
VBA Project – KSL Home Scraper

Ryan Durrant

IS 520

Executive Summary

The Business Overview

Durrant Property Investments (DPI) is my father’s company and has been in existence for

approximately 22 years. DPI’s core business model is to invest in real estate in the Provo, UT

area, specifically in single family homes and apartment complexes. These properties are then

rented out to BYU and UVU students. DPI has employed students for years to help manage the

properties, collect rent, perform cleaning checks, and upkeep the landscaping of the homes and

complexes.

 For years DPI has found deals through building relationships with other real estate

professionals in the community. However, a wide variety of past deals have come from

scouring the newspaper, searching for ͞For Sale͟ signs, and using the internet. This last option

is the one that is the most efficient, has the greatest amount of information, and is the best

way to scan a lot of potential investments anytime and anywhere. The problem is that it is both

time consuming and difficult to first narrow down the options to those homes that meet your

requirements and then to open each link to see if the homes meet your criteria. It is also

annoying because many of these properties have been posted multiple times. It is like trying to

find a needle in the haystack.

The System Overview

 My project solves these problems directly, providing a fast, organized, and painless way

to rip all of the home data off KSL and then analyze all of the listed properties to find the best

deals. Using a UserForm, that takes the 15 different parameters to create the right URL to find

all of the homes that meet the criteria. The web scraper then opens every link of all the

property listings on every single page. For each of the specific properties, my tool scrapes off

the address, price, property type, seller type, bedrooms, bathrooms, year built, square footage,

acreage, garage information, basement information, and the description!

 The system then pastes all of the information into the ͞Home Data͟ tab with hyperlinks

to all of the KSL listings. After pasting all of the information for the homes that passed the

initial filter, they are then sorted and analyzed on the ͞Dashboard͟ tab. Using conditional

formatting the top five cheapest homes by price per square foot are highlighted in green.

These top 5 homes are also ranked by price per acre and the conditional formatting of a green

checkmark, yellow exclamation point, or red x are shown next to the price/acre, indicating the

best deals. Lastly, if the home is being sold by the owner, the last cell in each of the top rows is

highlighted in blue to indicate that there is potential to negotiate a lower price due to the fact

that there are no agent commissions for the seller.

Implementation Documentation

 To implement this solution, I began by creating a sub procedure entitled

͞getHouseData͟ which was used to declare variables, name worksheets, assign labels to

different columns on the ͞Home Data͟ tab, and ultimately open every single page URL with the

necessary variables inserted. Then the individual home URL’s are opened, ripping all of the

needed data, pasting the values into the cells, and finally sorting everything. At the beginning

of this sub I call the UserForm ͞frmKSL͟ to initiate. Upon initiation, the form pulls in parts of

the data that is held on a hidden sheet

and that sheet is then updated each

time the form’s ͞OK͟ button is pushed.

Zip code, bedrooms, bathrooms, home

type, and square feet are the entries

that are pulled in and these entries

were chosen due to the fact that they

are the most common parameters to

search for houses on. I purposely left

the other parameters to be filled out each time because they are the ones that my Dad and I

change as we explore different options.

That form has different data validation ͞If Statements͟ to ensure that there are 5-digits

in the place for the zip code and that the upper limit price is not ͞<$50,000.͟ There are combo

boxes for most of the parameters along with four option buttons and a text box. After the user

inputs their chosen filters, the form then converts their entries to be readable by KSL’s servers.

It was extremely time consuming and difficult to alter and input the variables into the URL

depending on the users’ selections. It required testing almost all of the possible options on

KSL’s site and then comparing KSL’s URL to what my form was producing and altering the

variables as needed. Lastly, the form writes the user’s input onto the hidden sheet to be

accessed next time the form is opened and for the variable assignments in the URL. That sub

ends with two calls to ͞boldHeadings,͟ which bolds the labels on the data tab, and the

͞dashboard͟ sub.

 The ͞dashboard͟ sub begins by assigning the first row’s values to be the labels for the

columns and also places borders around those labels. The sub then inputs data onto the

dashboard from the ͞Home Data͟ tab using a Do Loop that runs until there are no more

addresses to analyze. It begins by pulling in the same hyperlinks from the first sheet to allow

the user to click the link, see pictures of the home, and then contact the seller through KSL’s

messaging. Next, it calculates the price per square foot and price per acre for each home which

can then be compared with the data set’s averages of those ratios. The sub also shows the

bedroom-to-bathroom ratio and whether an agent or the owner is selling the property. Before

the sub calls the ͞FormattingDash͟ sub procedure it sorts the properties from the lowest to

highest price per square foot.

 After the data is sorted, the ͞FormattingDash͟ sub centers it, makes the headings bold,

increases the font size, and wraps the text in the address column to allow users to read the

entire address with a fairly small sized column. After formatting the entire dashboard, the sub

calls ͞formatTop5͟ which highlights and shows the top 5 best properties on the market that

meet the user’s requirements. This sub highlights the top properties by price per square foot,

those that are being sold by the owner, the top ones by price per acre, and finally adds some

spacing around the block of data and AutoFits the columns to make the dashboard easier to

read.

 The tool operates through two buttons and a new Excel tab that I created on the top

ribbon. The tab is titled, ͞KSL Data͟ and it is located just after the ͞Developer͟ tab. In that tab

there are two buttons that I designed called ͞Get Data͟ and ͞Delete Data.͟ ͞Get Data͟ runs the

͞getHouseData͟ macro that opens the UserForm and begins all the

subsequent subs. The ͞Delete Data͟ button runs a simple macro that

wipes the first two sheets clean to then add in the most up to date data

from the web.

Learning and Conceptual Difficulties

 I learned so much through my battle with this project, and I say battle because it felt like

each time I would fix a bug I would find two more, and in fixing those I would accidentally

create another. After well over 20 hours of work, I finally perfected my solution. I was able to

accomplish this project with the help of online VBA documentation, examples, and a lot of

critical thinking. One of the most difficult concepts I applied was web scraping the data and

ensuring that my searches would work on all of the different pages, properties, and listings per

page. Another difficult concept I applied was that of a complex UserForm with hundreds of

different combinations, the string manipulations to the user’s selections, and the changes to

the URL that accompanied them.

 The web scraper tool I created was initially difficult because I had to open one page with

all of the listings for that page and then I had to open another page for each of the twelve

listings. The opening search page obviously had very different source code that I needed to

parse through, as did the individual property pages. I used an array to store the different URL

endings for each property which I then used to open all of those property URL’s to rip data

from. Once I had the data, I wrote it to the first sheet with counters and Do Loops. When one

page was done, I would open up the next and repeat the process. Because of the different

amounts of pages and properties with each and every search and every change in time and

date, I researched and used On Error GoTo methods to account for every possible situation of

page counts.

 After I got the initial program to work and to pull all of the data I wanted, I went and

spoke to Dr. Allen, who suggested I create a UserForm to allow the user more freedom to select

the exact data they wanted. After battling with how many options I should give the user, I

ended up creating 15 different parameters the user could choose from. As stated earlier, when

the form is initialized it inserts the most common parameters and leaves the others blank and

this is done purposely to allow easy manipulation of the more commonly altered options. It

was difficult to convert the users’ answers into strings that were understood when combined

with the URL. There were many small changes that needed to be taken into consideration. For

example, when the user selects ͞<.10͟ in the acre’s combo box the URL needs to read, ͞lt_10,͟

whereas if it is ͞.10,͟ then it reads, ͞gte_10.͟ There were many string manipulations like this

that needed to be tracked and updated for each new search performed.

 The entire project was very fulfilling due to its challenging nature and for the small

victories along the way that led up to this point of having a completed product. I used past

projects, class examples, and a lot of Google to achieve success. My goal with this project is to

put it up online on a site that I will create for myself to begin selling the tool to the people of

Utah. I see a lot of value being delivered through my creation and I believe that people would

be willing to pay for it.

Assistance

I did not receive assistance from anyone else. I used the internet’s resources, past

projects, and class examples to figure out the many problems I ran into.

