A sieve for all primes of the form $x^{2}+(x+1)^{2}$

PANAYIOTIS G. TSANGARIS

Abstract

All composite numbers of the form $x^{2}+(x+1)^{2}$ are determined in terms of suitable (non-homogeneous) linear recurrence sequences of order 2 (Theorem 4.12). As a consequence, all primes of the same form in a given interval can be determined by a sieving procedure (Theorem 4.13).

Introduction

The object of this study are the prime and composite numbers of the form $x^{2}+(x+1)^{2}$. Their study depends heavily on the following

Theorem 1.1. (Sierpinski) [3]) The number $x^{2}+(x+1)^{2}$ is composite if and only if there exist natural numbers y, z such that:

$$
\begin{equation*}
T(x)=T(y)+T(z) \tag{T}
\end{equation*}
$$

(Here $T(x), T(y), T(z)$ denote triangular numbers.)
The description of all composite numbers of the form $x^{2}+(x+1)^{2}$ is reduced to the study of the integral solutions of the following family of Diophantine equations of Fermat-Pell type:

$$
\begin{equation*}
X^{2}-2 Y^{2}=2 k^{2}-1, \quad k=0,1,2, \ldots \tag{k}
\end{equation*}
$$

Thus the study of equation (T) is reduced to the study of the family of equations $\left(F_{k}\right)$ in terms of Gauss type transformations.

The detailed study of all solutions of $\left(F_{k}\right)$ is carried on via Nagell's method of equivalence classes, thus avoiding any reference to fundamental units.

We will consider the Diophantine equation

$$
\begin{equation*}
\xi^{2}-d \eta^{2}=-1 \quad(d \neq \square) \tag{1.1}
\end{equation*}
$$

where $d \neq \square$ (non-square) is a natural number. The sequence of non-negative (that is $\xi_{2 n+1} \geq 0$ and $\eta_{2 n+1} \geq 0$) integral solutions of (1.1) is determined by the following recursive formulae:

$$
\begin{align*}
& \xi_{2 n+3}=2 x_{1} \xi_{2 n+1}-\xi_{2 n-1}, \text { where } \xi_{1}=\xi_{1} \text { and } \xi_{3}=\xi_{1}^{3}+3 d \xi_{1} \eta_{1}^{2} \tag{1.2}\\
& \eta_{2 n+3}=2 x_{1} \eta_{2 n+1}-\eta_{2 n-1}, \text { where } \eta_{1}=\eta_{1} \text { and } \eta_{3}=3 \xi_{1}^{2} \eta_{1}+d \eta_{1}^{3}
\end{align*}
$$

$(n=1,2, \ldots)$ where $\xi_{1}+\eta_{1} \sqrt{d}$ is the fundamental solution of (1.1) and $x_{1}+y_{1} \sqrt{d}$ is the fundamental solution of

$$
\begin{equation*}
x^{2}-d y^{2}=1 \quad(d \neq \square) \tag{P}
\end{equation*}
$$

The following Theorems can be found in [5] (cf. also [4]).
Theorem 1.2. Consider the Diophantine equation

$$
\begin{equation*}
X^{2}-d Y^{2}=C . \quad(d \neq \square, C>0) \tag{F}
\end{equation*}
$$

Let $X_{r}^{*}+Y_{r}^{*} \sqrt{d}$ be the fundamental solution of a class A_{r} of integral solutions of (F) with $X_{r}^{*}>0$ Let $x_{n}+y_{n} \sqrt{d}$, where $n=0,1, \ldots$, be the sequence of all non-negative integral solutions of (P). Let

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{d} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \text { for all } n=0,1, \ldots \\
& X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \text { for all } n=1,2, \ldots
\end{aligned}
$$

(for a typical r).
Then the following hold true:
(i) $Y_{n+1}>Y_{n} \geq 0$ for every $n=0,1, \ldots$.
(ii) Let $Y_{r}^{*}>0$. Then $Y_{n+1}^{\prime} \geq Y_{n}>Y_{n}^{\prime}>0$ for every $n=1,2, \ldots$.
(iii) Let $Y_{r}^{*}=0$. Then $Y_{n}=Y_{n}^{\prime}$ for every $n=0,1, \ldots$.
(iv) Let A_{r} be genuine (= non-ambiguous). Then

$$
Y_{n+1}^{\prime}>Y_{n}>Y_{n}^{\prime}>0 \text { for all } n=1,2, \ldots
$$

(v) Let A_{r} be ambiguous. Then for every m there exist n such that:

$$
X_{m}^{\prime}=X_{n} \quad \text { and } \quad Y_{m}^{\prime}=Y_{n}
$$

(vi) Let $X_{r}^{*}+Y_{r}^{*} \sqrt{d}$, where $r=1,2, \ldots, m$, be the only integral solutions of (F) such that

$$
0<X_{r}^{*} \leq \sqrt{\left(x_{1}+1\right) C / 2} \text { and } 0 \leq Y_{r}^{*} \leq y_{1} \sqrt{C} / \sqrt{2\left(x_{1}+1\right)}
$$

Then the set of all non-negative integral solutions of (F) consists of all pairs $\left(X_{n}, Y_{n}\right)$ together with all pairs $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ for all respective genuine classes A_{r} in addition to all pairs $\left(X_{n}, Y_{n}\right)$ for all respective ambiguous classes
B_{r}. Moreover, $X_{n}, Y_{n}, X_{n}^{\prime}$ and Y_{n}^{\prime} are determined by the following recursive formulae:

$$
\begin{align*}
X_{n+1} & =2 x_{1} X_{n}-X_{n-1} \text { for } n=1,2, \ldots \\
\text { with } X_{0} & =X_{r}^{*}, X_{1}=x_{1} X_{r}^{*}+d y_{1} Y_{r}^{*} \text { and } r=1,2, \ldots, m \tag{1.3}\\
Y_{n+1} & =2 x_{1} Y_{n}-Y_{n-1} \text { for } n=1,2, \ldots \\
\text { with } Y_{0} & =Y_{r}^{*}, Y_{1}=y_{1} X_{r}^{*}+x_{1} Y_{r}^{*} \text { and } r=1,2, \ldots, m \\
X_{n+1}^{\prime} & =2 x_{1} X_{n}^{\prime}-X_{n-1}^{\prime} \text { for } n=1,2, \ldots \\
\text { with } X_{0}^{\prime} & =X_{r}^{*}, X_{1}^{\prime}=x_{1} X_{r}^{*}-d y_{1} Y_{r}^{*} \text { and } r=1,2, \ldots, m . \tag{1.4}\\
Y_{n+1}^{\prime} & =2 x_{1} Y_{n}^{\prime}-Y_{n-1}^{\prime} \text { for } n=1,2, \ldots \\
\text { with } Y_{0}^{\prime} & =-Y_{r}^{*}, Y_{1}^{\prime}=y_{1} X_{r}^{*}-x_{1} Y_{r}^{*} \text { and } r=1,2, \ldots, m .
\end{align*}
$$

Theorem 1.3. Consider the Diophantine equation $(F), C \neq 0$. Let $X_{r}^{*}+Y_{r}^{*} \sqrt{d}$ be the fundamental solution of a class A_{r} of integral solutions of (F). Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solutions of (P) and

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{d} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{d}\right)\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \\
& X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{d}\right)\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \quad \text { for all } n=0,1, \ldots
\end{aligned}
$$

Let $R_{n} \equiv Y_{n}^{2}+k^{2}$ and $R_{n}^{\prime} \equiv Y_{n}^{\prime 2}+k^{2}$, where k is a fixed integer. Then the numbers R_{n} and R_{n}^{\prime} are determined by the following recursive formulae:

$$
R_{n+1}=2 x_{2} R_{n}-R_{n-1}-2 k^{2}\left(x_{2}-1\right)+2 y_{1}^{2} C
$$

where $R_{0}=Y_{r}^{*^{2}}+k^{2}$ and $R_{1}=\left(y_{1} X_{r}^{*}+x_{1} Y_{r}^{*}\right)^{2}+k^{2}$.

$$
R_{n+1}^{\prime}=2 x_{2} R_{n}^{\prime}-R_{n-1}^{\prime}-2 k^{2}\left(x_{2}-1\right)+2 y_{1}^{2} C
$$

where $R_{0}^{\prime}=Y_{r}^{*^{2}}+k^{2}$ and $R_{1}^{\prime}=\left(y_{1} X_{r}^{*}-x_{1} Y_{r}^{*}\right)^{2}+k^{2}$.

2. Reduction of the Diophantine equation

$x(x+1)=y(y+1)+z(z+1)$ to a family of Fermat equations
Theorem 2.1 below aims at reducing the problem of solving the Diophantine equation

$$
\begin{equation*}
x(x+1)=y(y+1)+z(z+1) \tag{E}
\end{equation*}
$$

to that of solving each one of the Diophantine equations $\left(F_{k}\right)$.
Theorem 1.3. Consider the Diophantine equations (E) and $\left(F_{k}\right)$. Then the following hold true:
$(i)_{1}$ Let (x, y, z) be an integral solution of (E) with $y \geq z$. Let

$$
X \equiv 2 x+1 \text { and } Y \equiv 2 y-(k-1), \text { where } k \equiv y-z
$$

Then $X+Y \sqrt{2}$ is an integral solution of $\left(F_{k}\right)$.
$(i)_{2}$ If $y \neq 0,-1$ and $z \neq 0,-1$ then $|Y| \neq k \pm 1$.
$(i i)_{1}$ Let $X+Y \sqrt{2}$ be an integral solution of $\left(F_{k}\right)$. Let

$$
\begin{equation*}
x=(X-1) / 2, y=(Y+k-1) / 2 \text { and } z=(Y-k-1) / 2 \tag{2.1}
\end{equation*}
$$

Then (x, y, z) is an integral solution of (E).
$(i i)_{2}$ If $|Y| \neq k \pm 1$, then $y \neq 0,-1$ and $z \neq 0,-1$.
Proof. (i) $)_{1}$ By direct computation.
(i) ${ }_{2}$ Clear because $|Y|=k \pm 1$ implies $(y=0,-1)$ or $(z=0,-1)$.
(ii) $)_{1}$ Let $X+Y \sqrt{2}$ be an integral solution of $\left(F_{k}\right)$. Then it is easily proved by parity considerations that the numbers (2.1) are integers. Also

$$
X=2 x+1, Y=2 y-(k-1) \text { and } k=y-z
$$

whence $\left(F_{k}\right)$ implies

$$
(2 x+1)^{2}-2(2 y-(y-z-1))^{2}=2(y-z)^{2}-1
$$

that is

$$
x(x+1)=y(y+1)+z(z+1) .
$$

$(\text { ii })_{2}$ Is proved in a way similar to the proof of $(\mathrm{i})_{2}$, namely $(y=0,-1)$ or $(z=0,-1)$ imply $|Y|=k \pm 1$.

Note. The transformation leading from (E) to $\left(F_{k}\right)$ emanate from Gauss (Art. 216 in [1])

3. Determination of all integral solutions of the equation

$$
X^{2}-2 Y^{2}=2 k^{2}-1, \text { where } k=0,1, \ldots
$$

Proposition 3.1 is crucial for the location of the fundamental solutions of $\left(F_{k}\right)$. Further, Theorem 3.4 characterizes the classes of solutions of $\left(F_{k}\right)$, (as regards genuiness or ambiguity) in terms of their representing fundamental solutions. Special attention is given to the case of $2 k^{2}-1$ being a square
number (cf. Theorem 3.5). The set of all non-negative solutions of $\left(F_{k}\right)$ is determined recursively by Theorem 3.6 together with Corollary 3.7.

Proposition 3.1. Consider the Diophantine equation $\left(F_{k}\right)$ where k is a natural number. Let $X^{*}+Y^{*} \sqrt{2}$ be a solution of $\left(F_{k}\right)$. Then $X^{*}+Y^{*} \sqrt{2}$ is the fundamental solution of a class of integral solutions of $\left(F_{k}\right)$ if and only if the following (equivalent) inequalities are satisfied:

$$
\begin{align*}
& 0<\left|X^{*}\right| \leq 2 k-1 \tag{3.1}\\
& 0 \leq Y^{*} \leq k-1 \tag{3.2}
\end{align*}
$$

Proof. By using Theorem 109 in [2].
Note. The fundamental solution of $\left(F_{0}\right)$ is $X^{*}+Y^{*} \sqrt{2}=1+\sqrt{2}$.
Proposition 3.2. Let k be a natural number. Then $2 k-1+(k-1) \sqrt{2}$ is the fundamental solution of a class of integral solutions of $\left(F_{k}\right)$.

Proof. Evident by Proposition 3.1.
Proposition 3.3. Let A be a class of integral solutions of the Diophantine equation $(F), C \neq 0$. Let $X+Y \sqrt{d}$ be a representative of A and

$$
L=\left(-X^{2}-d Y^{2}\right) / C \text { and } M=-2 X Y / C
$$

Then the following hold true:
(i) A is a genuine if and only if at least one of the numbers L, M is not integral.
(ii) A is ambiguous if and only if both numbers L and M are integral.

Proof. Immediate by using Nagell's criterion (p. 205, [2]).
Theorem 3.4. Let $X^{*}+Y^{*} \sqrt{2}$ be the fundamental solution of a class A of integral solutions of $\left(F_{k}\right)$, where $k=1,2, \ldots$ Then the following hold true:
(i) A is genuine if and only if $Y^{*}>0$.
(ii) A is ambiguous if and only if $Y^{*}=0$.

Proof. (i) (a) If A is genuine, then the previous Proposition 3.3 easily implies $Y^{*}>0$.
(b) Let now $Y^{*}>0$ and assume that A is ambiguous. Then, by the same Proposition, the numbers

$$
L=\left(-X^{*^{2}}-2 Y^{*^{2}}\right) /\left(2 k^{2}-1\right) \text { and } M=-2 X^{*} Y^{*} /\left(2 k^{2}-1\right)
$$

are integers. In particular, because L is an integer it follows that

$$
\left(2 k^{2}-1\right) \mid X^{*^{2}}+2 Y^{*^{2}}=4 Y^{*^{2}}+2 k^{2}-1
$$

Thus

$$
\left(2 k^{2}-1\right) \mid 4 Y^{*^{2}}
$$

Also, $Y^{*} \leq \sqrt{\left(2 k^{2}-1\right) / 2}$, i.e.

$$
4 Y^{*^{2}}<2\left(2 k^{2}-1\right)
$$

Hence

$$
2 k^{2}-1<4 Y^{*^{2}}=h\left(2 k^{2}-1\right)<2\left(2 k^{2}-1\right)
$$

where h is a natural number. Hence $1<h<2$, which is impossible. Hence A is genuine.
(ii) Immediate by (i).

Note: $\left(F_{0}\right)$ has only one class of integral solutions, which is ambiguous.
Theorem 3.5. Let k be a natural number. Then the following are equivalent:
(i) $2 k^{2}-1$ is a square number.
(ii) The totality of ambiguous classes of integral solutions of $\left(F_{k}\right)$ consists of a single class.
In consequence, if $2 k^{2}-1$ is not a square number, then every class of integral solutions of $\left(F_{k}\right)$ is genuine.

Proof. By using Proposition 3.1 and Theorem 3.4.
Theorem 3.6. Consider the Diophantine equation $\left(F_{k}\right)$, where k is a natural number. Let $x_{n}+y_{n} \sqrt{2}$, where $n=0,1,2, \ldots$, be the sequence of all non-negative integral solutions of

$$
x^{2}-2 y^{2}=1
$$

Let $X_{r}^{*}+Y_{r}^{*} \sqrt{2}$, (where $r=1,2, \ldots, m$), be the only integral solutions of $\left(F_{k}\right)$ such that:

$$
0<X_{r}^{*} \leq 2 k-1 \text { and } 0 \leq Y_{r}^{*} \leq k-1
$$

Let

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{2} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{2}\right)\left(x_{n}+y_{n} \sqrt{2}\right) \text { for all } n=0,1, \ldots \\
& X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{2}\right)\left(x_{n}+y_{n} \sqrt{2}\right) \text { for all } n=1,2, \ldots
\end{aligned}
$$

(for a typical r). Then the following hold true:
(i) Let $Y_{r}^{*}>0$ and $k \geq 2$. (Case of genuine classes of integral solutions of $\left.\left(F_{k}\right)\right)$. Then the pairs $\left(X_{n}, Y_{n}\right)$ and $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ are determined by (1.3) and (1.4) (for $x_{1}=3, y_{1}=2$ and $d=2$).
(ii) Let $Y_{r}^{*}=0$. (Case of ambiguous classes). Then the pairs $\left(X_{n}, Y_{n}\right)$ are determined by (1.3).
Moreover, in case (i) all pairs $\left(X_{n}, Y_{n}\right)$ together with all pairs $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ constitute the set of all non-negative integral solutions of $\left(F_{k}\right)$ which belong to the class with typical fundamental solution $X_{r}^{*}+Y_{r}^{*} \sqrt{2}$. Also, in case (ii) all pairs $\left(X_{n}, Y_{n}\right)$ constitute the set of all non-negative integral solutions of $\left(F_{k}\right)$ which belong to the class with typical fundamental solution $X_{r}^{*}+0 \sqrt{2}$.

Proof. By using Theorems 3.4, 3.5, 1.2(vi) and Proposition 3.1.
Corollary 3.7. The sequence of all positive integral solutions $\left(X_{n}, Y_{n}\right)$ of $\left(F_{0}\right)$ is determined by (1.2) (for $X_{n} \equiv \xi_{2 n+1}, Y_{n} \equiv \eta_{2 n+1}, \xi_{1}=1, \xi_{3}=$ $7, \eta_{1}=1$ and $\eta_{3}=5$).

4. Determination of all prime and composite numbers of the form $x^{2}+(x+1)^{2}$.

In Theorem 4.2 it is shown that every positive (integral) solution of (T) leads to a non-negative solution of a certain $\left(F_{k}\right)$ and vice-versa. Theorems 4.6, 4.7 together with Corollary 4.8 determine all $\left(F_{k}\right)$ whose non-negative solutions (taken together) lead to all positive solutions of (T).

In Theorem 1.1 a primality criterion is given for numbers of the form $N(x)=x^{2}+(x+1)^{2}$. Composite numbers of the form $N(x)$ are characterized (in terms of a suitable solution of $\left(F_{k}\right)$) in Theorem 4.9. The recursive determination of all composite numbers of the form $N(x)$ is given by Theorems 4.10, 4.11 and 4.12. This leads to our final Theorem 4.13, which constitutes an algorithm (sieve) for the determination of all primes of the form $N(x)$.

Lemma 4.1. Let $X+Y \sqrt{2}$ be a non-negative integral solution of $\left(F_{k}\right)$. Let

$$
x \equiv(X-1) / 2, y \equiv(Y+k-1) / 2 \text { and } z \equiv(Y-k-1) / 2
$$

Then x, y, z are natural numbers if and only if $Y>k+1$.
Proof. Easy and so omitted.
Theorem 4.2. Consider the Diophantine equations $\left(F_{k}\right)$ and (T). Then the following hold true:
(i) Let $X+Y \sqrt{2}$ be a (non-negative) integral solution of $\left(F_{k}\right)$, with $Y>$ $k+1$. Let

$$
x \equiv(X-1) / 2, y \equiv(Y+k-1) / 2 \text { and } z \equiv(Y-k-1) / 2
$$

Then (x, y, z) is a triad of positive integral solutions of (T).
(ii) Let (x, y, z) be a triad of positive integral solutions of (T) with $y \geq z$. Let

$$
k \equiv y-z, X \equiv 2 x+1 \quad \text { and } Y \equiv 2 y-(k-1)
$$

Then $X+Y \sqrt{2}$ is a (non-negative) integral solution of $\left(F_{k}\right)$ with $Y>k+1$.
Proof. By using Theorem 2.1, Lemma 4.1 and the fact that the Diophantine equation (T) is equivalent to the equation (E).

Proposition 4.3. Let k be a natural number. Let $X+Y \sqrt{2}$ be a non-negative integral solution of $\left(F_{k}\right)$. Then the following hold true:
(i) Let $0 \leq Y \leq k-1$. Then $X+Y \sqrt{2}$ is a fundamental solution of a class of integral solutions of $\left(F_{k}\right)$.
(ii) $Y \neq k$.
(iii) Let $Y=k+1$. Then $X=2 k+1$. Moreover, $X+Y \sqrt{2}=(2 k+1)+(k+$ 1) $\sqrt{2}$ is obtained from the fundamental solution $\left(X^{*}=2 k-1, Y^{*}=\right.$ $k-1$) as follows:

$$
\begin{aligned}
& X+Y \sqrt{2}=(2 k-1+(k-1) \sqrt{2})(3+2 \sqrt{2}) \text { for } k=1 \text { and } \\
& X+Y \sqrt{2}=(2 k-1-(k-1) \sqrt{2})(3+2 \sqrt{2}) \text { for } k>1
\end{aligned}
$$

Proof. By direct computations.
Proposition 4.4. Consider the Diophantine equation $\left(F_{k}\right)$, where $k>$ 1. Let $X^{*}+Y^{*} \sqrt{2}$ be the fundamental solution of a class A of $\left(F_{k}\right)$ with $X^{*}>0$. Let $3+2 \sqrt{2}$ be the fundamental solution of the equation

$$
x^{2}-2 y^{2}=1
$$

Let

$$
\begin{aligned}
& Z_{n} \equiv X_{n}+Y_{n} \sqrt{2} \equiv\left(X^{*}+Y^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n} \text { for all } n=0,1, \ldots, \text { and } \\
& Z_{n}^{\prime} \equiv X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2} \equiv\left(X^{*}-Y^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n} \text { for all } n=1,2, \ldots
\end{aligned}
$$

Then the following hold true:
(i) Let A be genuine. Then the only (non-negative) integral solutions $X+$ $Y \sqrt{2}$ of $\left(F_{k}\right)$ which belong to A or to \bar{A} and satisfy the inequality $Y>k+1$ are the following:
(a) $Z_{n} \in A$ and $Z_{n}^{\prime} \in \bar{A}$ for all $n \geq 1$ if and only if $Y^{*}<k-1$.
(b) $Z_{n} \in A$ for all $n \geq 1$ and $Z_{n}^{\prime} \in \bar{A}$ for all $n \geq 2$ if and only if $Y^{*}=k-1$.
(ii) Let A be ambiguous, (whence $Y^{*}=0$, while $2 k^{2}-1$ is a square number). Then the only (non-negative) integral solutions $X+Y \sqrt{2}$ of $\left(F_{k}\right)$ which belong to A and satisfy the inequality $Y>k+1$ are all Z_{n} for every $n \geq 1$.

Proof. (i) By Theorem 1.2 (iv) we have:

$$
Y_{n+1}^{\prime}>Y_{n}>Y_{n}^{\prime}>0 \text { for all } n \geq 1 \text {, where } Y_{1}^{\prime}=2 X^{*}-3 Y^{*} .
$$

(a) Hence, we have $Y_{1}^{\prime}=2 X^{*}-3 Y^{*}>k+1$ if and only if $\left(2 X^{*}\right)^{2}>$ $\left(3 Y^{*}+k+1\right)^{2}$, that is if and only if $\left(Y^{*}-(k-1)\right)\left(Y^{*}+7 k+5\right)<0$, and so if and only if $Y^{*}<k-1$.

Consequently, by Proposition 4.3, the only (non-negative) integral solution $X+Y \sqrt{2}$ of $\left(F_{k}\right)$, which belong to A or \bar{A} and satisfy the inequality $Y>k+1$ are all $Z_{n} \in A$ and all $Z_{n}^{\prime} \in \bar{A}, n=1,2, \ldots$, for which $Y^{*}<k-1$.
(b) Hence, $Y_{1}^{\prime}=2 X^{*}-3 Y^{*}=k+1$ if and only if $Y^{*}=k-1$.

Thus, the only (non-negative) integral solutions $X+Y \sqrt{2}$ of $\left(F_{k}\right)$, which belong to A or \bar{A} and satisfy the inequality $Y>k+1$ are all $Z_{n} \in A$ for all $n \geq 1$ and all $Z_{n}^{\prime} \in \bar{A}$ for all $n \geq 2$ if and only if $Y^{*}=k-1$.
(ii) By Theorem 1.2 (i) the following hold true: $Y_{n+1}>Y_{n} \geq 0$ for all $n=0,1, \ldots$, while $Y^{*}=Y_{0}=0$ and $Y_{1}=2 \sqrt{2 k^{2}-1}$.

Also, (by direct computations) we show that $Y_{1}>k+1$. Consequently, the only (non-negative) integral solutions $X+Y \sqrt{2}$ of $\left(F_{k}\right)$, which belong to A and satisfy the inequality $Y>k+1$ are all Z_{n} for every $n \geq 1$.

Proposition 4.5. Consider the Diophantine equation (F_{1}). Let

$$
X_{n}+Y_{n} \sqrt{2} \equiv(1+0 \sqrt{2})(3+2 \sqrt{2})^{n} \text { for all } n=0,1, \ldots
$$

Then the only (non-negative) integral solutions $X+Y \sqrt{2}$ of $\left(F_{1}\right)$, such that $Y>2$, are all $X_{n}+Y_{n} \sqrt{2}$ for every $n \geq 2$.

Proof. By using Theorem 1.2 (i).
Theorem 4.6. Let k be a natural number. Consider the Diophantine equation $\left(F_{k}\right)$. Let $Z_{r}^{*} \equiv X_{r}^{*}+Y_{r}^{*} \sqrt{2}$, (where $r=1,2, \ldots, m$) be the only integral solutions of $\left(F_{k}\right)$ such that:

$$
X_{r}^{*}>0 \text { and } 0 \leq Y_{r}^{*} \leq k-1 .
$$

Let A_{r} be the corresponding classes of integral solutions of $\left(F_{k}\right)$ with fundamental solutions Z_{r}^{*}. Let

$$
\begin{aligned}
& Z_{n} \equiv X_{n}+Y_{n} \sqrt{2} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n} \text { for all } n=0,1, \ldots, \\
& Z_{n}^{\prime} \equiv X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n} \text { for all } n=1,2, \ldots .
\end{aligned}
$$

for an (arbitrary) typical r. Then the only (non-negative) integral solutions $X+Y \sqrt{2}$ of $\left(F_{k}\right)$, which satisfy the inequality $Y>k+1$, are the following:
(i) All $Z_{n} \in A_{r}$ and all $Z_{n}^{\prime} \in \bar{A}_{r}$ for every $n \geq 1$ if and only if $0<Y_{r}^{*}<$ $k-1$.
(ii) All $Z_{n} \in A_{r}$ for every $n \geq 1$ and all $Z_{n}^{\prime} \in \bar{A}_{r}$ for every $n \geq 2$ if and only if $0<Y^{*}=k-1$.
(iii) All $Z_{n} \in A_{r}$ for every $n \geq 1$ if and only if $Y_{r}^{*}=0$ for $k \geq 2$.
(iv) All $Z_{n} \in A_{r}$ for every $n \geq 2$ if and only if $Y_{r}^{*}=0$ for $k=1$.

Proof. By using Propositions 4.4, 4.5 and Theorem 3.6.
Theorem 4.7. Let k be a natural number. Consider the Diophantine equation $\left(F_{k}\right)$. Let $X_{r}^{*}+Y_{r}^{*} \sqrt{2}$, (where $r=1,2, \ldots, m$) be the only integral solutions of $\left(F_{k}\right)$ such that:

$$
X_{r}^{*}>0 \text { and } 0 \leq Y_{r}^{*} \leq k-1 .
$$

Let
$X_{n}+Y_{n} \sqrt{2} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n}$ for all $n=0,1, \ldots$ and $r=1,2, \ldots, m$, $X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n}$ for all $n=1,2, \ldots$ and $r=1,2, \ldots, m$.

Then the only (non-negative) integral solutions $X+Y \sqrt{2}$ of $\left(F_{k}\right)$ such that $Y>k+1$ are the following:
(i) All $X_{n}+Y_{n} \sqrt{2}$ and all $X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2}$ (with $n \geq 1$) for every Y_{r}^{*} with $0<Y_{r}^{*}<k-1$, when $k \geq 2$.
(ii) All $X_{n}+Y_{n} \sqrt{2}$ (with $n \geq 1$) and all $X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2}$ (with $n \geq 2$) for $0<Y_{r}^{*}=k-1$, when $k \geq 2$.
(iii) All $X_{n}+Y_{n} \sqrt{2}$ (with $n \geq 1$) for $Y_{r}^{*}=0$, when $k \geq 2$.
(iv) All $X_{n}+Y_{n} \sqrt{2}$ (with $n \geq 2$) for $Y_{r}^{*}=0$, when $k=1$.

Proof. By using Theorems 3.6 and 4.6.
By Corollary 3.7 it follows that
Corollary 4.8. The only non-negative integral solutions $X+Y \sqrt{2}$ of $\left(F_{0}\right)$ such that $Y>1$ are:

$$
X_{n}+Y_{n} \sqrt{2} \text { for every } n=1,2, \ldots
$$

Theorem 4.9. Consider the Diophantine equation $\left(F_{k}\right), k=0,1, \ldots$. Let $X+Y \sqrt{2}$ be a non-negative integral solution of $\left(F_{k}\right)$. Let $x \equiv(X-1) / 2$ and $N(x) \equiv x^{2}+(x+1)^{2}$. Then $N(x)=Y^{2}+k^{2}$. Moreover, the following are equivalent:
(i) $N(x)$ is composite.
(ii) $Y>k+1$.

Proof. The equality $N(x)=Y^{2}+k^{2}$ follows by direct computations, while the equivalence of (i) and (ii) follows from Theorems 4.2 and 1.1.

Theorem 4.10. Let $N(x) \equiv x^{2}+(x+1)^{2}$. Consider the Diophantine equation $\left(F_{k}\right), k=0,1, \ldots$ Let $X_{r}^{*}+Y_{r}^{*} \sqrt{2}$, (where $r=1,2, \ldots, m$) be the only non-negative integral solutions of $\left(F_{k}\right)$ such that:

$$
0 \leq Y_{r}^{*} \leq k-1 \text { for } k \geq 1
$$

while, for $k=0$ we have: $X_{r}^{*}=Y_{r}^{*}=1$ for all $r=1,2, \ldots, m$. Let

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{2} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n} \\
& X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{2} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{2}\right)(3+2 \sqrt{2})^{n} \text { for all } n=0,1, \ldots
\end{aligned}
$$

(for a typical r). Let $\tilde{x}_{n} \equiv\left(X_{n}-1\right) / 2$ and $\tilde{x}_{n}^{\prime} \equiv\left(X_{n}^{\prime}-1\right) / 2$ for every $n=0,1, \ldots$ Let R_{n}, R_{n}^{\prime}, where $n=0,1, \ldots$, be the sequences defined by the recursive formmulae:

$$
R_{n+1}=34 R_{n}-R_{n-1}-8\left(2 k^{2}+1\right) \text { for all } n=1,2, \ldots
$$

where $R_{0}=Y_{r}^{*^{2}}+k^{2}, R_{1}=\left(2 X_{r}^{*}+3 Y_{r}^{*}\right)^{2}+k^{2}($ for a typical $r)$.

$$
R_{n+1}^{\prime}=34 R_{n}^{\prime}-R_{n-1}^{\prime}-8\left(2 k^{2}+1\right) \text { for all } n=1,2, \ldots
$$

where $R_{0}^{\prime}=Y_{r}^{*^{2}}+k^{2}, R_{1}^{\prime}=\left(2 X_{r}^{*}-3 Y_{r}^{*}\right)^{2}+k^{2}($ for a typical $r)$.
Then the following hold true:
(i) Let $k=0$. The for every integer n there exists an integer m such that:

$$
R_{n}=R_{m}^{\prime}=N\left(\tilde{x}_{n}\right) \text { for every } n \geq 0
$$

Moreover, the numbers R_{1}, R_{2}, \ldots, are all composite.
(ii) Let $k=1$, whence $X_{r}^{*}=1, Y_{r}^{*}=0$ for every $r=1,2, \ldots, m$. Then

$$
R_{n}=R_{n}^{\prime}=N\left(\tilde{x}_{n}\right) \text { for every } n \geq 0
$$

Moreover, the numbers R_{2}, R_{3}, \ldots, are all composite.
(iii) Let $k \geq 2$ and $Y_{r}^{*}=0$ Then

$$
R_{n}=R_{n}^{\prime}=N\left(\tilde{x}_{n}\right) \text { for every } n \geq 0
$$

Moreover, the numbers R_{1}, R_{2}, \ldots, are all composite.
(iv) Let $k \geq 2$ and $Y_{r}^{*}=k-1$. Then

$$
R_{n}=N\left(\tilde{x}_{n}\right) \text { and } R_{n}^{\prime}=N\left(\tilde{x}_{n}^{\prime}\right) \text { for every } n \geq 0
$$

Moreover, the numbers R_{1}, R_{2}, \ldots, and also the numbers $R_{2}^{\prime}, R_{3}^{\prime}, \ldots$, are all composite.
(v) Let $k \geq 2$ and $0<Y_{r}^{*}<k-1$. Then

$$
R_{n}=N\left(\tilde{x}_{n}\right) \text { and } R_{n}^{\prime}=N\left(\tilde{x}_{n}^{\prime}\right) \text { for every } n \geq 0
$$

Moreover, the numbers R_{1}, R_{2}, \ldots, and also the numbers $R_{1}^{\prime}, R_{2}^{\prime}, \ldots$, are all composite.

Note: For the cases (iv) and (v) we have:

$$
R_{m} \neq R_{n}^{\prime} \text { for any } m, n
$$

Proof. (i) The unique class of integral solutions of $\left(F_{0}\right)$ is ambiguous. By Theorem 2.4 in [5] and Corollary 4.8 we have:

$$
X_{n}+Y_{n} \sqrt{2} \equiv \xi_{2 n+1}+\eta_{2 n+1} \sqrt{2}=(1+\sqrt{2})\left(x_{n}+y_{n} \sqrt{2}\right)=(1+\sqrt{2})^{2 n+1}
$$

for all $n=0,1, \ldots$.
Hence, by the definition of ambiguous class and Theorem 1.3, for every integer n there exists an integer m such that:

$$
R_{n}=R_{m}^{\prime}=N\left(\tilde{x}_{n}\right), \text { where } \tilde{x}_{n}=\left(\xi_{2 n+1}-1\right) / 2 .
$$

According to Corollary 4.8, the only (non-negative) integral solutions $X+$ $Y \sqrt{2}$ of $\left(F_{0}\right)$ such that $Y>1$ are all $Y_{n+1}=\eta_{2 n+3}$ for every $n \geq 0$. Hence by Theorem 4.9, the numbers R_{1}, R_{2}, \ldots are all composite.
(ii) Obviously $X_{r}^{*}=1, Y_{r}^{*}=0$ for every $r=1,2, \ldots, m$ because $k=1$. Hence, $R_{n}=R_{n}^{\prime}$ for all $n=0,1, \ldots$. Now, Theorem 1.3 implies

$$
R_{n}=N\left(\tilde{x}_{n}\right)=Y_{n}^{2}+k^{2}=Y_{n}^{2}+1 \text { for all } n \geq 0 .
$$

Also, by Theorem 4.7 (iv), we deduce that $X_{n+1}+Y_{n+1} \sqrt{2}$, where $n \geq 1$, are the only (non-negative) integral solutions of $\left(F_{1}\right)$ such that $Y_{n+1}>k+1=2$. Hence, according to Theorem 4.9, the numbers R_{2}, R_{3}, \ldots are all composite.
(iii) We have $R_{n}=R_{n}^{\prime}$ for every $n=0,1, \ldots$ because $Y_{r}^{*}=0$. By Theorem 4.7 (iii) the numbers $X_{n+1}+Y_{n+1} \sqrt{2}$, where $n \geq 0$, are the only (non-negative) integral solutions of $\left(F_{k}\right)$ such that $Y_{n+1}>k+1$. This completes the proof by invoking Theorems 1.3 and 4.9.
(iv) By Theorem 4.7 (ii) the numbers $X_{n+1}+Y_{n+1} \sqrt{2}$ with $n \geq 0$, together with the numbers $X_{n+1}^{\prime}+Y_{n+1}^{\prime} \sqrt{2}$, with $n \geq 1$, are the only (nonnegative) integral solutions of $\left(F_{k}\right)$ such that $Y_{n+1}>k+1$ and $Y_{n+1}^{\prime}>$ $k+1$. Thus the proof is completed by Theorem 1.3 and 4.9.
(v) By Theorem 4.7 (i), the numbers $X_{n+1}+Y_{n+1} \sqrt{2}$ together with the numbers $X_{n+1}^{\prime}+Y_{n+1}^{\prime} \sqrt{2}$, where $n \geq 0$, are the only (non-negative) integral solutions of $\left(F_{k}\right)$ such that $Y_{n+1}>k+1$ and $Y_{n+1}^{\prime}>k+1$. This finishes the proof of the whole Theorem, again in view of Theorems 1.3 and 4.9.

Theorem 4.11. Consider the Diophantine equation $\left(F_{k}\right), k=0,1, \ldots$. Let $X_{r}^{*}+Y_{r}^{*} \sqrt{2}$, (where $r=1,2, \ldots, m$) be the only non-negative integral solutions of $\left(F_{k}\right)$ such that:

$$
0 \leq Y_{r}^{*} \leq k-1 \text { for } k \geq 1
$$

While, for $k=0$ we have: $X_{r}^{*}=Y_{r}^{*}=1$ for all $r=1,2, \ldots, m$. Let R_{n}, R_{n}^{\prime} be the sequences, defined by the recursive formulae:

$$
R_{n+1}=34 R_{n}-R_{n-1}-8\left(2 k^{2}+1\right) \text { for all } n=1,2, \ldots
$$

where $R_{0}=Y_{r}^{*^{2}}+k^{2}, R_{1}=\left(2 X_{r}^{*}+3 Y_{r}^{*}\right)^{2}+k^{2}($ for a typical $r)$.

$$
R_{n+1}^{\prime}=34 R_{n}^{\prime}-R_{n-1}^{\prime}-8\left(2 k^{2}+1\right) \text { for all } n=1,2, \ldots
$$

where $R_{0}^{\prime}=Y_{r}^{*^{2}}+k^{2}, R_{1}^{\prime}=\left(2 X_{r}^{*}-3 Y_{r}^{*}\right)^{2}+k^{2}($ for a typical $r)$.
Suppose that the number $N(x) \equiv x^{2}+(x+1)^{2}$ is composite. Then $N(x)$ is equal to some of the composite numbers R_{n} or R_{n}^{\prime}, for a suitable index, as stated in cases (i)-(v) of Theorem 4.10 (for some value of k).

Proof. Since $N(x)$ is composite it follows from Theorem 1.1 that there exist natural numbers y, z such that

$$
T(x)=T(y)+T(z)
$$

Let $y \geq z$. Let also $k \equiv y-z, X \equiv 2 x+1$ and $Y \equiv 2 y-(k-1)$. Then, according to Theorem 4.2 (ii), $X+Y \sqrt{2}$ is a (non-negative) integral solution of $\left(F_{k}\right)$, with $Y>k+1$. Hence, $X+Y \sqrt{2}$ is a solution of type (i) or (ii) or (iii) or (iv) of Theorem 4.7 or it is a solution $X+Y \sqrt{2}$ of $\left(F_{0}\right)$ with $Y>1$ (see Corollary 4.8). Also, $N(x)=Y^{2}+k^{2}$. Hence, by Theorem 1.3 $N(x)$ is equal to some R_{n} or some R_{n}^{\prime}. Finally, the appropriate index n for which $N(x)=R_{n}$ or $N(x)=R_{n}^{\prime}$ is obtained by applying Theorem 4.6 to the respective case as in (i)-(v) of Theorem 4.10. This ends the proof of the Theorem.

Theorem 4.12. (Determination of all composites of the form $N(x) \equiv$ $\left.x^{2}+(x+1)^{2}\right)$ Consider the Diophantine equations

$$
\begin{equation*}
X^{2}-2 Y^{2}=2 k^{2}-1, \quad \text { where } k=0,1, \ldots \tag{k}
\end{equation*}
$$

Let $X_{r}^{*}+Y_{r}^{*} \sqrt{2}$, (where $r=1,2, \ldots, m$), be the only non-negative integral solutions of $\left(F_{k}\right)$ such that:

$$
0 \leq Y_{r}^{*} \leq k-1 \text { for } k \geq 1
$$

While, for $k=0$ we have: $X_{r}^{*}=Y_{r}^{*}=1$ for all $r=1,2, \ldots, m$. Let R_{n}, R_{n}^{\prime} be the sequences defined by the recursive formulae:

$$
R_{n+1}=34 R_{n}-R_{n-1}-8\left(2 k^{2}+1\right) \text { for all } n=1,2, \ldots,
$$

where $R_{0}=Y_{r}^{*^{2}}+k^{2}, R_{1}=\left(2 X_{r}^{*}+3 Y_{r}^{*}\right)^{2}+k^{2}($ for a typical $r)$.

$$
R_{n+1}^{\prime}=34 R_{n}^{\prime}-R_{n-1}^{\prime}-8\left(2 k^{2}+1\right) \text { for all } n=1,2, \ldots
$$

where $R_{0}^{\prime}=Y_{r}^{*^{2}}+k^{2}, R_{1}^{\prime}=\left(2 X_{r}^{*}-3 Y_{r}^{*}\right)^{2}+k^{2}$ (for a typical r).
Then, the only composite numbers of the form $N(x) \equiv x^{2}+(x+1)^{2}$ are the following:
(i) $R_{1}, R_{2}, \ldots($ for $k=0)$.
(ii) $R_{2}, R_{3}, \ldots\left(\right.$ for $k=1$ and $\left.Y_{r}^{*}=0\right)$.
(iii) $R_{1}, R_{2}, \ldots\left(\right.$ for $k \geq 2$ and $\left.Y_{r}^{*}=0\right)$.
(iv) R_{1}, R_{2}, \ldots together with $R_{2}^{\prime}, R_{3}^{\prime}, \ldots\left(\right.$ for $k \geq 2$ and $\left.Y_{r}^{*}=k-1\right)$.
(v) R_{1}, R_{2}, \ldots together with $R_{1}^{\prime}, R_{2}^{\prime}, \ldots$ (for $k \geq 2$ and for all Y_{r}^{*} such that $0<Y_{r}^{*}<k-1$).

Proof. By using Theorems 4.10 and 4.11.
Theorem 4.13. (Sieve-algorithm for the determination of all primes of the form $N(x) \equiv x^{2}+(x+1)^{2}$ in an Interval $[5, M]$, where M is a (positive) integer)

Step 1: Determine all numbers $N(x)$ for $x=1,2, \ldots,[(-1+\sqrt{2 M-1}) / 2]$.
Step 2: Determine all R_{n} and R_{n}^{\prime}, as in Theorem 4.12 obtained from the Diophantine equations

$$
X^{2}-2 Y^{2}=2 k^{2}-1, \quad \text { where } k=0,1, \ldots,[\sqrt{M}] \text {. }
$$

Step 3: Delete from the table of the numbers in Step 1, all numbers of Step 2. The remaining numbers are the only prime numbers of the form $N(x)$ in the interval $[5, M]$.

Proof. By using Theorem 4.12.

References

[1] C. F. Gauss, Disqusitiones Arithmeticae, (English transl. A. A. Clarke, Yale University Press, New Haven, Connecticut, London, 1966.)
[2] T. Nagell, Introduction to Number Theory, Chelsea, New York, 1964.
[3] W. Sierpinski, Sur les nombres triangularies qui sont sommes de deux nombres triangularies, Elem. Math., 17 (1962), 63-65.
[4] P. G. Tsangaris, Prime Numbers and Cyclotomy-Primes of the form $x^{2}+(x+1)^{2}$, Ph.D. Thesis, Athens University, Athens, 1984 (in Greek).
[5] P. G. Tsangaris, Fermat-Pell Equation and the Numbers of the form $w^{2}+(w+1)^{2}$, Publ. Math. Debrecen, 47 (1995), 127-138.

Panayiotis G. Tsangaris
Department of Mathematics, Athens University Panepistimiopolis, 15784 Athens, Greece.

