unique business
problems of their organization. Struts is one of these frameworks. Struts has gained an excellent
reputation in the development community as being well-designed and very flexible.

Other Jakarta Subprojects

There are many other Jakarta subprojects, including: Lucene, a full-featured search engine; Jetspeed, a
portal server; and James, a mail server. See these and others at http://jakarta.apache.org/.

Chapter 1

6

Distributing Tomcat
Tomcat is open source software, and as such is free and freely distributable. However, if you have much
experience in dealing with open source software, you're probably aware that the terms of distribution
can vary from project to project.

Most open source software is released with an accompanying license that states what may and may not
be done to the software. There are at least forty different open source licenses out there, each of which
has slightly different terms.

Providing a primer on all of the various open source licenses is beyond the scope of this chapter, but the
license governing Tomcat will be discussed here and compared with a few of the more popular open
source licenses.

Tomcat is distributed under the Apache License, which can be read from the
$CATALINA_HOME/LICENSE file. The key points of this license state that:

❑ The Apache License must be included with any redistributions of Tomcat's sourcecode
or binaries

❑ Any documentation included with a redistribution must give a nod to the ASF

❑ Products derived from the Tomcat sourcecode can't use the terms "Tomcat", "The Jakarta
Project", "Apache", or "Apache Software Foundation" to endorse or promote their software
without prior written permission from the ASF

❑ Tomcat has no warranty of any kind

However, through omission, the license contains these additional implicit permissions:

❑ Tomcat can be used by any entity, commercial or non-commercial, for free without limitation

❑ Those who make modifications to Tomcat and distribute their modified version do not have to
include the sourcecode of their modifications

❑ Those who make modifications to Tomcat do not have to donate their modifications back to
the ASF

Thus, you're free to deploy Tomcat in your company in any way you see fit. It can be your
production web server or your test servlet container used by your developers. You can also
redistribute Tomcat with any commercial application that you may be selling, provided that you
include the license and give credit to the ASF. You can even use the Tomcat sourcecode as the
foundation for your own commercial product

Comparison with Other Licenses
Among the previously mentioned rather large group of other open source licenses, there are two
licenses which are particularly popular at the present time: the GNU General Public License (GPL) and
the GNU Lesser General Public License (LGPL). Let's take a look at how each of these licenses compare
to the Apache License.

Apache and Jakarta Tomcat

7

GPL
The GNU Project created and actively evangelizes the GPL. The GNU Project is somewhat similar to
the ASF, with the exception that the GNU Project would like all of the non-free (that is, closed source or
proprietary) software in the world to become free; the ASF has no (stated) desire to do this and simply
wants to provide free software.

What Does It Mean to Be Free?

Free software can mean one of two entirely different things: software that doesn't cost anything, and
software that can be freely copied, distributed, and modified by anyone (thus the sourcecode is included
or available); such software can be distributed either for free or for a fee. A simpler way to explain the
difference between these two types of free is "free as in free beer" and "free as in free speech". The
GNU Project's goal is to create free software of the latter category. All uses of the phrase "free software"
in the remainder of this section will use this definition.

The differences between the Apache License and the GPL thus mirror the distinct philosophies of the
two organizations. Specifically, the GPL has these key differences from the Apache License:

❑ No non-free software may contain GPL-licensed products or use GPL-licensed sourcecode. If
non-free software is found to contain GPL-licensed binaries or code, it must remove such
elements or become free software itself.

❑ All modifications made to GPL-licensed products must be released as free software if the
modifications are also publicly released.

These two differences have huge implications for commercial enterprises. If Tomcat were licensed
under the GPL, any product that contained Tomcat would also have to be free software.

Furthermore, while the Apache License permits an organization to make modifications to Tomcat and
sell it under a different name as a closed source product, the GPL would not allow any such act to
occur; the new derived product would also have to be released as free software.

LGPL
The LGPL is similar to the GPL, with one major difference: non-free software may contain LGPL-licensed
products. The LGPL license is intended primarily for software libraries that are themselves free software
but whose authors want them to be available for use by companies who produce non-free software.

If Tomcat were licensed under the LGPL, it could be embedded in non-free software, but Tomcat could
not itself be modified and released as a non-free software product.

For more information on the GPL and LGPL licenses, see http://www.gnu.org/.

Other Licenses

Understanding and comparing open source licenses can be a rather complex task. The explanations
above are an attempt to simplify the issues. For more detailed information on these and other licenses,
there are two specific resources that can help you:

❑ The Open Source Initiative (OSI) maintains a database of open source licenses. Visit them at
http://www.opensource.org/.

❑ The GNU Project, mentioned above, has an extensive comparison of open source licenses
with the GPL license. See it at http://www.gnu.org/licenses/license-list.html.

Chapter 1

8

The Big Picture: J2EE
As a servlet container, Tomcat is a key component of a larger set of standards collectively referred to as
the Java 2 Platform, Enterprise Edition (J2EE). J2EE defines a group of Java-based code libraries (called
APIs in the Java world) that are suited to creating web applications for the enterprise (that is, a large
company). To be sure, companies of any size can take advantage of the J2EE technologies, but J2EE is
especially designed to solve the problems associated with the creation of large software systems. Java
developers can download all of the J2EE APIs in a single ZIP archive, which comes complete with
binaries and documentation.

Distributed Systems
We saw in the previous section that J2EE is designed with the creation of large software systems in
mind. You, the reader, may ask, "What is so different about large software systems versus small
systems?" The answer lies in the notion of distributed systems.

A distributed system is one in which the various components of the system are distributed across
multiple different machines. For example, in a given web application, one server might handle receiving
and responding to HTTP requests while another server handles all the business logic, and another
server handles all the database I/O:

Client

Web Server

Business Logic

Database Access

Database

So why create a distributed system? Large web applications and enterprise systems can have enormous
demands placed upon them. Frequently, these demands are larger than a single server can meet. While
one may be tempted to simply upgrade the server, adding more processors and more memory to it,
these upgrades can only stretch the server's capacity so far. Every server, no matter how expandable
and efficient it may be, will run up against limitations.

Apache and Jakarta Tomcat

9

In these situations, where a single server simply cannot meet the needs of a software system, a
distributed system is ideal. Multiple servers can work together to meet demands that a single server
could not.

But, why bother creating a distributed system? Why not just copy the same application and deploy it on
multiple servers? Surely load balancing – splitting up the requests amongst the different servers – can
then handle the load?

It turns out that by separating the different logical components of an application, system administrators
are free to tune the various components of the distributed system according to their unique needs. For
example, the servers that read and write to the database will require different optimizations than those
servers which are communicating with web clients via HTTP over TCP.

The J2EE APIs
Creating the distributed systems that we've described in the preceding paragraphs is not an easy task.
We mentioned a few paragraphs ago that J2EE is a collection of code libraries called APIs. The J2EE
APIs are designed to work together to simplify the creation of robust and efficient distributed systems.
Here is a list of some of the key J2EE technologies and a brief description of each:

J2EE API Description

Enterprise JavaBeans (EJB) EJB technology provides a simple mechanism for
creating distributed business logic components. EJB
authors follow a simple pattern to write business
logic and the rest of the low-level details relating to
lifecycle, distribution, persistence, and so on are
handled automatically.

Java Message Service (JMS) JMS provides asynchronous messaging capability to
J2EE applications.

Java Naming and Directory Service (JNDI) JNDI enables J2EE applications to communicate
with registries and directories. A
registry/directory is a centralized location for
storing business information. JNDI supports the
industry standard LDAP protocol and interfaces
with many other popular registry standards. JNDI
makes it possible to centralize the configuration
of a distributed system.

Servlets As explained earlier in this chapter, servlets work
with special servers called servlet containers to
process HTTP requests and send HTTP responses.
Servlets often work directly with EJBs.

JavaServer Pages (JSP) JSP technology is an alternative, HTML-like
interface for creating servlets. At runtime, the servlet
container converts a JSP into a servlet.

Table continued on following page

