

GRADUATION PROJECT REPORT - Abstract I

GRADUATION PROJECT REPORT - Abstract II

version 1.2 (final)

PUBLIC SUMMARY

GRADUATION PROJECT REPORT - Abstract III

A. Abstract

This document is the graduation project report of C.J.M.F.C. Raemaekers
executed at Océ Print Logic Technologies in Créteil, France. The project
consisted out of research into end-user deployment of applications in a Java-
based environment and the application of it in a commercial setting regarding
submitter applications for printers.

The project focused primarily on a solution based on Java Web Start
technology that was found to be most suitable in practice to use with the
mentioned submitter application. This report covers the entire process from
the identification of the requirements, the available solutions and a practical
approach towards the end product.

Note: as a result of the importance of this project within the commercial strategy of Océ
Print Logic Technologies, this report is a public summary of the full report that can be
consulted after explicit authorization of Océ PLT in case of need.

GRADUATION PROJECT REPORT - Table of contents IV

B. Table of contents

A. Abstract III

B. Table of contents IV

1. Preface 1

1.1 Purpose of the document 1

1.2 Scope of the document 1

1.3 Intended audience 1

2. Introduction 2

2.1 Project execution period and location 2

2.2 Project characteristics 3

2.3 Phasing and activities 3

3. Problem statement 7

3.1 Problem given 7

3.2 Problem translated to specific requirements 8

4. Research and investigation 11

4.1 Deployment in Computer Science 11

4.2 The world of submitters 13

4.3 Submitter workflows 13

4.4 Deployment strategies in computer science 14

4.5 Possible architectural setups 18

4.6 Java Web Start 22

4.7 Java Web Start / server side 24

4.8 Java Web Start / client side 26

4.9 Java Web Start / sample 28

4.10 Client-server web applications 28

4.11 Microsoft Deployment practices 31

4.12 JSP for web interfaces 33

5. Environment 35

5.1 Application investigation 35

5.2 Deployment scenarios / functional axis 36

5.3 Deployment scenarios / storage axis 38

GRADUATION PROJECT REPORT - Table of contents V

5.4 Installation mode interoperability 42

6. Experimental prototyping 44

6.1 Purpose and introduction 44

6.2 Prototype axes 45

6.3 Prototype P1 (100% local disk) 46

6.4 Prototype P2 (100% JAWS) 49

6.5 Prototype P3 (balanced local disk/JAWS) 51

6.6 Prototype P4 (balanced, with high granularity) 53

6.7 Applet prototype 54

6.8 Prototype comparison 55

6.9 Prototype environmental testing 56

6.10 Prototype comparison testing 59

7. Development / Application 61

7.1 Handling native libraries 61

8. Development / Portal 62

8.1 Requirements 62

8.2 Functional design 62

9. Conclusion and future work 64

9.1 General application deployment 64

9.2 Deployment of our application 65

9.3 Gain for Océ 66

9.4 Future development 66

10. Evaluation 68

10.1 Project quality 68

10.2 Project execution 68

10.3 Special thanks 69

A. References i

A.1 Internal documentation i

A.2 External documentation ii

B. Source code JAWS sample iii

B.1 Extract a file from a JAR and copy it to the local disk iii

B.2 Configuring the JNLP file iii

GRADUATION PROJECT REPORT - Table of contents VI

B.3 JAR Signing and certificate creation iv

B.4 Program code: v

B.5 JNLP Code: vii

C. JSP and Tag Libraries viii

C.1 Scripting tags viii

C.2 Output to HTML viii

C.3 Basic constructs ix

C.4 JSP Tag libraries and JSTL x

C.5 Tomcat configuration for using a TLD xi

C.6 Creation of Java classes for a TLD xi

C.7 JSTL xii

D. Definitions and abbreviations xiii

D.1 Definitions xiii

D.2 List of abbreviations xiii

GRADUATION PROJECT REPORT - Preface 1

1. Preface

This section serves as the preface of this document describing its purpose,
scope and intended audience.

1.1 Purpose of the document

The purpose of this document is to group all documentation together that
applies to the graduation project executed at Océ Print Logic Technologies in
Créteil, France. The documentation resulting from both the research and
development component of the project should give thorough insight in the
activities executed in this context.

1.2 Scope of the document

This document serves as the final documentation on the research project into
end-user deployment of applications in a Java-based environment, especially
focused towards a submitter application Océ.

1.3 Intended audience

The audience of this document are primarily students of the faculty of
Mathematics and Computer Science of the Eindhoven University of Technology
that are interested in this particular subject. This document is a public
summary of the complete graduation report [GRAREP] that can be consulted
after explicit authorization of Océ PLT in Créteil when there exists a specific
educational need to do so.

GRADUATION PROJECT REPORT - Introduction 2

2. Introduction

The introduction of this document describes the setting of the project, its
characteristics and the nature of the project. We will also look at a brief
description of the problem statement, an issue that will be addressed in depth
in the following section. In the project characteristics description you can also
find a detailed description of the phasing used for the project as well as the
key activities that made a part of it.

2.1 Project execution period and location

As a result of great personal interest in the Île-de-France region of France and
Paris in particular, this location was chosen to execute the graduation project
for the Master of Science studies in computer science for the Eindhoven
University of Technology (TU/e). The known, close relationships between the
TU/e and the Océ headquarters in Venlo (both located in the Netherlands at
just 65 km of each other) resulted into negotiations with the Océ Research and
Development (Océ R&D) in Créteil, located in the Val-de-Marne department
(94) in Île-de-France, just 10 km south-east of Paris.

They offered an interesting research and development project for about eight
months within the application systems department on facilitating end-user
deployment of applications. This project fitted perfectly within the profile
followed in the Master of Science studies at the TU/e where the profile of
Information Systems (IS) was chosen as the area of expertise. In particular as a
result of the already indicated wish of Océ to investigate the possibilities using
a web-based approach, which has been the primary orientation within the
curriculum followed within the IS-group at the TU/e. With the choice for
France, a strong international character could be assured, following the
preparations made at the center for language and technology (CTT), also part
of the TU/e.

The project started at January 3rd 2008 and ran until August 29th 2008. Eight
full months were available for research, explorative prototyping and the
development of a demonstrative and most feasible solution. The project was
executed within a setting of in general French colleagues, but also with people
from various other nationalities. French was used as primary language, but
English is used within Océ R&D as the default language for official
communication and documentation.

2.1.1 COMPANY PROFILE

Océ is a large company from Dutch origin currently focused on the production
of printing devices for professional use. The origin of the company starts in
1877 when Lodewijk van der Grinten developed a coloring procedure for
margarine in order to give it the same color as normal butter. In the twenties
of the twentieth century two grand children of Lodewijk van der Grinten
developed a special copying procedure that became known under the German
name “Ohne Componente” (which literally means “Without Components”). The
abbreviation (O.C.) became the basis of the later brand written phonetically as

GRADUATION PROJECT REPORT - Introduction 3

“Océ”. Today, Océ focuses primarily on the production of printing and copying
devices. Océ has about 24.000 people working for them worldwide in over 30
countries. About 2.000 people are working in the R&D department in Europe
and in the USA. With this considerable amount of people working in this field, a
tradition dating from the period of the Van der Grintens is kept intact. The
headquarters are still located in Venlo, The Netherlands, the city where
Lodewijk van der Grinten started his business over 130 years ago [CORBRO].

2.2 Project characteristics

In this section we will discuss the project characteristics by shortly describing
its problem statement (a thorough discussion on this can be found in section 3)
as well as the nature of the project.

2.2.1 SHORT PROBLEM STATEMENT

The problem statement can be summarized as finding a suitable solution for
the deployment of a Java-based application having multiple Microsoft Windows
based external resources (DLL’s). The original problem description received at
the beginning of the project stated a series of symptoms and possible solutions
to this deployment problem. In section 3 this analysis is made in depth.

Within the problem statement was included that the impact on the current
(Java based) source should be as minimal as possible and that a solution was
desired that also supported different user workflows of the application, notably
the possibility of launching the application from a web-based environment.

2.2.2 NATURE OF THE PROJECT

This project is largely characterized by a lot of (practical) research and
explorative prototyping. There is very little existing scientific research
available in the field of the deployment process. This might be the result of the
fact that the deployment process within software engineering was usually
taken as a necessary phase in order to get the product at the client’s place,
but that had relative to the rest of software development, very little attention.
This tends to change when new technologies are arising to make this process
easier for both developers and end-users.

As a result of this, research and explorative prototyping was considered to be
of vital importance in order to create a clear view within the possibilities
available and to be able to come up with a feasible solution that might solve
the initial deployment problem.

2.3 Phasing and activities

As a result of the strong explorative character of the project, the coordinators
at Océ R&D decided to follow a rather loose planning scheme based on key
activities and phasing. These key activities are discussed in section 2.3.2. This
project is in its nature different from most graduation projects where a
standard phasing can be applied. Therefore a proper phasing has been made to
meet the nature of this particular project. These phases are described below.
In appendix A details about the deliverables can be found.

GRADUATION PROJECT REPORT - Introduction 4

2.3.1 PHASES

Preparation phase

The preparation phase consisted out of the following activities:

• Getting to know Océ and the project group;

• Preparation of the material to be used (configuration of PC).

Product research and orientation phase

The product research and orientation phase includes the following activities:

• Investigation of the problem;

• Investigation of the current program;

• Research into possible solutions.

Competitor analysis phase

This phase is dedicated to an investigation into competitor applications.

Environmental analysis phase

This phase includes research into the environmental issues concerning the
project, like constraints as a result of the Operating System and programming
language used for the current program.

Prototyping phase

This phase is entirely dedicated to explorative prototyping. The prototyping
was executed in order to find the most suitable way to proceed for the actual
development phase.

Documentation phase

This phase is a parallel phase that includes the documentation for each of the
phases.

Development phase

The development phase includes the development of the final product as well
as changes to the existing program architecture in order to make the final
product possible and integration into the web-based server environment using
JSP.

GRADUATION PROJECT REPORT - Introduction 5

Testing and integration phase

This phase includes the following activities:

• Testing and integration of changes to the original application;

• Testing and integration of the portal application;

• Testing and integration of the interface with printing devices.

Finalization phase (graduation report and related activities)

This phase includes the following activities:

• Integration of the code deliverables from the development phase;

• Testing of the changes made to existing software as well as the newly
written components;

• Writing the graduation project report and its public summary (this
document, internally referred to as [GRAREP-PUB]);

• Creation of the final presentation;

• Finalizing administrative activities.

At several moments in time, some phases were executed in parallel. The
scheme below visualizes the phases during the execution period running from
January 3rd to August 29th 2008.

Figure 1: Gantt Chart depicting the phased planning of the entire project

2.3.2 KEY ACTIVITIES

After the necessary primary research was performed in order to be able to have
a view about « what’s out there » on possible solutions, the key activities could
be formulated which apply to the key objectives of the project. In total ten of
these objectives were identified of which two were considered to be optional
in the case when extra time would be available at the end of the project.
These objectives with a brief description are presented hereunder.

• Study on Microsoft-based installations (how does Microsoft deploy
installations, what strategy is used);

• Study on Microsoft-based operating systems (Windows versions, in order
to determine how in general deployment works and which constraints
are presented by the operating system);

• Study on Java Web Start (what are the features Java Web Start offers
and how can they be used);

GRADUATION PROJECT REPORT - Introduction 6

• Study on the Java Web Start environment (how does Java Web Start
behave in different browsers and on different Java Runtime
Environments);

• Study on the role of Java Web Start in the deployment of applications;

• Construction of an experimental prototype of the application to be
deployed with Java Web Start;

• Construction of a demonstrative prototype of the application using Java
Web Start, hosted on a target;

• Construction of a demonstrative prototype of the application using
Microsoft-based Active Directory deployment (using a Group Policy
Object);

• Interoperability between different installation modes;

• Integration in the existing web environment on printing devices using
JSP and AJAX).

The last two objectives in italic font are the ones considered optional. At this
point in the document the reader might be a little overwhelmed by the
terminology used in this list of objectives. This terminology is explained later in
the document when the research part is discussed. The reader should not worry
when the terminology is not completely clear at this point.

As indicated in the short problem statement in section 2.2.1, we have as a
constraint that there are native libraries involved that are Microsoft Windows
based (DLL’s). This is the reason why we also included platform dependent
deployment issues in this project, but much of the discussion and concepts
presented throughout this document can also apply for other operating systems
such as Linux or Unix.

GRADUATION PROJECT REPORT - Problem statement 7

3. Problem statement

In this chapter the problem statement will be presented, or in other terms the
project mission. It is in this sub domain where it becomes clear that computer
scientists are engineers, for they have the difficult task of interpreting the
wishes of the client. Client wishes must be translated to specific requirements
that the computer scientist can later use to create his functional and
architectural design, as well as to make the implementation and check
whether it meets the original requirements. The requirements form therefore
the foundation of the entire project. And since no decent building can be built
without a decent foundation, also no successful project can be executed
without a correct set of requirements. This is what this section is all about.

3.1 Problem given

The description of the problem to be solved given at start of the project was a
rather vague one, though clearly complicated. Before actually describing the
problem, we first need to understand the context of the problem, which is
explained below.

3.1.1 BUSINESS CONTEXT

Printing documents is not always a simple task, especially when you are using
dedicated machinery for professional use that has sometimes thousands of
parameters that can be set. The Océ R&D department in Créteil focuses
primarily on the so called Wide Format Printing Systems (WFPS), which enable
users to print usually on large roles of paper. Such printing devices are used for
example for architectural designs, maps, banners, posters, etc.

Next to that, Océ aims at providing customers with printing devices that
deliver an output that is of the highest quality standards involving high
resolution true color output at amazing speed.

Professional printing systems are in general not used like “normal office
printers” where you would print to directly from your computer application. In
the world of WFPS you rather create plot files in a common format like PDF,
PostScript or HPGL/2 (a standard from Hewlett-Packard). These plot files can
then be sent to the printer, which takes care of the correct positioning and
scaling of the document.

In order to do so, document professionals use a submitter. A submitter is an
application that interprets plot files and allows the user to compose a job that
is ready to be sent to the printer. It uses the printer driver in order to be able
to send a stream of data to the printer it can process. This submitter also
allows the user to configure the layout of his drawing or document on the
media (which is in most cases paper).

The level where this project is situated is this world of submitter applications.

GRADUATION PROJECT REPORT - Problem statement 8

3.1.2 PROBLEM DESCRIPTION

In the world of submitters, there is a lot of competition and therefore Océ
needs to guard the quality of its submitter applications.

The popularity of the internet and web-based applications also found its way
into the world of printing devices and the world of submitters in particular.
Most printers nowadays (at least when they are connected to a network) offer a
web interface accessible via a web browser. What the user gets differs a lot:
from a simple queue interface to fully functional submitter tools. This gave rise
to the first discussion point: should the application (being a stand alone
application) be made web-based?

A second discussion point came up according to the development environment
chosen for the application: Java. In order to make Java desktop applications
run, you obligatorily need a Java Runtime Environment (JRE). And in order to
get this JRE to work, you need to install it having administrative rights
(because the installation of the JRE touches the “core” of Windows operating
systems). This particular point — the necessity of having administrative rights
to be able to install or update a JRE that is necessary for the application to run
— is becoming increasingly problematic.

The third — and last — discussion point that is strongly related to the second is
about problems with different JRE versions. A large diversity of JRE versions
exist and in the past they were not all necessarily backwards compatible.

The goal was to find a solution to all of these problems, without really knowing
what was most important and what was exactly desired.

3.2 Problem translated to specific requirements

As already stated in the previous section and which should be clear after
reading it, is that the starting situation was rather vague. A lot of discussions
and wishes, but very little of it was concrete. Thus the first task was to find
out what exactly was the problem, to identify it — and especially — to
correctly formulate it. In order to do so, let’s first recapitulate the three key
issues:

• Is a web-based approach necessary and/or desirable?

• An installation without administrative permissions is desired or — even
better — having no installation at all;

• No more troubles with Java Runtime Environments.

In fact, these issues can be translated as symptoms of and the idea of a
solution for a much larger problem. We will discuss briefly how to identify
these issues and to relate them to the problem lying at the base.

3.2.1 INTERPRETATION OF THE WISH FOR A WEB APPLICATION

When you look at the reasons why web-based solutions are chosen, this is
usually related to the fact not having to install anything, for the application
runs on a server instead of on a client. Furthermore your application will
always be up to date and you don’t need to care about user rights. The
application will always work, regardless of the environment of the user, as long

GRADUATION PROJECT REPORT - Problem statement 9

as he has access to a web browser supporting the technologies used by the web
application. Web-based applications are therefore a solution to a problem
related to the deployment of applications.

3.2.2 INTERPRETATION OF THE USER RIGHTS PROBLEM

Having a problem with user rights during the installation of an application and
thus the related wish of not having to install anything at all is not difficult to
relate once again to a deployment problem. Especially with the ever increasing
demand of more security within and around software, the installation of
programs on operating systems is more and more restricted in order to keep
malware outside. This has as a direct consequence that if your application
needs a high level of access, that installing it becomes increasingly difficult.

3.2.3 INTERPRETATION OF CONFLICTING JAVA RUNTIME ENVIRONMENTS

Conflicting JRE versions are first of all due to the requirement of the
application needing a JRE. When developing a Java application, you should
know at forehand that in order to have customers use your application, they
need to have a JRE installed and sometimes even a specific version. Thus in
order to be sure that a customer can use your program; you need to deploy a
correctly functioning JRE with the application.

3.2.4 FOCUS ON DEPLOYMENT

Resuming the previous three paragraphs leads to the identification of the
central problem: deployment. The environment of the concept of deployment
knows problems and solutions, like any concept. The key issues presented at
the beginning of this project were in fact a subset of the problems and
solutions around deployment.

Figure 2: the identification of the central problem: deployment. Identified problems are

depicted on the left, an identified potential solution on the right. Of course there are many
more potential problems and solutions related to the deployment, depicted by dots.

GRADUATION PROJECT REPORT - Problem statement 10

3.2.5 SPECIFIC REQUIREMENTS

After extensive talks with the people involved in the project group, we were
able to identify the specific requirements, i.e. to formulate what really
matters and needs to be solved without thinking in terms of problems and
potential solutions. These are the following:

• Users with a restrictive rights level must be able to install the
application;

• The installation (if any) needs to be kept as simple and as
straightforward as possible;

• The impact to the existing source code of the program must be kept as
minimal as possible;

• Interoperability between different modes of installation is desired.

It is clear — given the environment we are working in — that these
requirements require a considerable amount of research and tend to be very
complex. On top of that, we have to deal with different workflows, i.e. the
way users tend to use a submitter application in their business process. These
issues will be addressed on the way.

GRADUATION PROJECT REPORT - Research and investigation 11

4. Research and investigation

As a result of the complex environments and many details that play a role as
explained in section 3, a considerable amount of research and investigation
needed to be done. First of all it was important to find out what options there
are in order to facilitate the deployment process. Questions like “What are
common technologies used for deployment in Computer Science?” and “How do
we keep the impact on the existing source code of the application minimal?”
play a central role here. Next to that we will make a discovery trip through
the world of submitters and potential architectural layouts for a solution.

4.1 Deployment in Computer Science

Deployment is an important phase within the software engineering process,
which also finds its place in the classic waterfall model presented below.

Figure 3: the location of deployment in the waterfall model of software development

The deployment and maintenance phase is the last “constructive” phase of
software development, the phase were the product finally meets the customer.

The position of deployment in Computer Science however, is becoming
increasingly complicated. We will begin our discussion with presenting six key
issues that are related to deployment and how their current state is within the
domain of Computer Science.

4.1.1 OPERATING SYSTEMS AND ENVIRONMENTS

Different versions of operating systems and multiple platforms don’t make the
life of software engineers easy. This is why most developers focus on one
platform only, although there is a strong tendency to favor cross-platform
solutions. Each operating system has in general its own way of storing program
files and how programs are accessible to the user.

Next to the operating system itself, it can also be the case that a special
environment is necessary in order to run the application to be deployed, like a
framework. Two widely used frameworks are for example the Java Runtime
Environment and the MS .NET Framework. Applications written using these
frameworks will not be able to run without them.

4.1.2 RESOURCE SHARING

The deployment task becomes extra complicated when there are resources
being used by the application that might also be used by other applications.
Typical questions are then whether or not the shared components are already
present and if they are of the correct version; and what to do if they are
outdated? Can they be replaced with a newer version or does this have a
negative effect on the way existing applications use this resource? Almost any

GRADUATION PROJECT REPORT - Research and investigation 12

software developer knows the problems that may arise as a result of software
libraries that are not of the correct version.

4.1.3 SECURITY

Deploying an application is far from risk-free. In general you don’t know
anything about the state the machine is in at the moment of deployment. But
in general you do want to deliver your application exactly the way as intended.
Security comes in especially when the application needs to perform actions
that need high security levels (like banking applications for example). The
security of the application and its resources must be assured and integrity
checks on binaries and data files become a real must in this case.

4.1.4 LICENSING

When deploying commercial software that needs to be paid for, you don’t want
that people copy and redistribute your software without permission. It is
impossible to stop people from copying installations, but it is possible to stop
them from executing a deployment process without authorization. The classic
way this is done is using a key that is owned by the customer who paid for the
product. Of course this method of protection is quite prone to abuse, for keys
can be lost or stolen.

4.1.5 ACCESS CONTROL

Access control or — more popularly formulated — user rights is an increasingly
difficult issue when it comes to deployment. Operating systems are being
secured tighter and tighter in order to keep malware outside. In a world where
viruses and spyware are omnipresent this is not a superfluous luxury. But the
negative side of this story is that the deployment of good applications is
becoming more and more difficult as well. Users in professional organizations
almost never have (local) administrative rights, nor any other rights level that
suffices for the installation of applications. Sometimes this is intentional, for
example in the educative sector where system administrators don’t want
students to be able to install anything on a computer. But operating systems
are now making it tighter already by default. For example on the relatively
new operating system MS Windows Vista, you cannot be administrator by
default and you will need to give explicit installation permissions whenever you
want to install anything.

4.1.6 UPDATES

Updating software is also becoming very popular and more and more frequent.
Sometimes updates are “abused” by software developers in order to deliver
their product to the customer before it is actually finished. Feature extensions
and bug fixes are then used to provide customers with the final product once
finished. With the internet being also much more present among home and
office users, updates can be easily acquired. In many cases software developers
provide an automated updating mechanism to their users such that they don’t
have to bother about checking for updates themselves.

The risk of using updates extensively is that your customers don’t have the
version installed you had in mind, especially if there is no automatic update
feature implemented or a missing internet connection.

GRADUATION PROJECT REPORT - Research and investigation 13

4.2 The world of submitters

Submitter programs are used mostly by document experts who have to print
large amounts of documents in different formats and orientations. A submitter
program offers an interface with the printer in such a way that the user is able
to apply the correct output settings in order to obtain his document exactly in
the way he intended.

Océ has a long history of creating such submitter applications. As technology
progresses, Océ also developed submitter applications of higher quality
bringing these new technologies to the end user.

4.3 Submitter workflows

Understanding the way submitters should work and what is important for users
depends heavily on the way they are actually used. In other terms, we need to
investigate the submission process the end-user performs. This end-user is in
our case in general a document specialist that needs a large collection of
possible settings in order to get his document printed the way he wants as well
as an optimized way to get there (that is, not losing a lot of time for making
difficult configurations).

This part of the workflow is not specifically important to the scope of this
project, the part we are interested in here is the part that comes just before
it: installing and launching the application. Therefore we will focus on the
installation and usage workflow of submitters.

4.3.1 HIGH LEVEL WORKFLOW

The high level workflow, where we don’t bother about the details, was the first
step in order to get a hold on what installation and launching workflow we
wanted to support. Between “installation” and “launching” you should also
read “updating”, which will become visible in the workflow as well. In the
diagram below this high level workflow is depicted.

GRADUATION PROJECT REPORT - Research and investigation 14

Figure 4: High level workflow of the installation, update and launching process

The basic idea is this: the IT-department or the end-user himself installs the
application. In case of an IT specialist, this will typically be done using an MSI
(a Windows Installer executable) that can be automatically deployed in a
Windows server environment or manually with a CD on each workstation. When
left to the user he should acquire the program by downloading it directly from
the printer.

Once present on a workstation, the user acquires a possible update
automatically via the printer. This will only be the case when an IT specialist
put an upgrade of the application on a server device replacing the original
installation.

Thus the set-up of the envisaged system for a customer (in case of a large
company) is very simple. The IT department of this company only needs to
keep the version of the software present on the printer’s controller up to date,
users over the network using the workstations will acquire updates
automatically. In this way the cost of maintenance in time, energy and money
is significantly reduced.

4.4 Deployment strategies in computer science

Before narrowing to the setting of this project, we will first discuss general
deployment strategies that exist in the domain of computer science and which
technologies are laying at the basis of this.

4.4.1 SOFTWARE DEPLOYMENT PROCESS

In [CFSODT] — a technical report of the University of Colorado — the writers
identify the software deployment process as a set of the following activities:

GRADUATION PROJECT REPORT - Research and investigation 15

• Release — the activity that serves as the interface between the
deployment and development process;

• Install — the initial insertion of a system into a consumer site;

• Activate — starting up the executable components of a system;

• Deactivate — shutting down any executable components of a system;

• Update — special case of installation where replacement, addition or
removal of components can take place with respect to a previously
installed system, initiated by events at the producer’s side;

• Adaptation — modification of a previously installed system, initiated by
events at the consumer’s side;

• Uninstall — removal of a system when the system as a whole is no
longer required;

• Retire — marking of a system as obsolete and support is withdrawn by
the producer.

These activities within the software deployment process can be integrated in
the following model, also originating from [CFSODT]:

Figure 5: the software deployment process as in [CFSODT]

In the following paragraphs we will discuss existing common approaches to
support this deployment process. Each of these approaches applies to
supporting one or more activities cited above.

4.4.2 CLASSIC, ATTENDED INSTALL

The classic, attended install is the most common way of deployment. It
includes an application that lets the user typically accept a license agreement,
choose a destination and select the components to install. The application then
copies some files, creates directories and optionally modifies some system files
(for example under MS Windows the registry).

GRADUATION PROJECT REPORT - Research and investigation 16

The user performing the installation needs to be present, needs to attend the
installation. Without user interaction the installation cannot complete. For the
installation of applications or an operating system on one or a small number of
computers, this installation mode is an acceptable and most cases even a
suitable procedure. However, when the number of applications and/or the
number of computers is increasing, this type of installation can become
problematic.

The classic installer supports mainly only the install activity in the development
process, although most classic installers currently also include an uninstall
feature covering therefore also the uninstall activity.

4.4.3 UNATTENDED INSTALL

The unattended install is a strategy where the user actions in the classic,
attended install are omitted, in general using a configuration file that contains
the necessary information to make the choices normally the user would make.
This method liberates the user from being present during the installation.
Concerning the software deployment process, the same items are covered as
for the classic installer.

4.4.4 AUTOMATIC REMOTE INSTALL

Automated, usually remote installations are installation methods that are being
performed within a network environment where there are many computers
(workstations) that must be configured in order to contain the correct
operating system and applications. A server is then usually configured that
takes care of these computers that once logged on to the network, the
software is copied from the server to the workstation and gets installed
automatically, bypassing any kind of local user level. This technique is widely
integrated in operating systems in a networking configuration like the MS
Windows Server editions. Further on in this document this is discussed as one of
the possible options for solving the deployment problem of our application.
This installation type also covers the same items in the deployment process as
the classic installer.

4.4.5 WEB-BASED PROGRAMS/SERVICES

Web-based programs and services are relatively new, but especially as a result
of the ongoing technological progress in the field of internet/web based
applications, this concept’s popularity is growing drastically.

Web-based programs do simply not require any installation at all. The web
browser serves as the interface between a (park of) server(s) that contains the
executable code and accompanying data. At the client side the result of the
user’s operations is only displayed. Execution of the program or service takes
entirely place at the server side. This results also in the situation that web-
based programs can be characterized with respect to the deployment process
with all activities, except release and retire. The other six activities are all
part of a web-based system.

This strategy is used further on in this document as a possible solution to our
deployment problem.

GRADUATION PROJECT REPORT - Research and investigation 17

4.4.6 IMAGE GENERATION AND RESTORATION

A rather drastic way of deploying rapidly a preferred system configuration is
the image generation and restoration technique. The advantage is that it works
very fast compared to any other method and always gives the desired result.
The big disadvantage is that it can only be used when using computers with
exactly the same hardware configuration. Although this method is rather
drastic, it doesn’t change the coverage of activities in the deployment process
presented above with respect to the classic installer, the install and uninstall
activities are the only ones supported.

This method consists out of installing the operating system and applications on
one machine to obtain the desired configuration. Once ready, one of the many
existing tools in this field can be used to make a low-level copy of the entire
hard disk, a so-called image. This image can then be written to another hard
disk of another computer that has the same hardware configuration of the
originating machine. The result is that for the new machine the state of the
operating system and applications will be exactly the same as for the
originating machine.

This technique is widely used in large companies where there are many
computers that must have the same (basic) configuration. Another
disadvantage of this method is that you cannot select which applications you
want to take over from the originating machine.

4.4.7 AUTOMATIC UPDATES

Automatic updates is a rather new concept that searches for updates via a
network or internet to download and automatically install them. The
“automatic updates” mechanism within MS Windows is widely known and is
used for high priority updates on the operating system. Similar systems can be
found in widely used software applications and platforms, like for example the
Java Runtime Environment. Once an update is available, the user can be
alerted that an update should be installed, or the system can follow a more
dictatorial approach where the user is forced to perform the update, with or
without notice to the user.

The problem with automatic updates however, is that there are situations
wherein they have difficulties with performing the tasks they are designed for.
When the user is not an administrator, the update process can usually not be
executed because the files that must be replaced are only replaceable by an
administrator account. In MS Windows for the automatic updates feature this is
solved by running the automatic updates process as a system service, bypassing
user accounts. For applications that are not part of the operating system this
access is not possible.

Within the software deployment process, automatic updates is merely a means
that is oriented to the update activity and does not really have anything to do
with other activities within the deployment process.

4.4.8 PLATFORM BASED DEPLOYMENT SYSTEMS

Platform based installations with automated update and application launching
features is a rather new development in the field of software deployment. For
the moment, Java Web Start has the lead in this field for Java based
applications. Java Web Start exists since 2001, but Microsoft didn’t wait a long

GRADUATION PROJECT REPORT - Research and investigation 18

time before introducing a similar technology into the market for their .NET
Framwork, called ClickOnce [MSCLON].

Platform based install/update and launch mechanisms are based on covering
the install, update, activation and uninstall activity of the deployment process.
We could therefore classify this deployment strategy in between the two
extremes, the classic installer and the web based application. In the figure
below the coverage of platform-based deployment systems with respect to
these two extremes is visualized.

Figure 6: deployment process coverage for a classic

installer, a web based application and Java Web Start

4.5 Possible architectural setups

In section 3.2 we saw that the original key issues of the project included the
question whether a web-based solution could solve the problem of deployment.
Let’s keep this particular question in mind as our main trail towards a solution.
Around this trail we should keep our eyes open for technology that might help
us out.

During the investigation phase of the project a lot of architectural setups were
presented and discussed. We will revisit these setups in this section in order to
give a clear and complete view to the reader. Later on in the document we will
see why certain setups were put aside and others continued to be investigated
and even being tried out in the prototyping phase.

Three streams within the architectural setups have been investigated which
will be presented in the following subsections:

• Setups using a pure web-based approach;

• Setups using an intermediate platform;

• Setup using a central server.

GRADUATION PROJECT REPORT - Research and investigation 19

4.5.1 ARCHITECTURAL SETUPS USING A (PURE) WEB-BASED APPROACH

Before moving to concrete solutions, it is a good idea to start by having a look
which options we have in terms of architectural setups of a web-based system
where the application runs on a server or printer controller and we have a
browser on a client computer as the main means accessing its functionality.

In web design there are not that many options and therefore we can easily
cover each of the options in the following sub paragraphs:

A. Direct browser to server communication;

B. Browser to server with an additional functional layer at the client side;

C. Browser to server with an additional function layer at the server side;

D. A combination of the last two.

4.5.1A DIRECT BROWSER TO SERVER COMMUNICATION

Direct browser to server communication is the simplest form of an architectural
setup, which consists in just a server application running on the server side
which directly handles all requests done by a client connected to it.

This approach will unfortunately not work for a submitter. The reason for this
is that there are complex tasks that need to be handled, like the processing of
image data. This requires special libraries that usually do not reside in standard
server applications handling HTTP requests.

4.5.1B BROWSER TO SERVER COMMUNICATION WITH CLIENT EXTENSIONS

This setup is similar to the direct browser to server communication with just
having an extra functional layer. This functional layer then fills up the gap of
the functionality missing in standard browsers and standard server applications.
In most cases these are extensions built into the browser, but one could also
continue completely outside of the browser using for example a stand-alone
application that is loaded from the browser or a service.

Client

Browser

Server

HTTP

Server

Extension

This way of solving the lack of functionality in the standard client-server chain
has many advantages. If file analysis is involved (which is the case in our
situation) then these files can be analyzed locally without transferring them to
the server-side which saves bandwidth and time. A disadvantage is that if the
executable code doesn’t reside at the client-side, it has to be downloaded each

GRADUATION PROJECT REPORT - Research and investigation 20

time it needs to be used (that is, if there is no caching by the browser or that
the cache was emptied). Another annoying problem is that in case of an
extension to the browser, not all browsers support this function. One can think
of an easy example where a user has disabled JavaScript (e.g. for security
reasons). Websites that require JavaScript to function correctly won’t function
anymore.

Other solutions in this setup include the usage of applets or other executable
objects that are loaded into the browser. Here not only the ability of the
browser to support this kind of interaction is a potential source of problems,
but also the supporting platform must be present (like a JRE in the case of java
applets or access to Windows system resources in case of an OCX which is on
top of that browser dependent).

4.5.1C BROWSER TO SERVER COMMUNICATION WITH SERVER EXTENSIONS

Analogue to the setup described in the previous paragraph, one can think of
putting the extra functional layer at the server side in stead of the client side.
A major advantage is that you can supply the user with a full result of the
request without having anything to do client side (and especially, as a result of
this, don’t have to install anything). This situation is often preferred because it
preserves the nice property of the direct browser to server communication
setup that runs the use of any additional tools at the client side unnecessary.
You immediately solve any potential problems with installations and even cross
platform issues. As long as your clients are equipped with a functional web
browser that respects basic standards, your application can be used
everywhere.

Client

Browser

Server

HTTP

Server

Extension

The options developers have in this setup are as extensive as those for the
client-side additions. In most cases developers choose for extensions in the
form of extra libraries, sometimes even compiled into the server application
used in first instance.

For users there are in general two potential problems in this configuration. The
first one appears when you have tasks in your application which are quite
process power consuming and you have many users that access the application
at the same time. The server may not have the hardware capacities you would
need in order to serve all the requests in an acceptable timeframe. The second
problem is that if file analysis is involved (which is the case for us), you are
obliged to transfer the file to the server before the server actually can do
something with it. When the files are not too large, this might work well, but if
you have files of hundreds of megabytes to transfer, this can result into
unacceptable response times. Of course, this also heavily depends on the
chosen hardware configuration.

For an analysis in depth I refer to [MIGISS] where a practical central-server
based solution is discussed.

GRADUATION PROJECT REPORT - Research and investigation 21

4.5.1D COMBINATION OF CLIENT AND SERVER SIDE EXTENSIONS

This option doesn’t require much explanation. Most (“grown-up”) web-based
applications use extensions on both sides. The border between which kind of
functions should reside on the client side and which should reside on the server
side is rather vague and there are no real guidelines that describe this border
clearly.

4.5.2 ARCHITECTURAL SETUPS USING AN INTERMEDIATE PLATFORM

Next to extending a browser in order to add functionality, there also exist
platforms that enable programs to run upon. For Java, such a platform exists as
well, largely integrated with all the needs related to the web: Java Web Start.

The advantage of such an intermediate platform is that in most cases no large
scale adaptations are needed to existing source code. For this project, this was
even one of the requirements.

As in section 4.5.1, the question arises whether one would want to run the
entire application on such a platform, or that one would like to use further
external functional sources like a Windows Service. Given the fact that Java
Web Start caches the application, it won’t be necessary to download the entire
package again when the user wants to use it once more. Another major
advantage is that Java Web Start sorts out automatically whether there is an
update available or not and if so, it downloads automatically those parts of the

GRADUATION PROJECT REPORT - Research and investigation 22

package that are updated and installs them. Given this approach, it looks
tempting to keep the application intact, in order to avoid the rights problem
when you have to install a service, as well as the update problems that will
arise as well.

We will discuss the Java Web Start technology in depth in section 4.6.

4.5.3 SUMMARY OF ARCHITECTURAL SETUPS

We saw in section 4.4.8 — more precisely in figure 8 — where we presented the
mapping of the classic installer, platform-based deployment and web-based
applications to the key items of the deployment process, that the latter two
cover significantly more items than the classic installer. This is the reason why
we will primarily focus on the platform-based deployment (Java Web Start,
sections 4.6 to 4.9) and a web-based approach (4.10).

Finally, to summarize the discussion above, the following table indicates the
main properties and (dis)advantages of the architectural setups discussed.

D
ir

ec
t

br
ow

se
r

to

se
rv

er

Br
ow

se
r

to

se
rv

er

w
it

h
cl

ie
nt

ex

te
ns

io
ns

Br
ow

se
r

to

se
rv

er

w
it

h
se

rv
er

ex

te
ns

io
ns

Br
ow

se
r

to

se
rv

er
,

ex
te

ns
io

ns

bo
th

 s
id

es

In
te

r-
m

ed
ia

te

pl
at

fo
rm

Feasible for submitter no yes yes yes yes
Network load - high high high low*
Potential security
problems

- yes no yes yes

Smooth interaction - medium no medium yes*

Suited application size - small only small to big
small to
medium

small to
medium

Adaptations source code -
medium to

high
medium to

high
medium to

high
low

*) except on first launch

4.6 Java Web Start

Java Web Start (JAWS) is a relatively new platform developed by Sun
Microsystems and was introduced in March 2001. Since Java version 1.4, JAWS
is installed automatically. In short, JAWS serves as a platform reachable from a
browser in order to run Java applications on it.

In the following paragraphs we will discuss the basic principles of JAWS and in
the next three sections we will look in detail into the server-side and client-
side configuration as well as a minimal sample application to illustrate basic
usage of this technology.

GRADUATION PROJECT REPORT - Research and investigation 23

4.6.1 JAWS APPLICATIONS LIFECYCLE

In the image below you can see the lifecycle of JAWS applications.

Figure 7: the Java Web Start applications lifecycle

From a browser, there are two options:

1) If there is a JRE installed it detects whether the JRE prescribed by the JAWS
application is present on the system. If not, it acquires this JRE automatically.

2) If there is no JRE installed, a link to a JAWS application will have an effect
like downloading an unknown file. This situation can be avoided by
incorporating a simple script in the webpage the user is viewing. This script can
detect whether Java and/or JAWS is installed. If the script detects that this is
not the case, the user can be directed to a site where he can download a JRE.

Once the correct JRE is started, JAWS checks whether or not the requested
application is already present in the JAWS-cache. If this is the case, JAWS
checks if there is a new version available. If not, the application is started from
the JAWS-cache. In the other cases JAWS downloads the application (or the
part of it that was updated).

The advantage of this lifecycle is that it is fully automated. Once there is a JRE
present on a system, the application will always run and it will always be up to
date.

4.6.2 NETWORK LOAD

The network load of JAWS is very much optimized. Normally – that is, if the
developers do a good job – the entire application is only downloaded once.
Afterwards, only the outdated parts are being downloaded and replaced.

Another major advantage of this caching system is that the application is
always available, also if the network connection is lost.

Furthermore, JAWS applications use the JNLP (Java Network Launching
Protocol) which enables developers to indicate which parts of the program are
necessary to be downloaded for basic operation (eager acquiring) or those
parts that can be downloaded at the moment the user actually tries to access
them (lazy acquiring).

GRADUATION PROJECT REPORT - Research and investigation 24

4.6.3 DIFFERENT WAYS TO START

JAWS is mostly used to start applications from a web browser. But this is not at
all restricted to this start-up mode. JAWS supports the following modes to start
an application:

• Via a JNLP-hyperlink in a browser;

• Via the Start-menu (when downloading the application for the first
time, a shortcut is created automatically);

• From the Desktop (also created automatically at first download);

• Via the command prompt (“javaws” followed by the application name).

4.6.4 RIGHTS

Looking at the key issues that concern us, we had a problem with rights for
installing a program on a computer. This problem is potentially solved by JAWS
because it downloads all necessary parts of the program in the Application Data
folder of the current user under MS Windows (in Documents and Settings). The
current user is always in possession of the necessary rights to put files there
and to execute them.

4.6.5 SOURCE CODE ADAPTATIONS FOR JAVA PROJECTS

In order to be able to use JAWS, very little adaptations are required to the
existing source code if one is using “standard Java”. JAWS was actually
developed in such a way that existing Java applications as well as applets could
be loaded into a JAWS environment with minimal adaptations. Given the fact
that we are focusing here on a Java application, we do not consider the case of
Java applets here.

For standard Java applications, the source code should be checked on two
issues:

• Resources must be bundled in a JAR file;

• If unrestricted file access is needed, the source code must be signed.

Regarding our application, a short inquiry in the development team showed
that resources are already bundled in JAR files. Code signing is a known
concept, but is not yet practiced. The effort of signing the code is not
considered as a major problem.

Thus from the development point of view, we could be quite optimistic about a
JAWS-based solution.

For more details on this signing operation I refer to paragraph 4.9, where
signing is discussed in a broader sense, with examples.

4.7 Java Web Start / server side

In order to use JAWS, there are two sides of the tale. We saw in the previous
chapter that the client-side adaptations are very minimal. But we also need a
server side; that is a device that is capable of providing a user with the
packages and the JNLP file that is required in order to run the application from

GRADUATION PROJECT REPORT - Research and investigation 25

a web browser. This process is thoroughly described in [URL-DEPLOY]. In the
following paragraphs I will give a brief summary of this, according to the
specific needs of our application.

4.7.1 JNLP CONFIGURATION

For deploying the application, one can follow the standard procedure of
creating one or multiple JAR files. But it doesn’t end here; one has to make an
XML document that follows the JNLP specification. This file serves as a
configuration file how the application should be used by JAWS in order to
deliver it correctly to the user that downloads it. In the following
subparagraphs the key sections of this file are discussed.

4.7.1A JNLP SECTION

This section specifies where the application is located on the server side (that
is the folder with the JAR files and the corresponding JNLP file itself). This is
the outer section of the XML document.

4.7.1B INFORMATION SECTION

Here you can set up a series of descriptive tags that will show up when a user is
downloading the application. Tags include a title, vendor, description and a
homepage (link).

4.7.1C OFFLINE-ALLOW

This tag (residing within the <information> section) indicates whether or not
the application may be run without the presence of an internet or network
connection.

4.7.1D SECURITY

This section is optional, but required for applications that need disk access.
This section should be set to ‘all-permissions’ in order to work correctly. This
however, will only work if all JAR files are signed.

4.7.1E RESOURCES

This section indicates where the JAR file(s) is (are) located that contain the
application classes, as well as the JRE that should be used. The JAR tag can be
used n times if you are using multiple JAR files.

4.7.1F MAIN CLASS

If there is a main class specified in the manifest of the JAR file, this section
can be skipped, otherwise you will need to specify the main class here using
the ‘application-desc’ tag.

4.7.2 JNLP INSTALLATION OPTIONS

Additionally to section 4.7.1, we have a look at the JNLP options we have that
are platform dependent. A full reference for the JNLP elements and tags can
be found at:

http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html

GRADUATION PROJECT REPORT - Research and investigation 26

4.7.3 SIGNING

The JAR files used must – for security reasons – be signed. In order to do so, it
suffices to use the jarsigner tool that comes with the SDK. Without signing, the
application won’t run within JAWS.

4.7.4 WEB SERVER CONFIGURATION

If the java-based TomCat server version 4.0.x or higher is used, it suffices to
put the XML file (stored as a .jnlp file) together with the JAR file(s) on the web
server. Accessing the jnlp-file through a normal link (start application) does the job. However, if this is
not the case, you need to configure the used web server with the JNLP MIME
type. MIME types are file descriptors that can be defined on web servers. Each
web server uses its own way of describing these, therefore I point to the web
server documentation for further details on this issue. The required MIME type
is:

application/x-java-jnlp-file

4.8 Java Web Start / client side

The client side configuration of JAWS is a rather complicated issue. The
fundamental reason is the situation in the way MS Windows handles user
profiles. JAWS is developed in the intention of keeping it platform independent
and therefore the JRE — which is created for each operating system
independently — needs to make certain decisions. For JAWS this comes down to
making a choice where to put temporary files (the JAWS cache). Especially
when you are in a large company having a network with a central server and
workstations, the consequences of where you actually put the JAWS cache can
be far-reaching. In this chapter we will look at the standard configuration as
set by default with its advantages and disadvantages.

4.8.1 HOW DOES THE JAWS CACHE WORK?

When you download a program that uses JAWS, the necessary files in order to
run the application are copied into a caching system. This caching system can
be configured for the following items:

• Enable/disable cache (default: enabled);

• The location of the cache (default: user profile, application data);

• The size of the cache (default: 1000 MB);

• Compression (default: none).

4.8.2 POTENTIALLY PROBLEMATIC SETTINGS

Some of these settings can have values that pose problems for running
applications like we want for our application.

The first problem arises when a user would choose to disable the cache. When
the architecture of your application is such that you put the entire application
into JAWS and that the application is rather heavy, then a user needs to
download the application each time again when he wants to use it. This causes

GRADUATION PROJECT REPORT - Research and investigation 27

of course a significant increase in the network utilization, which is in general
not appreciated. The same holds for a user that configures a very small cache,
where the cache size is less than the size of your application.

Another potential problem is the location of the cache. This issue will be
addressed in detail in paragraph 4.8.4 regarding the way MS Windows handles
profiles. Here it suffices to notice that if a user chooses for example a network
location, that the problem of a significant network load increase shows up
again.

4.8.3 CACHE EMPTYING POLICY

When JAWS reaches the limit of the cache (at least, if the cache is not
disabled), JAWS will start to delete some applications form the cache in order
to make room. JAWS uses the Least Recently Used algorithm for this action;
that is that the application that you didn’t use for the longest time is deleted
first.

4.8.4 JAWS CACHE IN MS WINDOWS USER PROFILES

By far the most problematic issue with the JAWS cache is the way MS Windows
handles user profiles. First of all there is a different situation when you have
stand alone computers (whether or not connected to a network) or a central
server with workstations connected to it.

In the first situation there is not much to worry about; it doesn’t matter much
where the JAWS cache is located. The only risky thing is that an application
may appear n times on the local hard drive where n is the number of users on
the system.

If this is a problem, this can be solved by using the system cache of JAWS. In
fact, the caching system of JAWS consists out of two parts: a user part and a
system part. The system part is only accessible by an administrator and cannot
be changed by normal users. If there is an application that will be used by
(almost) all users, it is recommended that the administrator puts this
application in the system cache in order to avoid the n-copies situation.

In the latter situation — the one where we have a central server with
workstations connected to it — the situation becomes really complicated and
even annoying. This is a result of the concept called roaming, which means
that user profiles can be stored on the central server and are synchronized
each time a user logs on to any workstation. In order to make the situation
even more complicated, user profiles exist out of roaming and non-roaming
parts and these can even be configured by the network administrator.

The ultimate disaster situation can easily be identified: imagine that the JAWS
user cache is located in the roaming part of the user profile (which is by
default the case under Windows XP) and that the cache size is set to 1000 MB
(which is also the case by default) and that we have n users on our network
which all use JAWS heavily, that is up to the limits. Every morning that our n
users log in, n gigabytes of data have to be transferred…

GRADUATION PROJECT REPORT - Research and investigation 28

4.9 Java Web Start / sample

We finalize our discussion on Java Web Start with a sample application. The
full source code of this sample can be found in appendix B. This sample
application does the following:

• It can create a fresh subdirectory in the current Windows User profile
(typically ‘c:\Documents and Settings\[username]’);

• It can extract an executable from a secondary JAR file and put it into
the newly created folder.

When we look at this, we see that we are obliged to get out of the sandbox of
JAWS (a protected environment that protects a user against malicious programs
coming into his computer). This environment does in a normal situation not
allow system critical operations, like disk access. Therefore we need to do the
following:

• Generate a JNLP file and set the security level to ‘all-permissions’. This
will invoke a special notification for the user when downloading the
application whether or not he/she is really sure to grant high level
permissions to the application;

• All JAR files (in this sample project just two) must be signed;

• In order to be able to sign, a key store and certificate must be created;

• We need to be able to extract files from a JAR file and copy it to the
local disk.

In appendix B these issues are addressed for the interested reader.

4.10 Client-server web applications

In our discussion on architectural setups in section 4.4, we saw that client-
server web applications are a promising alternative. Now we need to make a
choice that if we follow a web-based approach, which approach we should
take.

For our submitter application, there are several key aspects we must consider:

• Clients usually have large files that are difficult to transfer to a server
“just” for analysis purposes;

• Browsers do not supply sufficient internal functionality to handle the
tasks we need;

• For the sake of deployment, we want to avoid any installation of a
supplementary tool.

Taking these issues in account, we already see a conflict. There is no solution
that meets exactly these demands. Transferring files for analysis is probably no
option due to the necessary hardware requirements, thus we are obliged to use
at least client-side extensions.

When all given requirements cannot be met into detail, we have no other
choice then to see which of the requirements can be relaxed up until a certain
point that it enables us to answer to them and that the relaxation of the

GRADUATION PROJECT REPORT - Research and investigation 29

requirements stays within acceptable bounds. When looking at the key aspects
given just above, we can only apply relaxation on the first and last one.

4.10.1 RELAXATION ON THE NO FILE TRANSFER REQUIREMENT

The “no file transfer for analysis” requirement is a little bit particular. In fact,
it is perfectly understandable that for bandwidth issues it is not a desirable
solution that users massively upload files to a server (or printer) not in order to
print them but just to analyze the file and get a preview.

One could actually think about whether this would actually be the case.
Following talks with developers and users in training environments in both
Créteil and Venlo pointed out that in most cases users already know what they
want to print and the only thing they are interested in is getting their result in
the right position. Thus, in other terms, the plot file will be transferred to the
server/printer anyway. Therefore one could ask himself the question whether
it is a problem to transfer the file a little bit earlier in the printing process.

A possible solution would be to upload files to a local server/printer store,
defining the desired configuration with help of previews (that could be
generated server-side and send back to the client) and once the correct
settings have been chosen, print it directly. Dependent on the storage
capacities, it could be possible to load and save jobs with the files in question.
Let’s look at the issues we looked into when performing the analysis in
[INQSUB] to classify other systems how a server-based solution could meet
these issues:

Multiple document selection: this is a potentially problematic issue. With the
increase in security rules it becomes virtually impossible to use website
embedded objects to access the file system in order to do a multiple file
selection, especially under Windows Vista where it is not allowed to access the
file system in any way. The sole object remaining to upload a file is the typical
file input box with the browse button next to it. This field can be repeated
almost infinitely many times, but users will need to select files one by one.

Job load/save: equipping the server/printer with sufficient storage capacity
would enable users to store and retrieve their jobs. One could think of personal
folders on a local hard disk that could be used to store job and print files.
When having many users using large print files, large storage capacities will be
necessary.

Web-basedness: this solution is as much web-based as web-based can be.

Previewing/thumbnail: file analysis in general takes some time. One could
think of the situation where the server immediately analyzes the file after
upload and creates a thumbnail that can later be used to create the preview.
Simple raster based image transformations are usually performed in less than a
second and can be transferred very quickly through a network to the client
computer. When the server is equipped with proper processing power and a
good network infrastructure is available, this should not be problematic.

Multiple printers support: this depends entirely from the supported drivers, but
the list of supported printers is à priori endless.

Ease of install: given the fact that this system would run from any web browser
available this moment, no installation whatsoever would be necessary on the

GRADUATION PROJECT REPORT - Research and investigation 30

client side. The system works immediately and always, no matter what the
situation is on the client computer.

4.10.2 RELAXATION ON THE NO INSTALLATION REQUIREMENT

Another approach is to see how far we can meet the requirement of not
installing anything. For determining this, we need to revisit actually why we
didn’t want to install anything. The reasons for this were the following:

• Possible rights problems for performing an installation when not being
a local administrator or power user;

• Possible difficulties that system administrators might have in keeping
all user computers up to date.

When looking at this, we could relax the requirement of “we don’t want to
install anything” a bit. If we could provide an installation that is guaranteed
risk-free for potential rights problems and that we find a way of automating
the update process for individual computers in a network, we also solved the
problem.

Furthermore, in order to reduce the effort of the developers, we should find a
solution that can reuse an absolute maximum of the existing source code.

4.10.3 DETERMINING THE PREFERRED SOLUTION

Given the restrictions we have, mostly as a result of the image operations and
the fact that (over)loading the network with transferring files for analysis
purposes between client and server, we have a strong preference for a client-
side functionality extension.

Extension of the browser is possible in many ways, but given the fact that our
current software is written in java, we should avoid options that require
extensive adaptations or even complete rewriting. One could think of putting
all functionality in java applets, but given the enormous amount of
functionality proposed by our application, this is not really a feasible option.
Such a solution would cause an enormous load on the network (due to the size
of the applets which would be near to the current application size, which is
about 50 MB). Furthermore, Windows Vista poses a huge problem in this
approach given the fact that Java Applets that need to perform disk operations
(like our application) will no longer work on current Java Runtime
Environments [JAVA-VISTA-NOTES], [JAVA-ON-VISTA]. This problem specifically
related to Windows Vista will be solved in the future, as Sun announced that
their way of handling applets will change in the Java 6 update 10 version
[JAWIVI]. This development became known during the project, which
ultimately lead to a small feasibility study on how a light version of our
application could be incorporated into an applet. The main argument why an
applet based solution is not feasible remains, the application is far too heavy to
be entirely put into one or more applets. A test run described in the prototypes
sections proved this point.

A better solution would already be to split the functionality and host it
partially in java applets and partially in a Windows Service. However, the
operation to adapt the current source code such that it fits into this framework
is quite a heavy one, having large scale consequences. Thus, from a source
code point of view, this would not be a favorable solution either.

GRADUATION PROJECT REPORT - Research and investigation 31

So we don’t favor a server-side extension and client-side extensions aren’t
really feasible as well. So what we want can’t be done? No, there still is
another option. We already presented it in section 4.5.2 like using an
intermediate platform called Java Web Start (JAWS). It fulfills our
requirements (although not being purely web-based) and in the previous
sections 4.5 to 4.8 we saw the potential of JAWS. The extension of the sample
application discussed in section 4.8 to a functional prototype is a relatively
easy step as we will see in section 6.3.

4.11 Microsoft Deployment practices

In this chapter we will discuss what Active Directory is, what functions it has
concerning automated deployment of software within a company domain. This
issue is of importance in order to know what possibilities are out there that
might help Océ customers deploy our software more easily. In this chapter we
only dig into the aspects of deployment and the directly related concepts, we
do explicitly not explain the whole concept of Active Directory, for that would
require a study by itself and would be completely off-scope given the project
limits.

4.11.1 WHAT IS ACTIVE DIRECTORY?

Active Directory is a virtual directory existing on a company network level that
contains objects describing organizational entities.

Active Directory consists on the highest level out of three categories:

• Resources (printers, servers, computers and the like);

• Services (like e-mail for example)

• Users.

Each object within the Active Directory has a unique name and objects can be
grouped into organizational units (OU’s).

4.11.2 GROUP POLICY OBJECTS

Group Policy Objects (GPO’s) are objects that contain rules that can be applied
to an object within the AD. Network administrators can use a server edition of
MS Windows to configure these GPO’s. Within such a GPO, the administrator
can define – for example a workstation – the standard status of software on
such a machine. This can be done in two ways:

• Predefinition in the AD;

• Publishing via the AD.

Both approaches are now discussed in the following two paragraphs.

4.11.3 PREDEFINITION IN THE AD

When using a predefinition in the Active Directory, the network administrator
configures for a particular (group of) machine(s) what software should be
installed by default. When the particular machine is then started, the

GRADUATION PROJECT REPORT - Research and investigation 32

requested software is automatically installed using administrative rights. For
the network administrator it is necessary to configure the GPO using an MSI
(Windows installer file). Next to the MSI, an MST can be used, which is a file to
make external modifications to the MSI file. Other installation types than MSI
are not allowed.

Given the fact that the installation is executed as a system process, there are
no possible problems with not having sufficient rights to complete the
installation.

4.11.4 PUBLISHING VIA THE AD

Next to predefining the software status on a workstation, the network
administrator can also publish applications. This means that the application is
not installed automatically during start-up like is the case using a predefinition,
but shows up in the well-known list “Add and Remove programs”. The logged
on user can then choose to install the software.

The installation will then run in a separate process with elevated rights (at
least, if the network administrator configured it to be so) which avoids
problems with insufficient rights in most cases. The problem with this kind of
deployment is that the installation can never run as local administrator or
system process. This means that installations that require access to core files
of the operation system might potentially fail.

The configuration of such a “publishing” can be done with all types of installers
(not necessarily an MSI), although the installations must be encapsulated in a
so-called ZAP file which contains the parameters and so on for the installation
to start and to proceed as desired.

GRADUATION PROJECT REPORT - Research and investigation 33

4.12 JSP for web interfaces

As a final step of the project, the developed application must be integrated
into the default environment for submitters. We will focus on Tomcat web
servers and an interface based on JSP (the Java based server side scripting
language). JSP has many complex features that we can impossibly discuss
within the scope of this project, but we need to focus on the basics of JSP
here.

JSP – or Java Server Pages – belongs to the category of server-side scripting
languages that enable dynamic website generation. The basic idea of this
server-side scripting is that a user can be presented with a customized web
page, depending for example on his machine, like the operating system or
browser. But also to give access to more advanced functions that require
supplementary libraries that are usually not present on client machines.

JSP is the Java dialect in this world of server-side scripting languages. Next to
JSP there exist many others which we can impossibly cover in this document,
but to give a small overview of the main players in this field, the following
table could give some insight in this (classified on popularity):

Abbreviation Full name Developed by
PHP PHP Hypertext Processor PHP Group
ASP Active Server Pages Microsoft
JSP Java Server Pages Sun

For the integration, we need to focus on special extensions that exist within
JSP, called tag libraries (popularly abbreviated as “taglib”). A tag library is a
library containing predefined tags that can be used, preserving the XML
structure of the output. It is a way to separate markup output (which is usually
in HTML) and programming code (in this case in Java).

In JSP a tag library descriptor (TLD) exists, which enables the programmer to
make the connection between the source code (usually residing in Java classes)
and the tag to be used. This TLD file is by itself an XML file that describes the
link to the related source code, but also the behavior of the tag with its
parameters (if any).

By default, a tag library is included with Tomcat (the Java based web server)
which carries the name JSTL (JSP Standard Tag Library). This tag library
consists out of a large collection of tags that enable programmers to access
most of the programming basic constructs by using tags. Below an example is
shown of using this JSTL. The declaration of the tag library is omitted, because
Tomcat includes the JSTL by default. When writing an own tag library, you
need to include it with a special declaration.

<html>
 <head><title>JSTL Demo</title></head>

 <body>

 <% String s = "test"; %>

 <c:if test="${s == 'images'}">
 <p>Test succeeded</p>

GRADUATION PROJECT REPORT - Research and investigation 34

 </c:if>

 </body>
</html>

Declaration of an arbitrary tag library in a JSP file:

<%@ taglib prefix="t" uri="http://www.my_domain/tools" %>

JSP in general and tag libraries in particular are covered in depth for the
interested reader in appendix C.

GRADUATION PROJECT REPORT - Environment 35

5. Environment

Having discussed the research and investigation, we are left with one major
subject before we can turn to practice by means of prototyping. This subject is
encapsulated by the term “environment” where we will focus on the structure
of the application. This structure is a vital issue concerning deployment using
the in section 4 identified technique called Java Web Start.

5.1 Application investigation

In our discussion on the World of Submitters, we explained the global functions
of such a program. Given the fact that this version of the graduation report
concerns the public summary, we will discuss the environment of submitter
applications in general.

We will take as our goal in this discussion the creation of a demonstrative
(final) prototype that within the educational purpose of this document could be
seen as the end product.

5.1.1 COMPONENT ANALYSIS ON SIZE

The first direction in which one has to investigate the composition of an
application to deploy is in its size. To perform this analysis we simply take the
classic installer and let it install the application on the hard disk. Then we look
at the directory structure put there. In this way we were able to create an
overview of the package structure of the application.

5.1.2 COMPONENT ANALYSIS ON THE FUNCTIONAL LEVEL

Next to looking at the size, we can also look at the internal structure taking
the architecture into account. This architecture can tell us something about
the internal structure of the application, rather than the external structure we
saw in the previous paragraph where we looked on size. This architectural
structure tells us how the application is set up into functional components.
These components can help us then to identify logical packages of the
application.

5.1.3 ENDORSED DIRECTORY PRINCIPLE FOR EXTENSIONS

Java enables developers to ‘patch’ the JRE installed on a client computer. This
is called within the Java world “endorsed directory”. This is a subdirectory of
the main folders of the JRE where you can put libraries that should override
libraries installed by default (in general you put updated libraries in there).
The problem with using this principle is that we need administrative rights
using the classical approach (classic installer). One could think of the following
question: “hasn’t Sun put this feature into Java Web Start then?”

The answer is – perhaps surprisingly – no. In order to sustain this statement, we
will look at two statements made by Sun:

GRADUATION PROJECT REPORT - Environment 36

Tim Quinn (Sun developer) states on his blog the following:

“The whole point of Java Web Start in general, and the GlassFish support of it
for launching app clients, is that you want to avoid having to prepare the
environment on the client systems ahead of time. You just click and launch,
and everything that user needs is downloaded (if it is not already cached on
the client system). Requiring you as a developer or administrator to go to
every client system to install the 2.1 libraries as an endorsed extension runs
completely counter to the intent and basically robs the benefit of the Java
Web Start launch feature of any value.” [TQB]

Furthermore, Kohsuke Kawaguchi (Sun expert) states during an “Ask the
Experts” session the following:

“As you probably already know, Web Start does not have any support for the
endorsed directory mechanism. We should be talking to the Web Start team
about this, but anything they do will only be available in Java SE 7, so it's not
any time soon. There are a lot of pains in JAX-WS 2.1 + Java 1.6, and this is
one of them.” [ATE]

This means that endorsed directory usage within Java Web Start is not possible
for the moment. Some supplementary Java components are also available
within a Java Web Start package which in most cases should solve the problem.
This — however — is still far from a regular situation. When developing for
deployment using Java Web Start, this constraint must be taken into account.

5.2 Deployment scenarios / functional axis

Profound research has been conducted in order to find out what feasible
deployment scenarios would exist using JAWS. These scenarios are discussed in
the following paragraphs; each with their advantages and disadvantages (pros
and cons). In this section we will first look on the functional axis, without
looking at how to store things (we will look into that issue in the next section).
Therefore when you see “DISK” in figures below, the actual location on the disk
can be any arbitrary folder.

5.2.1 100% JAWS

The easiest option from a developer point of view is the 100% JAWS solution.
This scenario consists out of putting the entire application into Java Web Start.

GRADUATION PROJECT REPORT - Environment 37

Pros:

• Little to no adaptations needed in order to use this scenario with the
current situation of the application;

• Updates completely handled by JAWS;

• Uninstall is handled by JAWS.

Cons:

• Large amount of space required within the JAWS cache (about 50 MB);

• Application available for current user only (except when using the
system cache instead of the user cache).

5.2.2 EXTRACT CORE PART OUTSIDE OF JAWS

This scenario consists out of putting a core part (the part of the application
that is least likely to change with updates) somewhere on the local disk drive.
The parts of the program that are subject to change stay within JAWS. The
result is a division of the currently existing source code.

Pros:

• JAWS cache use is significantly reduced to about 10 MB remaining
versus 50 MB of complete residing;

• We can still benefit from the update system of JAWS.

Cons:

• If an update is necessary on the core files side, this is potentially
complicated;

• Source code changes (although not dramatic) are necessary;

• Uninstall of the non-JAWS part will need extra programming.

5.2.3 USE JAWS AS A DEPLOYMENT ENGINE

The last scenario on the functional axis is to use (or abuse?) JAWS for
deployment only. In this case the main application will be installed by a JAWS-
based secondary application, on a certain location on the local disk drive.

GRADUATION PROJECT REPORT - Environment 38

Pros:

• No adaptations to the source code are needed for we only touch
deployment;

• Very little usage of the JAWS cache is required (just the deployment
application which could normally be kept under 1 MB).

Cons:

• The update system of JAWS has to be extended with an update system
of our own;

• Uninstall of the non-JAWS part will need extra programming.

5.3 Deployment scenarios / storage axis

After the three scenarios on the functional axis where we looked how the
functional parts could be organized, we will look now in which configurations
we can put them. This is particularly important for the scenarios discussed in
sections 5.2.2 and 5.2.3 where we have a non-JAWS part. An important issue to
take into consideration is that the organization of the JAWS cache is different
under MS Windows Vista than under MS Windows XP. In XP, the cache is residing
in the roaming part of the user profile, where in Vista this is not the case.

5.3.1 COMPLETE JAWS CACHE RESIDENCE

This is the easiest configuration; I refer to 5.2.1 for details on this.

JAWS

Pros:

• Everything is handled by JAWS and thus – by default settings of JAWS –
available everywhere because of the roaming user profile location in
Windows XP. For Windows Vista the cache is outside of the roaming
part.

GRADUATION PROJECT REPORT - Environment 39

Cons:

• Network load might increase drastically: about 50 MB of files need to
be transferred each time;

• Installation is necessary for each user on the machine (so we could get
x duplicates for x users on the same machine).

5.3.2 STORAGE IN ROAMING CURRENT USER PROFILE

This is the first storage option for the setup of section 5.2.2 and 5.2.3. Here we
focus on the option of storing the non-JAWS part inside the roaming current
user profile. This means that if the user has a network account and he logs in
on another (physical) computer, all files will be copied to that computer. For
JAWS this is already the case (for Windows XP only), because the JAWS cache is
stored in the roaming current user profile by default.

Pros:

• Continued availability everywhere the user wants to use the application
when using Windows XP (does not count for Vista).

Cons:

• Network load might increase drastically: about 50 MB of files need to
be transferred each time;

• Installation is necessary for each user on the machine (so we could get
x duplicates for x users on the same machine).

5.3.3 STORAGE IN LOCAL CURRENT USER PROFILE

This option is similar to the roaming one with difference that in this case the
files are not put in the roaming part, disabling portability towards other
computers within a network. JAWS cache however is in the roaming part (for
XP, non-roaming for Vista), which might give the user the impression that the
application is available everywhere, where this is actually not the case.

GRADUATION PROJECT REPORT - Environment 40

Pros:

• Less network load because the (core) files are left on the local
machine.

Cons:

• Some extra handling needs to be done when running into the situation
where the JAWS cache is copied, but the (core) files are not accessible;

• Installation is necessary for each user on the machine (so we could get
x duplicates for x users on the same machine).

5.3.4 STORAGE IN (LOCAL) ALL USERS PROFILE

This option is a result of an attempt to find a way to solve the problem that the
application must be downloaded and installed for every single user that uses
the machine. Therefore this option does not store the (core) files in the current
user profile, but in the All Users profile. As a result, the (core) files don’t need
to be copied each time for every user.

Pros:

• Less network load because the (core) files are accessible for all users;

• Less disk storage needed because the (core) files are stored only once
for all users.

Cons:

• The solution is not portable, where the JAWS cache still is (for XP
only).

5.3.5 STORAGE ON A FREE TO CHOOSE DISK LOCATION

This solution tries to get completely out of the user profiles and lets the user
choose a directory somewhere on the disk to install the (core) files.

GRADUATION PROJECT REPORT - Environment 41

Pros:

• When properly used, it could be used for all users;

• Less network load as a result of the first reason given.

Cons:

• The solution is not portable, where the JAWS cache still is (for XP
only).

5.3.6 STORAGE WITHIN THE JAWS SYSTEM CACHE

Analogous to each of the different options given in sections 5.3.1 to 5.3.5, one
may choose to put the application not in the user cache of JAWS, but in the
system cache. This system cache is available to all users on the particular
machine for running the application, but normal users may not modify
anything.

Pros:

• Application available for every user;

• No (unnecessary) copies;

• Normal users cannot “mess up” the application.

Cons:

• Users cannot perform updates;

• All users are obliged to use the same version of the product;

• The installation (and also updates) needs to be performed by the
administrator.

5.3.7 SUMMARY

Below you find a table with the most important properties of each of the
options on both axes that were discussed.

A = JAWS only (5.2.1)

B = JAWS + external core (5.2.2)

C = JAWS for installer + full program externally (5.2.3)

1 = JAWS only (5.3.1)

2 = JAWS + roaming current user profile (5.3.2)

3 = JAWS + local current user profile (5.3.3)

4 = JAWS + all users profile (local) (5.3.4)

5 = JAWS + free disk location (5.3.5)

GRADUATION PROJECT REPORT - Environment 42

Property A+1 B+2 B+3 B+4 B+5 C+2 C+3 C+4 C+5
No code adaptations x - - - - x x x x
Updates automatically x - - - - - - - -
Uninstalls automatically x - - - - - - - -
Low JAWS cache usage - x x x x x x x x
Available for all users - - - - - - - x x
Full portability (roaming) x x - - - x - - -
Single local install (no dup) - - - x x* - - x x*

* = depends on the installation procedure

Remark: roaming property based on findings within Windows XP. For Windows
Vista portability is only achievable when we choose for the option C+5 where
the “free disk location” is a roaming user profile.

5.4 Installation mode interoperability

With a change in the installation mode, the question arises whether or not the
new way the application will be deployed is compatible with the existing
installation modes. This classic installer exists in the form of a .exe file. In the
following two paragraphs we will discuss briefly the classic installation
procedure and the new installation procedure using JAWS.

5.4.1 CLASSIC INSTALLATION

The classic installation of an application follows the following (classic)
deployment strategy:

• Copy program files to the %Program Files% directory;

• Optionally register file extensions in the Windows Registry;

• Create shortcuts on desktop and start menu.

This deployment strategy requires local administrative rights and can be
performed in several ways:

• Manual installation using the installer acquired via CD or via the
internet;

• Automated installation by the IT department using Group Policy
Objects;

• Command line installation;

• All three above can be executed for one user or multi-user.

5.4.2 JAWS INSTALLATION

The JAWS installation follows a fundamentally different approach than its
classical counterpart. This approach can be summarized as follows:

• Program files are stored in a local cache;

• File extensions are registered in a virtual way (at least not
permanently);

• Shortcuts on desktop and start menu are created automatically.

GRADUATION PROJECT REPORT - Environment 43

This deployment strategy always works, regardless the rights level of the
logged-on user. The program is stored entirely in a local cache of JAWS that
resides in the current user profile.

5.4.3 UPDATING

Updating the software application is very different in both approaches. When
following the classic approach, in most cases the existing installation is simply
overwritten by the new one. This is a rather drastic approach which is not
necessary most of the time. Sometimes, upgrades do only replace specific files,
with leaving the majority of them untouched.

When using JAWS, this idea changes completely. JAWS uses a cache which is
used to store the program files. These program files are stored in a per file
way, which makes the task of updating easy and efficient. Furthermore, this
system permits to easily include extensions necessary for the program to run.

GRADUATION PROJECT REPORT - Experimental prototyping 44

6. Experimental prototyping

Discovering possibilities, trying out usability, investigating how technologies
work in practice… these are the main issues that form the experimental
prototyping phase. In total four major prototype versions were made along
two prototyping axes which will be described in section 6.2. The experimental
prototyping phase was probably the most moving phase of the entire project
that showed whether or not certain approaches were feasible.

6.1 Purpose and introduction

Creating one or more prototypes is in general a well-known included part of the
software development process. Its purpose is in general to determine whether
possible approaches to a solution are feasible or not. For this project, the
experimental prototyping was also aimed at discovering possible ways of
organizing files in the JAWS cache or somewhere on the local disk. As in the
previous section possible architectural setups were discussed, they could now
be put into practice in order to determine which one works best and to
proceed with towards a final solution.

But the prototyping phase had also another very important purpose which was
to get used to this relatively new technology called Java Web Start. When new
to this technology it is a rather complicated task in setting it all up
successfully. The small sample application described in section 4.8 showed
already that creating JAWS applications that need full permissions is not a
straightforward business. When extending this on a scale of a middle-large
applications, the task only gets more complicated. The experience gained
through this prototyping phase was therefore vital for creating a final solution
successfully.

There were four prototypes built that could be placed on two axes with respect
to incorporation into JAWS. These prototypes are named P1, P2, P3 and P4.
There is a whole spectrum that could be used between the extremes of each
axis, described and visualized in the following sections.

In order to understand why these approaches were taken and how the
decomposition was made in terms of program pieces, we must analyze the
decomposition into components.

With the construction of the prototypes we try to identify the most convenient
solution. In general this comes down to where we actually want to place our
application on the prototype axis as defined in section 2.1, but we will anyway
sum up the key objectives here:

• What is the most convenient level of putting (groups of) components on
the local disk;

• If we put files on the local disk, then where to put them;

• What versioning techniques can be used for files put on the local disk;

• How to keep the installation easy.

GRADUATION PROJECT REPORT - Experimental prototyping 45

For each of the prototypes discussed in section 6.3 to 6.6, we will discuss each
of these aspects in order to get to the most convenient prototype that could
actually be used for the final recommendation.

6.2 Prototype axes

In order to classify the prototypes, two axes have been identified during the
prototyping: an axis describing how much of the application will reside in the
JAWS cache and a second axis describing the granularity of the components put
on the local disk in order to facilitate optimal updating and versioning.

6.2.1 THE JAWS CACHE AXIS

The first axis identified is determining how much of the application will reside
within the JAWS cache. This is visualized below:

Figure 8: first prototype axis

On the left we have a situation where we put everything on a specific local disk
location and thus using JAWS uniquely for deployment/install. This approach
was followed in the first prototype (P1). On the far right side we have a
situation where we use the caching mechanism of JAWS completely by putting
the entire application into the JAWS cache. This approach was followed in the
second prototype (P2). Finally, in the third and fourth prototype (P3 and P4)
we followed an approach to put only Java-based components into the JAWS
cache and putting everything else on a specific disk location.

6.2.2 THE GRANULARITY AXIS

The second axis identified is the granularity axis, determining the granularity
of the packages deployed on the local disk. The smaller the packages (high
granularity), the more efficient updates and versioning can be performed. This
axis is visualized below:

Figure 9: second prototype axis

On the left we have a situation where we have a low granularity that translates
into a situation with large packages. The inconvenience of this property is that
when updating, large amounts of data need to be replaced, even when within
such a package only minor changes were made (as was the case for the first
three prototypes). High granularity was achieved in the fourth prototype (P4)
that resulted into a much more optimal way of updating and versioning.

GRADUATION PROJECT REPORT - Experimental prototyping 46

Figure 10: both prototyping axes combined

In order to give a full view of the prototyping axes, the figure above showing
both at the same time with the location of the four prototypes is presented.

In the following sections we will discuss the four prototypes with their specific
issues and what the results were of these.

6.3 Prototype P1 (100% local disk)

In the first prototype we tried to create a sort of installer that runs in JAWS
and that copies files from an included jar-file into a particular directory on the
local disk.

The first question that arises in this technique is of course: “Where to put the
files?” An important issue that we need to keep in mind is the key objective of
the whole operation of getting a web-based solution for an application which is
that the installation should be performable by each user type, also for users
with restricted rights. This already rules out certain disk locations like the
typical Program Files and Windows directory. But next to these locations,
administrators could have given the user no write access to any other folder on
the hard disk (this situation is – I admit – very rare, but not impossible).
Fortunately there are some locations that are always accessible. The ‘All Users’
profile and the current user profile are always available for reading and writing
data. One might choose to put everything into the current user profile in order
to keep the files for the current user, but for optimization reasons we chose for

GRADUATION PROJECT REPORT - Experimental prototyping 47

this prototype to put everything into the ‘All Users’ profile in order to avoid
multiple copies of the application on the local hard disk.

6.3.1 FILE ORGANIZATION AND COPYING

The primary point of interest is how we organize the files in jar-files for the
installation and how we get them out for copying them into the destination
folder.

In the prototype we have chosen to first create a jar-file that contains all the
files that must be deployed, while keeping the directory structure intact. Then,
for JAWS, we put this jar-file together with the deployment application class-
files into a new jar-file which is signed.

In order to be able to extract the files from the initial jar-file, we define the
following statement:

InputStream fis = getClass().getResourceAsStream("myjar.jar");

Using this InputStream object, we copy its content towards a temporary file
using the following code:

temp = File.createTempFile("temp",".tmp");
temp.deleteOnExit();
FileOutputStream fos = new FileOutputStream(temp);

With a standard binary copy towards the temporary file, we can now use this
file for normal jar-operations as follows:

jarPubSel = new JarFile(temp);

Enumeration enmEntries = jarPubSel.entries();
while (enmEntries.hasMoreElements())
{
 strEntry = (String)(enmEntries.nextElement().toString());
 copyFromJar(strEntry, strDestination);
}

In this code we use a self defined procedure called copyFromJar that takes
(input location, output location) as arguments.

This copying procedure is analogue to the copying procedure of the jar file
itself. An important detail is the creation of directories where the files need to
be put into. This can be done using the following procedure:

intIndex = strDestination.lastIndexOf("/");
strDir = strDestination.substring(0, intIndex);
boolean success = (new File(strDir)).mkdirs();

Where strDir contains the value of the sub directories that should be created.
The mkdirs method then tries to make the entire directory structure given and
returns false when this was not possible for some reason (like not having the
necessary rights or that the directory/directories already exist).

6.3.2 RUNNING THE APPLICATION AND REMOVAL

Apart from copying files, we must also be able to run the application, as well
as update and remove it. In this prototype updating is equal to complete
removal and re-copying, therefore we do not discuss this issue separately here.
Application launching and removal needs some discussion however.

GRADUATION PROJECT REPORT - Experimental prototyping 48

Running the application is a rather simple operation and can be done by using
the Runtime object. The following code runs an arbitrary exe file:

runtime.exec(strProfilePath + "\\my_exe_file.exe");

Where strProfilePath denotes the location of the location of the folder where
the application was copied to in the All Users profile.

Application removal is a little bit more difficult and in this prototype we
haven’t provided a complete removal. Files are removed, but the directory
structure (though empty) remains. It should not be difficult however to create
this missing extension.

For removing the application, we first need to delete the files in the
directories created. This is a rather straightforward operation that can be
performed using the following code:

private void deleteDirectory(File path)
{
 if (path.exists())
 {
 File[] files = path.listFiles();
 for(int i=0; i<files.length; i++)
 {
 if(files[i].isDirectory())
 {
 deleteDirectory(files[i]);
 }
 else
 {
 files[i].delete();
 }
 }
 }
 System.out.println("Deleting files...");
}

6.3.3 HOW FAR ARE THE OBJECTIVES MET?

For each prototype we will discuss in the last subsection how far the objectives
we defined in section 6.1 are met.

[1] Is the location on the prototype axis convenient?

Not really. Using JAWS just for installing purposes is a waste of the supported
functionality of JAWS. The result of putting everything on the local disk like
classic installations leaves us with a complete versioning control that must be
carried out for all components.

[2] Where to put the files on the local disk?

We chose to put them in the All Users profile in order to avoid multiple copies
of the same program. Putting everything into the All Users profile however,
leaves us with the disadvantage that the same program with the same settings
will be presented to each user. I.e. users cannot make personal configurations,
nor choose their own set of different versions of the product.

[3] What versioning techniques can be used?

In this setup the versioning needs to be done entirely on our side. This creates
a heavy overhead of administration which is not desirable. Especially for the
part that is most likely to change this is potentially problematic. Versioning is

GRADUATION PROJECT REPORT - Experimental prototyping 49

not supported by the prototype, because it is far too complex to put into a
prototype.

[4] Is the installation easy?

Yes, however the installation is not automated in this prototype. But the user is
presented to a simple user interface that leaves no doubt and that performs
the installation as good as automatically once chosen for one of the four basic
operations (install, update, remove and run).

Furthermore, to refer to the key issue, this prototype can be successfully
executed by any type of user under both Windows XP and Windows Vista.

6.4 Prototype P2 (100% JAWS)

In the second prototype we turn towards the other end of the prototype axis by
putting the entire application into the JAWS cache. This approach was
significantly more difficult than the 100% local disk approach, a result when
starting with an application that in the original situation was installed onto the
local disk. An approach where we do not touch this structure is per definition
the easiest one.

An interesting point of this approach is that it is not necessary to write a new
program that performs the actual deployment. This approach where we put
everything into the JAWS cache has the great advantage that JAWS is doing all
the work for us. In fact, this approach lets us profit maximally of the
technology JAWS offers. The only thing we have to do is to create the signed
jar file that JAWS is going to use, as well as the JNLP file that defines how the
application must be initialized and … — this is the most irritating part — we
need to perform some source code adaptations in order to make our
application work.

6.4.1 JAR ORGANISATION

For this prototype we chose a different approach of ‘jarring’ then in the first
prototype. We didn’t put everything into one big jar file. A reason for this is
that the application already uses jar files that could be used directly. The only
thing that was necessary to do was to sign them.

This might appear simple and straightforward, but it turned out that there are
some tricky issues involved. If you use third party jar files, you could find
yourself in the situation where a jar file is already signed. If you try to
(over)sign this jar file with your own signature, there is no message that tells
you that this is not possible. Actually, the jarsigner application of Java simply
signs your jar file and doesn’t complain about the existing signature. However,
a problem arises at the moment you want to use the jar file by JAWS. Then
JAWS tells you that not all jar files were signed by the same certificate. Thus,
in fact, resigning does not override the previous signature. The signature must
first be removed (which is easy to do: just unzip the jar file, delete the META
data and the manifest and reconstruct the jar).

GRADUATION PROJECT REPORT - Experimental prototyping 50

6.4.2 JNLP CONFIGURATION

The JNLP configuration gets more complicated when you want to have a
specific deployment. JNLP is specially developed for this goal so there is no
problem with that. In fact you could compare configuring a JNLP file with some
form of scripting in order to guide the application to the direction you want.

In order to have a workable JNLP configuration where we can actually use
native code (that is, for example DLL’s), we need to use a special specification.
First of all you need to specify for which operating system the libraries are
intended and then using the nativelib tag you must specify for JAWS that it
concerns native code. For this prototype this looks like:

 <resources os="Windows">
 <nativelib href="core.jar"/>
 </resources>

The core.jar file contains win32 DLL files. But doing this does not suffice. The
problem is that having the DLL’s visible for JAWS, does not include that they
are also visible for the application. So if you would try to run the application in
this configuration you would get errors like that the program cannot find the
DLL files. In order to solve this problem and make the DLL files available for
your program, you need to specify these DLL files in the code of your program
using the loadLibrary function of Java. Furthermore you need to specify these
libraries in order, which means that you need to do a dependency analysis of
your DLL files used and you must give the loadLibrary commands from the
lowest to the highest level (thus start with the DLL that has no dependencies
and then moving upwards towards those using the DLL). This issue has as a
consequence that you need to make changes in the existing source code which
could be seen as a disadvantage, however it should be quite obvious by now
that no changes at all is an almost impossible exercise.

For the application source code we needed to include a new class. This class
has as function to prepare it in such a way that it launches correctly.

6.4.3 CHANGING SYSTEM PROPERTY VALUES ABOUT JAVA ENVIRONMENT

Sometimes it might be necessary to change the values of the environment
variables in JAWS. JAWS does initialize for example the user.home variable to
be the desktop folder of the current user profile. This is not always what you
might want. If you need to change such a setting, this can be done using the
following directive:

<property name="key" value="overwritten"/>

This directive should be placed in the <resources> scope.

6.4.4 HOW FAR ARE THE OBJECTIVES MET?

 [1] Is the location on the prototype axis convenient?

No. The reason for this is that using the JAWS cache for the entire application
puts a heavy load on to this cache (about 50 MB). This means that if users have
disabled the cache (which is supported by JAWS), the 50 MB need to be
downloaded each time. Furthermore, for Windows XP when working in an
environment where you have a central server with workstations, the JAWS
cache is located in a roaming user profile which means that it will be copied

GRADUATION PROJECT REPORT - Experimental prototyping 51

back and forth to the server each time a user logs on or off. On the other hand,
for the developer this is a very nice solution because there are very little
adaptations necessary on the source code side of the story and (almost) no
additional tools have to be written for putting files in the right place on the
local disk. The program is further guaranteed to work, because it doesn’t have
to be written somewhere, since JAWS is doing all the stuff for us (except lack
of disk space of course).

[2] Where to put the files on the local disk?

In principle, when no further data files are required, this is no issue. However,
if your application has data files that are necessary to run and that must reside
on a disk location in order to be found, you will need to write a procedure that
copies these files to the desired location at startup of your program. These
data files themselves could then be saved in a separate JAR file.

[3] What versioning techniques can be used?

In this prototype no versioning is required because JAWS is doing it all for us.

[4] Is the installation easy?

The installation is a straightforward JAWS initialization of a program and thus
very easily executable by a user having little to no knowledge of installing
applications.

Furthermore, to refer to the key issue, this prototype can be successfully
executed by any type of user under both Windows XP and Windows Vista.

6.5 Prototype P3 (balanced local disk/JAWS)

The third prototype is not much about coding yet another prototype, but more
an investigation in finding the right balance between putting parts in the JAWS
cache and putting files in the current user profile. The question is mainly:
“What to put where?” For the third prototype we have decided that we stick to
the JAWS cache for java. That means that only Java components will be
deployed by using JAWS. Additional, non-java components (like win32 DLL’s)
and supporting data files will all be put into the current user profile. But it
doesn’t end just with putting files in the user profile, because we want to give
the user more options than just running the newest version of our application.
We want to offer a versioning system that enables each user to use his own
preferred version of the application.

6.5.1 CONTROLLING JNLP

Next to versioning issues we also want to optimize the deployment which needs
usage of an extra feature of JAWS, the JNLP API. This API enables the
programmer to control the way JNLP (and thus JAWS) performs its common
tasks, like for example the way resources are cached [JNLP-API].

We will need to use this API in order to remove items from the JAWS cache
once we have transferred them to the directory of the current user in his
profile (otherwise we would store the data twice which is not desirable of
course). The way of doing this is as follows:

GRADUATION PROJECT REPORT - Experimental prototyping 52

First we need two imports:

import javax.jnlp.*;
import java.net.*;

The javax.jnlp package is not standard included into java, you need to specify
it in the class path defining the location of the jnlp.jar file which at its turn is
included in the JDK versions 1.5 and higher.

Next, we need to define the download service object and fetch the available
service into it from the Service Manager. This procedure is depicted below:

DownloadService ds;

try
{
 ds = (DownloadService)ServiceManager.lookup(

 "javax.jnlp.DownloadService");
}
catch (UnavailableServiceException e)
{
 ds = null;
}

Finally, we need to identify the resource exactly on the same address as
mentioned in the JNLP file. After that it can be removed using the remove
resource routine from the Download Service object:

try
{
 URL url = new URL("http://localhost:8080/oce3/pokerst.jar");

 if (ds != null)
 {
 ds.removeResource(url, null);
 }
}
catch (Exception e)
{
 // error handling code
}

An important thing to note is that if the given URL does not exist, the
Download Service object does not raise an exception about it. A developer
could therefore be tricked to think that the application works correctly. But if
the resource is not identified correctly, it will simply stay within the JAWS
cache. In order to check whether the resource has been correctly deleted, it
suffices to consult the cache visualization of Java and check the size of the
application. Even if the window is opened, the size is updated automatically
when the program removes it.

6.5.2 ARE THE OBJECTIVES MET?

[1] Is the location on the prototype axis convenient?

Yes. By putting a large part of the program resources outside of the cache, the
cache usage is significantly reduced. We also do profit from the versioning that
is done by JAWS itself, leaving the part that is most likely to change over to
JAWS. For the parts outside of the JAWS cache we need to do some versioning
by ourselves. The current idea is to create a new directory for each new
version and put the files in the particular subfolder. However, estimations are

GRADUATION PROJECT REPORT - Experimental prototyping 53

that changes in this part are much less likely than changes in the Java-based
part.

[2] Where to put the files on the local disk?

For accessibility reasons the data and core files are put into the current user
profile.

[3] What versioning techniques can be used?

The versioning chosen is done per subdirectory. If the required version does not
exist, it is copied to the correct location from JAWS, otherwise it is just used.

[4] Is the installation easy?

The installation copies the necessary files and performs the checks
automatically. For the user there is no difference in the installation session and
the normal application run session, except that in the first situation the start
up takes a little bit longer due to downloading and copying.

6.6 Prototype P4 (balanced, with high granularity)

The fourth prototype is heavily based on the third prototype and is part of the
chosen path towards a definitive solution. In the third prototype we
determined the global set up of packages. The fourth prototype continues in
this direction and splits up resources in smaller parts.

Next to more granulation we also included the notion of shared and private
resources. Shared resources are stored in the All Users profile, private
resources in the current user profile. The whole idea is to save disk space and
reduce download time for most of the resources only need to be downloaded
once. This approach assures rapid start up times for the application as well as
efficient storage. With this effect also comes that updates can be processed
much more efficiently. Instead of replacing complete packages of many
megabytes in size, we are able to replace much more precisely a component
without re-downloading 90% of the data we already had.

6.6.1 DEPLOYMENT CONFIGURATION

In order to be able to configure the subdivision in an easy way, an external
configuration file was created. This is especially important for future use for
the creation of updates, but also during the prototyping phase in order to find
a suitable level of granulation.

Two things immediately need some further explanation: why do we use an
encapsulated jar file and why do we use global variables. This is explained
below.

In order to deploy files easily towards a target directory, the easiest way is to
have a jar file you can simply unzip to that particular target. Unfortunately the
jar used by JAWS is already unzipped by JAWS itself and cannot be accessed
through a JarFile object. Thus we are forced to retrieve an encapsulated jar
file using the standard getResource routine from JAWS.

The use of global variables is another story. System variables for Java can be
changed at runtime and also by means of the property declaration in a JNLP
file, but the annoying thing is that the JRE does not take them into account. So

GRADUATION PROJECT REPORT - Experimental prototyping 54

you can change whatever you want (and even by forcing an output see that the
change actually took place), but when it comes to finding resources it turns out
that the changes are not taken into account.

So in order that JAWS finds the resources we stored on the local disk exactly
there where we want JAWS to find them, we are obliged to use explicit,
absolute paths. These are – of course – constructed in a relative way by taking
the paths to the All Users profile or the current User Profile. For each of the
items these variables are set using the System.setProperty(…) function and
these are in the application source code at the locations where necessary
retrieved using the System.getProperty(…) function.

6.6.2 UNINSTALL

The fourth prototype differs also from the third one on the point of uninstall.
The 3rd prototype did not have any uninstall functionality; the 4th prototype has
a fully functional uninstaller. The uninstaller removes all resources of the
application in the All Users profile as well as in the current User Profile.

Furthermore, all resources (in fact all jar files that are in the JNLP) are
removed from the JAWS cache in order to clean up the JAWS cache as well.
This operation is almost identical to the manual uninstall in the Java Control
Panel. The only difference is that the reference to the application remains
present in the list, but the application doesn’t occupy any disk space anymore.

6.7 Applet prototype

Originally, the applet option was dropped because it would be unfeasible due
to long loading times and the fact that a large application should not reside in
one or more applets for practical reasons. At the end of the project, the
remaining time was used to perform an investigation into this matter to really
see what the effect on the loading time would be when we would try to build
an applet containing (the core part) of the application anyhow.

Internally, this became our prototype P5, where we adapted more or less at
will parts of the application such that it would run within an applet in a mode
where a user can only directly select its documents for printing and being able
to send it to a printing device. This last item — being able to actually print —
was left out, because it appeared too complicated in the time available. The
application was therefore made to run in the demonstration mode.

The prototyping performed with this “light” version proved our initial point
that it would be too heavy for an applet-based approach, as loading times
exploded (especially under Windows Vista, where the applet loading
mechanism has been updated in order to make it work again in the JRE beta 6
update 10 version). Also the “light” version still needed a JAR file of about 47
MB. As a result of the necessity for full access to system resources, this JAR file
must be signed (same procedure as for JAWS). The result is that at launch, all
files inside this archive file must be checked in order to determine whether
their digital signatures are correct. This takes a lot of time and seriously
reduces the feasibility of this solution.

GRADUATION PROJECT REPORT - Experimental prototyping 55

6.8 Prototype comparison

In order to be able to choose the prototype that serves us best, we need to
identify a collection of criteria in order to measure the quality of each of the
prototypes.

This section presents these criteria and applies them to the prototypes
discussed in the previous sections in order to come to a concluding advice on
which way to go.

6.8.1 COMPARISON CRITERIA

The criteria that will be used to measure the quality of the prototypes are
defined as follows:

• CC1: Ease of installation (measured by the minimal number of actions
required by the user to complete the installation);

• CC2: Hard disk usage when having n users and m versions (measured by
the number of megabytes occupied) with:

o s = full program size (= sp + su);

o sp = size of program core files;

o su = size of program user files;

• CC3: Installation duration (measured in seconds counting from the click
on the installation link to installation completion);

• CC4: Application start up duration (measured in seconds);

• CC5: Impact on existing code (measured by the amount of changes
necessary in the existing code in order to have the application
running);

• CC6: Ease of adaptation (measured by an estimation of the time
required to create a new version or update).

6.8.2 COMPARISON TABLE

In the table below the prototypes are compared using the definitions of the
comparison criteria:

 100% local disk (P1) 100% JAWS (P2) Balanced (P3) Granulation (P4) (applet)
CC1 2 actions 2 actions 2 actions 2 actions 1 action
CC2 m*n*s n*s (no per user

versioning possible)
m*sp + n*su ≤ m*sp + n*su

(due to granulation)
n*(s)

CC3 50 seconds 35 seconds 41 seconds 41 seconds
CC4 9 seconds 9 seconds 9 seconds 9 seconds

55 sec

CC5 no impact medium (2
classes)

medium (2
classes)

medium (2
classes)

high

CC6 half an hour several minutes depending on
the update
from half an
hour to several
hours

depending on the
update from half
an hour to
several hours

probably
hours

GRADUATION PROJECT REPORT - Experimental prototyping 56

Note for applet: this one is included only for the record, because it is not
considered as a feasible solution.

6.8.3 CONCLUSION

The criteria defined above need a discussion about priority in order to make a
well-founded choice for which one we should use for development. We see that
the outcome for certain criteria remain stable, like CC1 and CC4. Therefore we
can ignore these for the moment (although these are important as well, but
show us in fact that their outcome doesn't change when we change the
underlying architecture).

The highest priority was given to a most optimal use of resources, most notably
the disk usage. This disk usage is defined by two criteria, CC2 (everything on
the local disk except the JAWS cache) and CC7 (the JAWS cache itself).
Especially CC7 is important, because for Windows XP users we saw that the
JAWS cache resides in the roaming part of the user profile (and thus will be
copied back and forth between server and workstation when logging on). As a
result of this, we consider prototype P2 not suitable (for it has the highest
JAWS cache use). Prototype P1 looks inviting with a very low value for CC7, but
has another major disadvantage: a high value for CC2. When we compare the
expression in CC2 for P1, P3 and P4, we see that P3 and P4 perform much
better, with a relatively small increase in the value of CC7. The impact on the
values for the remaining criteria CC3, CC5 and CC6 are also considered to be
small and acceptable. Based on this, we declare P1 not suitable as well.

What remains are the prototypes P3 and P4. These can be compared easily, for
they only differ on criterion CC2. Determining the value for this criterion is a
difficult task for P4 and has therefore been abbreviated to giving an upper
bound. Thanks to the introduced granularity, this upper bound will only be
achieved during the first runtime. Each of the following runtimes (when
updates are available) will result in a much lower value than this upper bound
(unless all packages are affected, which will be a rare occasion).

P3 does not use this granularity and will therefore loose this advantage of a
significant reduction of disk space usage resulting of future updates. Therefore
we choose P4 over P3.

6.9 Prototype environmental testing

Having chosen P4 as our favorite prototype to continue with, we now need to
determine its robustness by testing it in different environments in order to
determine whether it is up to the task we envisaged it for.

JAWS provides interesting automated updating mechanisms that liberate
programmers from doing a lot of administration by themselves in this particular
field. Furthermore, Sun claims that JAWS updates itself with the Java Runtime
Environment (JRE) in case of need. Particularly this claim together with the
ability to run the program is the main subject of the test session that led to an
extensive test report [JATERE] of which this section is a synthesis.

GRADUATION PROJECT REPORT - Experimental prototyping 57

6.9.1 ENVIRONMENTS USED FOR TESTING

The following operating systems were used for testing:

• MS Windows XP Professional SP2 NL

• MS Windows Vista Ultimate NL

In both cases preconfigured images were used.

For accessing the prepared web page containing the link to the JNLP file for
starting the JAWS application the following browsers were used:

• MS Internet Explorer 7

• Mozilla Firefox 2

For each of these combinations the following user account levels in Windows
were used:

• Standard user (SU)

• Power user (PU)

• Local administrator (Admin)

Last but not least, the following JRE’s were used to start with:

• JRE 1.3.0 initial release with separate JAWS (1.0.1_02)

• JRE 1.4.0 initial release (JAWS incorporated)

• JRE 1.5.0 initial release (JAWS incorporated)

• JRE 1.6.0 initial release (JAWS incorporated)

Taking all possibilities together, this situation gives rise to a total number of 48
test cases (4 x 3 x 2 x 2).

6.9.2 TEST DESCRIPTION

The following test scenario was executed:

• Install the required JRE [1.3 | 1.4 | 1.5 | 1.6] as Admin

• Log on as the requested user [SU | PU | Admin]

• Launch the requested browser [MSIE | MFF]

• Launch the application

Attention was paid to the following aspects:

• In case of another JRE than version 1.6, how the update process of the
JRE was executed;

• How the application launched (errors, strange behavior etc).

6.9.3 ENVIRONMENTAL ISSUES

As described In [JAWEST], the JNLP syntax for Java 6 prescribes a change of
the <j2se> tag to <java>. This had to be changed back into <j2se>, for
otherwise the JNLP file is rejected by older JRE versions than 1.6.

GRADUATION PROJECT REPORT - Experimental prototyping 58

Therefore the JNLP configuration tag for the JRE to be used became as follows:

<j2se href="http://java.sun.com/products/autodl/j2se" version="1.6.*" />

Furthermore there was an issue on JAR files. JAWS works with these files and
they need to be signed when we want to have unlimited access to the file
system which is the case for our application. The problem with this signing is
that the signatures – once the JAR file downloaded – need to be checked by
JAWS. The early versions of JAWS seem to use the manifest of the JAR file for
this purpose in a rather stupid way. They just scan all the lines of the manifest
and take every entry as a file record. But newer versions of the JAR utility that
comes with Java also put comments and directives in this manifest. Of course
these “files” cannot be found in the JAR.

A simple, but rather brutal way to solve this, is to edit the existing JAR’s and
delete the manifest and all signature files (in the directory META-INF) entirely
and resign the resulting JAR file.

Finally, given the fact that a proxy server is used in the environment where the
tests were conducted, we had to configure this. It turned out that this was not
always possible. In the test results errors caused by this particular
configuration are marked separately.

6.9.4 TEST RESULTS

Figure 11: results of environmental testing

The given numbers correspond with the numbering given in the legend right of
the result matrix.

1. Proxy error

For some scenario’s it was not possible to configure the proxy server in such a
way that JAWS executed correctly.

2. Fatal error

These were very serious situations where during the update of JRE something
went seriously wrong that not only had as a consequence that the installation
of the update crashed, but also that it left the Java system behind in an

GRADUATION PROJECT REPORT - Experimental prototyping 59

unusable state. The default JRE pointed to the failed installation and as a
consequence Java applications could no longer run.

3. Does not work/various non-fatal errors

The following two errors occurred:

• Insufficient rights to proceed with JRE update (administrative rights
needed);

• JRE update program crashes because Windows blocks access to JAR
content to check signatures (this only occurred on Vista).

4. Crashes at first start-up

A special situation where the update program crashes at first which provokes a
“compatibility mode” pop-up of Vista. After accepting this suggestion and
launching the update again, the installation succeeds.

5. Works correctly

No problems or strange behavior detected.

6. Application must be launched again to work

After updating the JRE, the application cannot run directly and thus the user
must click again on the link to launch the program (which launches correctly).

7. No inter-user deletion

Under Vista with JRE6 (where there is à priori no need for update) strange
things seem to happen with file access rights. When the application is installed
by user A, user B can no longer run the integral deletion utility for the shared
part in the All Users profile.

6.10 Prototype comparison testing

In section 6.8.1 comparison criteria (CCs) were described in order to compare
the different prototypes. But these CCs can also be applied to one prototype in
different environments. This is exactly what has been done in order to get
insight into the effect of different environments.

We took the prototype P4 and ran it in different environments and measured
the differences. As can be seen in the table below these measurements show
drastic differences between Windows XP and Windows Vista, especially for
execution times.

6.10.1 RECAPITULATION OF THE COMPARISON CRITERIA FOR TESTING

Let’s recapitulate what CCs were identified:

• CC1: Ease of installation (measured by the minimal number of actions
required by the user to complete the installation);

• CC2: Hard disk usage when having n users and m versions (measured by
the number of megabytes occupied) with sp for size of the program
files and su for the size of the user files;

GRADUATION PROJECT REPORT - Experimental prototyping 60

• CC3: Installation duration (measured in seconds counting from the click
on the installation link to installation completion);

• CC4: Application start up duration (measured in seconds);

• CC5: Impact on existing code (measured by the amount of changes
necessary in the existing code in order to have the application
running);

• CC6: Ease of adaptation (measured by an estimation of the time
required to create a new version or update);

• CC7: Duration of deletion procedure (measured in seconds).

Note that CC5 and CC6 (in italic font) are not applicable in these tests and that
CC7 (in bold font) has been added to the list for these tests because of its
relevance here.

6.10.2 TESTING ENVIRONMENT

The tests were carried out using Microsoft Virtual PC 2007 with the following
configuration:

• 400 MB of RAM

• Pentium-4 2.8 Ghz processor

• Prototype P4

• JRE 1.6.0_05

• Using the administrator account

• MS Windows XP SP2 NL Professional (5.1)

• MS Windows Vista NL Ultimate (6.0)

6.10.3 TEST RESULTS

Windows XP Windows Vista
MSIE MFF MSIE MFF

CC1 (# actions) 2 3 3 3
CC2 (MB) sp × m + su × (m + n)
CC3 (seconds) 72 65 147 165
CC4 (seconds) 33 34 119 107
CC8 (seconds) 10 12 24 25

Note: CC1 is obtained by counting the number of dialogs that need a user
action.

GRADUATION PROJECT REPORT - Development / Application 61

7. Development / Application

Because of confidentiality concerns, the chapters treating the development
phase only cover general technical information.

We will therefore look here into a technical detail concerning a framework for
native libraries. Suppose that you have a Java application that uses win32
DLL’s (native libraries). In a setting of Java Web Start we saw that explicit
loading is necessary. Java contains some interesting technical tools, of which
we will discuss an important once here called SPI (Service Provider Interface).

7.1 Handling native libraries

Native libraries can be of a major problem when using Java Web Start. If these
libraries at themselves do not use any further resources, the problem can still
be solved as we saw in the 100% JAWS prototype. JAWS does support native
libraries and makes them load, but when you happen to have native libraries
that use resources at their turn, then it becomes potentially complicated.

A way to tackle this problem is discussed in this section that is devoted to
development issues related to the application we want to deploy. The idea is
to create a framework for libraries, called the “Library Provider Framework”
(LPF). This framework is based on the relatively new principle called SPI
(Service Provider Interface) that has been put into Java SE version 6. SPI is a
technology that enables interfaces or abstract classes to be implemented by
several implementations among which can be chosen at runtime. This feature is
essential within the Library Provider framework, because it enables us to
connect native libraries to an application using the same, generic interface.

abstract class A

method 1

method 2

...

method n-1

method n

abstract method m

class B extends A

override method m

SPI as we use it

class C extends A

override method m

When having one abstract class with one or more abstract methods, SPI enables you to

create one or more service implementations of this/these method(s) residing in one or

more other class(es). Using Java’s SPI functions, you can iterate through the available

implementations of the service.

A configuration file residing in the package of the implementation class(es) contains the

name(s) of the class(es) that is/are an implementation of the abstract service.

File: A

B

C

General idea of SPI

interface A

method 1

...

method n

class B implements A

method 1

...

method n

class C implements A

method 1

...

method n

When an interface of a class with one or more methods, SPI enables you to create one or

more service implementations of this/these method(s) residing in one or more other

class(es). Using Java’s SPI functions, you can iterate through the available implementations

of the service.

A configuration file residing in the package of the implementation class(es) contains the

name(s) of the class(es) that is/are an implementation of the abstract service.

File: A

B

C

Figure 12: the SPI mechanism explained

Thanks to the chosen architecture, LPF forms also a solid basis for the future.
New native libraries can be added with stunning ease, without touching
anything of the existing code to make it work. Changes related to the
application for library loading have therefore a much wider effect than “just”
making it possible to deploy and run the application within the JAWS
environment.

GRADUATION PROJECT REPORT - Development / Portal 62

8. Development / Portal

The portal is the denotation of a small application that takes care of the
interface between JAWS and the actual application to deploy. Such a small
application might also be integrated into the application itself as a part of the
start-up process. The task to be fulfilled by this portal is to take care that all
files are in place that might be required for launching the (core) application.
Here once again, as a result of imposed confidentiality, only general technical
items are discussed.

8.1 Requirements

A portal that we envisage here must provide us with the means to perform
actions that put files in a certain location on the user’s local hard disk as well
as to download necessary resources to the JAWS cache.

Furthermore the portal must provide a certain means of versioning. This
versioning is the central requirement of the portal, but it can be decomposed.
A portal will typically have requirements like:

• Downloading resources to the JAWS cache;

• Removing resources from the JAWS cache;

• Copying resources from the JAWS cache to an arbitrary disk location;

• Detection of presence resources on an arbitrary disk location;

• Creation of directory structures on arbitrary disk locations for storing
resource versions;

• Perform integrity checks on the present resources.

8.2 Functional design

An LPF like structure can be reused for the installer or portal. Not for
recovering an instance of a native library of course (for this is not applicable
here), but for recovering the resources of a library. These resources are
important for the installer to know about, such that it can check whether the
necessary files are present at the locations where they are expected to be.

In this section the development of the installer is discussed in detail.

8.2.1 INSTALLER WORKFLOW

The installer does not only play a role as installer, but merely as a portal
application that launches, updates and installs the application when needed.
The idea is that a user launches the portal application through Java Web Start.
The portal application will then search within the LPF for the native libraries
provided together with their resources. When these files are not present, they
are downloaded at the background into the JAWS cache, copied to their correct
location and finally deleted from the JAWS cache. As a last step, the portal

GRADUATION PROJECT REPORT - Development / Portal 63

launches the application itself. The figure below shows how the execution
cycle of such a portal application could take shape.

Figure 13: version controller and JNLP execution cycle

8.2.2 INTEGRITY CHECKING

As integrity checking is also an important issue, we will discuss this as well.
Integrity checking can be implemented by means of creating a ZIP archive of all
files in the base directory of a resource in question. This ZIP file is then
temporarily saved in order to open it again, convert its contents to a byte array
and calculate the MD5 hash of it. The MD5 hashing algorithm provides a 16 byte
fingerprint of a given array of bytes (usually represented as a 32 characters
long hexadecimal string). Even the smallest change in the composition of the
files in the ZIP file will lead to a dramatic change in the outcome of the MD5
hash. In the figure below the integrity checking process is visualized. It suffices
to store the MD5 hash of the file collection as it should be in a configuration
file to compare it with the outcome of the algorithm on the user’s disk.

Figure 14: three step process of integrity checking

GRADUATION PROJECT REPORT - Conclusion and future work 64

9. Conclusion and future work

Having addressed all items that made up this project, we can now pass on to
the conclusion. In this section we will discuss the final result and test it once
more to the initial requirements that were presented at the beginning of the
project. In eight months time a lot was achieved in both research and
development of a practical application. The deployment of applications, a
phase that is often taken for granted as a necessary phase at the end of the
software development process, is finally getting more attention and is
becoming an interesting field at its own within computer science.

9.1 General application deployment

Application deployment in general is becoming more and more important. A
significant increase in the importance of security obliges computer scientists to
also address the problems that they create in the deployment phase of
applications.

Deploying with elevated rights or even administrative rights must be avoided if
possible. This has a direct influence on the architecture that is chosen in
phases earlier in the software development process. We could therefore say
that there is a tendency of a shift of importance of deployment to earlier
phases.

With the existence of more and more control within professional organizations
concerning the way computers are used — and what programs that are or can
be installed — also the techniques used for deployment need serious attention.
When delivering a commercial product, you should not only take the single user
into account, but also network administrators who sometimes have to deploy
applications over hundreds of computers at the same time.

Keeping applications up to date is an integral issue in application deployment.
During the development of applications this must be taken into account. Bug
fixes and the addition of features in new versions must be easily accessible by
the user — and by preference should be deployed automatically. Especially
internet and the more and more developing web services offer a beautiful way
of supporting this important process.

Last — but certainly not least — in order to emphasize the importance of a good
deployment, we see also that customers are more and more aware of potential
problems with deployment. The decision to buy your product rather than the
one of your competitor nowadays also depends on this issue. We may therefore
conclude that negligence in the field of deployment may be harmful to a
product’s success.

In the light of these observations, we saw that a platform-based deployment
system like Java Web Start for Java applications looks most promising. The fact
that this technology was followed by Microsoft for their .NET Framework in
2006 is also a strong indicator for the potential of these systems. As we saw in
the beginning of this document in section 4.4.8 where we described the phases
of the deployment process, these systems tend to support deployment

GRADUATION PROJECT REPORT - Conclusion and future work 65

activities in a broader sense than almost any other deployment strategy.
Whenever a pure web-based approach is impossible or impractical, these
systems offer a valid alternative. Although Microsoft’s ClickOnce technology
only works for .NET applications, it might be interesting to give a short
comparison between the two technologies with respect to key abilities that are
surprisingly similar (based on [MSCLON]):

Microsoft ClickOnce Sun’s Java Web Start
.NET Framework applications Java (JRE) based applications
Web launch only from MSIE [SPCOFF] Web launch from any browser (with Java)
Caches applications in user profile Caches applications in user profile
Uses security sandbox Uses security sandbox
Needs pre-installed .NET Framework Needs pre-installed JRE
Applications are admin-rights free Applications are admin-rights free
Uses two xml-based manifest files Uses one xml-based JNLP file

9.2 Deployment of our application

Our application is no exception to the situation described above that applies
for deployment in general. Océ printers are in general used in large companies
where many users have access to such a printing device. Installing the
application and keeping it up to date is an essential issue. Next to the
installation and update processes, printing devices should be accessible in an
intuitive way. Within this project we tried to offer a solution to each of these
three fields. We created a fully functional solution that is printer-centric and
installs and updates itself automatically with an absolute minimum of user
interaction. Network administrators only need to care about maintenance on
the printing devices, significantly reducing the number of objects that require
maintenance in their working environment.

9.2.1 TEST TO INITIAL REQUIREMENTS

In chapter 3 — more precisely in section 3.2.5 — we formulated the initial four
requirements after identifying what it really was all about. We saw that our
application had to be able to be installed by users with a restrictive rights
level. In the solution created, this is indeed the case. Users of an arbitrary
rights level are able to install, update and use the application. The only
marginal note that needs to be made on this point is that the JRE, the Java
platform, still needs administrative rights to install. This is an unsolvable issue,
but fortunately becoming less and less problematic. Most users have already a
JRE installed. And in professional organizations the deployment of a JRE will
beyond any doubt be much less problematic than a third party program. Having
a (recent) JRE becomes more and more important, for many applications —
especially in the internet domain — won’t run without having a Java platform.

We also saw in the requirements that the installation should be kept simple.
We followed this point rigorously by reducing the number of user actions to an
absolute minimum and to provide the user with clear information in a pleasant
user interface. The installation process itself only “costs” one click. The
installation process is also not really presented as such, but merely as a
preparation phase for the application.

GRADUATION PROJECT REPORT - Conclusion and future work 66

The third requirement was that the impact on the source code of the
application had to be kept as minimal as possible. No far-reaching changes had
to be made. Only very small parts of specific code had to be touched in order
to create sufficient generic access to resources such that we were able to
configure JAWS in the correct way. Finally, the occasion was also used to
create a generic framework for library loading. In principle, this adaptation
was not necessary, but in the context of this project it was sufficiently relevant
and will definitely ease future maintenance and extensions of the source code.

9.3 Gain for Océ

The gain for Océ using the Java Web Start based scenario as worked out during
this project is one consisting out of many aspects. The following main issues
could be identified as a significant gain with respect to the original situation
before the project:

• Much larger coverage of the activities related to the deployment
process of applications (main goal);

• Better integration into the preferred usage workflow by customers by
offering a printer-centralized solution;

• Better support for future maintenance and extension of functionality
with respect to native libraries thanks to the Library Provider
Framework;

• Huge amount of documented research that can be used for many
applications within the company. During this project around 20 official
documents were written summing up to a total of over 450 pages of
technical documentation of high value.

9.4 Future development

As for future development, there are more than sufficient issues that are still
open that could be subject to future projects. This depends primarily of the
scope in which one wishes to place this project, for as we saw already at the
beginning, there are many issues involved that are not always clearly related to
one central subject. Deployment plays the central role, but next to that the
launching process and the usage workflow by customers is also important. We
also discovered the need for more generic setups like the Library Provider
Framework for native libraries.

For future development on short term, we could envisage for example the
following items (explicitly without attempting to give a complete list):

• Extension for sharing resources within network shares;

• Interoperability of multiple installation modes;

• Mirror-based acquirement of resources (JAWS future);

• If desirable, further inquiry into applet-based approach, but this will
require at first a major change in the way JRE’s function under Vista.

Especially the point of complete interoperability of multiple installation modes
could be a particularly interesting item. Within this graduation project it was

GRADUATION PROJECT REPORT - Conclusion and future work 67

foreseen to tackle this item if there was sufficient time remaining. Finally, it
was decided to use this time to investigate rather another method of
deployment that was seen by Océ to be more interesting at this moment: the
ability to create some kind of “light” version of the application to run inside an
applet. The time remaining to perform this investigation only enabled us to
prototype this idea, but proved our initial hypothesis that an applet — even
when the environment is made suitable — is not feasible.

GRADUATION PROJECT REPORT - Evaluation 68

10. Evaluation

As a final section of this graduation report and thus to conclude this project,
we will look back to the eight months spent on this project. We will discuss
how things went and what things were learned. The graduation project marks
the final phase of the master studies in Computer Science at the Eindhoven
University of Technology, the last phase before becoming an engineer. An
ultimate project to put the knowledge acquired in years into practice — and
until a certain degree — to the test.

10.1 Project quality

Determining the project quality depends on many factors. And many factors
that played an important role there were indeed. The graduation project
offered a large amount of research that needed to be done in the field of
deployment in computer science that is far from mature. In a certain sense one
could characterize this project therefore as a pioneering project.

There was also a large component of practice present, which took shape in
experimental prototyping and the actual development phase. I learned a lot
about practical programming in Java that I knew only skin-deep before. During
my studies I had to use Java several times for small programming assignments
and the memories I had of Java were not always positive. I would now tend to
say that Java is a programming language that is not easily accessible for
beginners, but when you got through the beginners part, Java offers a huge
range of very interesting and useful language constructs and tools. This project
truly changed my point of view towards this language and programming
environment.

The most important aspect in determining the project quality is however in my
point of view the issue that within a commercial setting a solution needed to
be found for a problem that was in the beginning rather vague. It is what
makes this project suitable as graduation project for future engineers.
Extracting what really matters and formulating and identifying explicit goals is
in many cases the most critical and also most difficult phase of a project.

And last — but far from least — there was the international character of the
project. Cultural differences sometimes make the situation difficult, but it is
heavily reduced when compared to the benefit that can be obtained from it.
France is known in Europe to have a strong identity which can be seen clearly
in working environments. Performing this graduation project in an international
context has been an enormous enrichment.

10.2 Project execution

The way projects are executed in France differs from the Netherlands. In the
Netherlands we like in general everything to be clear with many sub goals that
enable you to determine whether the original planning is still feasible and
needs adjustment or not. In France — following my experience — this is
different. The final goal is in general clear, but it is up to you to fill in the rest

GRADUATION PROJECT REPORT - Evaluation 69

of the time. There is a lot of freedom for creativity. Excellence in the final
result is highly appreciated and important.

When being used to the typical Dutch culture, this is a switch that must be
made. In the beginning this required some adaptations. French colleagues are
in general also different from what one finds in the Netherlands. The famous
hand-shaking ritual every morning upon arrival may appear strange to most
Dutch people, but it serves as a nice barrier-breaking means to get to know
each other better.

Concerning the work performed, no problems were encountered. I had the
opportunity to perform the necessary research in a relatively relaxed tempo
with essential help from Mr. Appercel whenever needed.

The experience that I obtained in projects like OGO and more specifically the
Software Engineering Project and an external internship last year enabled me
to execute the important key elements of the graduation project. It proves, in
my opinion, the importance of these items in the curriculum.

10.3 Special thanks

Many people were involved in making this project a reality and also in assisting
to make this project a success. It would be impossible to mention them all, so I
would first of all like to thank in general the personnel of Océ R&D in Créteil,
who were always there to assist in case of need. Not only for direct project
related subjects, but also for many, many issues alongside as a result of the
international character of this project. The Netherlands and France are
separated from one another by only a few hundred kilometers and one
(relatively small) country (Belgium). Many destinations between Paris and the
Netherlands are much closer to one another than many destinations within
France itself. However, the differences between the two countries are
omnipresent. Of course there are no enormous differences on the cultural and
administrative level, but a huge collection of small differences finally sum up
to quite a heavy load.

Next to these general thanks I would anyhow like to thank a number of people
who were of particular help during this project:

• Ad Aerts — my academic coordinator of the Eindhoven University of
Technology with whom I had regular contact and who was always there
for support and advice when needed;

• Stéphane Appercel — my project coordinator at Océ R&D in Créteil, a
software architect from whom I learned a lot on software development
within the Java-based world;

• Patrick Battistini — project coach at Océ R&D Créteil for many
organizational issues;

• Stéphane Binétruy — developer at Océ R&D Créteil who is a living gold
mine on programming issues;

• Vincent Merk — professional French teacher at the CTT of the
Eindhoven University of Technology who enabled me to drastically
increase my language capabilities in French and was of very valuable
support regarding many administrative issues.

GRADUATION PROJECT REPORT - References i

A. References

For consultation convenience, the references have been categorized in internal
documentation (Océ R&D internal documentation) and external documentation
(documentation from outside of Océ R&D consulted for this document).

A.1 Internal documentation

[INQSUB] An inquiry into submitters
C.J.M.F.C. Raemaekers – Océ R&D

[MSDEPP] Microsoft deployment practices
C.J.M.F.C. Raemaekers – Océ R&D

[MIGISS] Migration issues
C.J.M.F.C. Raemaekers – Océ R&D

[JAUPDN] Java 6 Update N
C.J.M.F.C. Raemaekers – Océ R&D

[JAWEST] Java Web Start
C.J.M.F.C. Raemaekers – Océ R&D

[INTJSP] Introduction into JSP
C.J.M.F.C. Raemaekers – Océ R&D

[PUSCAN] Application component analysis
C.J.M.F.C. Raemaekers – Océ R&D

[JADESC] Java Web Start deployment scenarios
C.J.M.F.C. Raemaekers – Océ R&D

[PROTOG] Prototyping
C.J.M.F.C. Raemaekers – Océ R&D

[JATERE] Java Web Start test report
C.J.M.F.C. Raemaekers – Océ R&D

[DEVREP] Development report
C.J.M.F.C. Raemaekers – Océ R&D

[INCOIS] Installation compatibility issues
C.J.M.F.C. Raemaekers – Océ R&D

[FUMMIN] Follow-up on multi-mode installations
C.J.M.F.C. Raemaekers – Océ R&D

[PSCOCH] Application compatibility changes
C.J.M.F.C. Raemaekers – Océ R&D

[CPJACO] Application changes for Java Web Start compliance
C.J.M.F.C. Raemaekers – Océ R&D

[PUACSO] Application accessibility solutions
C.J.M.F.C. Raemaekers – Océ R&D

[PSNALI] Application native library integration
C.J.M.F.C. Raemaekers – Océ R&D

[PROCOM] Product comparison
C.J.M.F.C. Raemaekers – Océ R&D

GRADUATION PROJECT REPORT - References ii

A.2 External documentation

[ATE] JAX-WS 2.1 Ask the Experts session
http://java.sun.com/developer/community/askxprt/2007/jl0226.html

[IBM-TL] JSP best practices: Intro to taglibs
http://www.ibm.com/developerworks/java/library/j-jsp07233.html

[J6JAXWS] Introducing JAX-WS 2.0 With the Java SE 6 Platform, Part 1
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2/

[J6U4JAXW
S]

JAX-WS 2.1 and JAXB 2.1 is available in JDK 6 Update 4 release
http://weblogs.java.net/blog/ramapulavarthi/archive/2008/01/jaxws_21_and_
ja.html

[JAI] Java Advanced Imaging API Web Start Releases
https://jai-webstart.dev.java.net/releases.html

[JAI-JAWS] jai-webstart
https://jai-webstart.dev.java.net/

[JAVA-ON-
VISTA]

Chet Haase Java Weblog: Vista and IE7 sandboxes, the Unfixable
http://weblogs.java.net/blog/chet/archive/2006/10/java_on_vista_y.html

[JAVA-TL] Tag Libraries Tutorial
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

[JAVA-
VISTA-
NOTES]

Java 6 Release Notes section Java Vista Notes
http://java.sun.com/javase/6/webnotes/#windowsvista

[JNLP-API] JNLP API Reference
http://java.sun.com/products/javawebstart/docs/javadoc/index.html

[JSTL-REF] JSTL Reference
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

[TL-TUT] <taglib:tutorial/>
http://www.orionserver.com/docs/tutorials/taglibs/

[TQB] JAX-WS 2.1 now part of Java 1.6.0_04
http://blogs.sun.com/quinn/entry/jax_ws_2_1_now

[URL-
DEPLOY]

Deploying Software with JNLP and Java Web Start
http://java.sun.com/developer/technicalArticles/Programming/jnlp/

[CFSODT] A Characterization Framework for Software Deployment
Technologies
Carzaniga, Fugetta, Hall, Heimbigner, van der Hoek, Wolf
Technical Report University of Colorado CU-CS-857-98 (1998)

[MSCLON] Introduction to ClickOnce Deployment
http://msdn.microsoft.com/en-us/vbasic/ms789088.aspx

[SPCOFF] MSDN Blogs: ClickOnce and FireFox
http://blogs.msdn.com/saurabh/archive/2006/03/02/541988.aspx

[JAWIVI] Release notes for the next-generation Java Plug-In Technology
https://jdk6.dev.java.net/plugin2/

[CORBRO] Océ Corporate Brochure 2007 – “Beyond the Ordinary”
Océ PR
http://www.oce.com/en/about/Profile/download.htm

GRADUATION PROJECT REPORT - Source code JAWS sample iii

B. Source code JAWS sample

This appendix part covers a minimal sample application using JAWS as
indicated in section 4.8.

B.1 Extract a file from a JAR and copy it to the local disk

An important detail is how to get a resource (in our case an executable) out of
a secondary JAR file and copy it to the destination folder. This operation is not
that difficult, it is more a game of knowing which type of stream one needs to
use and to write it back into a file. The code snippet just below shows how to
do so:

try
{
 InputStream stream =
 getClass().getResourceAsStream("isAdmin.exe");
 FileOutputStream output = new FileOutputStream(usrprofile
 + "\\.TestApp\\isAdmin.exe");
 b = new byte[1000];
 int v = 0;
 while((v = stream.read(b)) > -1)
 {
 output.write(b,0,v);
 }
 stream.close();
 output.flush();
 output.close();
}
catch(Exception ex) {System.out.println(ex.getMessage());}

Using the getResourceAdStream method we can extract a file from the JAR file.
Note that the JAR file itself doesn’t need to be specified, Java sorts out by
itself where to look. Once the stream is loaded, we write it into the destination
file in chunks of 1000 bytes each (there is no particular reason why this is 1000
here, according to the file size of the file to be copied, you might wish to use a
different data chunk size). This entire procedure needs also to be put in a try-
catch construct.

B.2 Configuring the JNLP file

The JNLP file needs first of all to contain a correct pointer to the codebase;
that is the location where to look for the JAR files and the JNLP file itself. This
is done using the jnlp tag in the following way:

<jnlp spec="1.0+" codebase="http://test.oce.com/testapp"
href="TestApp.jnlp">

Furthermore, we need to set the <all-permissions/> tag in the security
section, otherwise we will not be able to do anything at all with disk access
and file copying. And last – but not least – we need to specify which JAR files
are contained by the application in the resources section:

<jar href="TestApp.jar"/>

<jar href="data.jar"/>

GRADUATION PROJECT REPORT - Source code JAWS sample iv

<java version="1.6+" href="http://java.sun.com/products/autodl/j2se"/>

Note that we declare two JAR files here (TestApp.jar for the application itself
and data.jar for the executable the program should extract). Furthermore the
desired version of the JRE is mentioned (here: 1.6 or higher).

B.3 JAR Signing and certificate creation

JAR file signing is very similar to most signing operations in Computer Science.
We need to create a so-called key store that creates a certificate with a public
and private key. The private key must remain at our side in order to sign the
JAR’s, the public key is available for clients to check our signatures.

The idea of this key system is based on the fact that there are two separate
keys: one for encoding and one for decoding. The one for encoding is in this
case the private key (which should remain secret and which is almost
impossible to obtain by cracking) and the one for decoding is the public key
here. This public key can be transferred to anyone who wishes to access the
encoded information.

Java gives us the tools necessary to perform all these operations. Here is a
step-by-step overview of this procedure.

1. Key generation

keytool –genkey –alias signLegal –keystore ocetest

This creates a key store (public and private keys) with the name ‘ocetest’. One
can choose a more convenient name here if desired. The keytool will ask you
several straightforward questions like the name of the person generating the
keys, the company, its location, etc. The program also lets you choose two
passwords that should be chosen with attention.

2. JAR signing

Now we have the key store, we can actually sign the JAR files. This is done in a
straightforward way like this:

jarsigner –keystore ocetest –signedjar sdata.jar data.jar signLegal

Note that we use the same key store (‘ocetest’) like we did in step 1. It is a
good idea to use a different name for the signed store than the original one if
you need to keep the original for other purposes. During signing you need to
provide the passwords you chose during the key generation procedure.

All JAR files must be signed in order to have the application working
correctly.

3. Certificate creation for public key retrieval

If a public key certificate is desired for consultation of clients, this can be
created using the following command:

keytool –export –keystore ocetest –alias signLegal –file ocetest.cer

This creates a file ocetest.cer that you could put on your web server to be
consulted by clients in order to retrieve the public key. For JAWS however, this
is not obligatory.

GRADUATION PROJECT REPORT - Source code JAWS sample v

B.4 Program code:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

public class TestApp
{
 JFrame fraMain;
 JButton cmdClose;
 JButton cmdCreateDir;
 JButton cmdCopyFile;
 JLabel lblInfo;
 JPanel pnlMain;

 public static void main(String[] args)
 {
 System.out.println("Program init succesfully executed...");
 new TestApp();
 }

 TestApp()
 {
 fraMain = new JFrame("Test Application");
 fraMain.setSize(600,400);
 pnlMain = new JPanel();
 cmdClose = new JButton("Quit");
 cmdCreateDir = new JButton("Create directory

 %USERPROFILE%\\.TestApp");
 cmdCopyFile = new JButton("Copy file isAdmin.exe to
 %USERPROFILE%\\.TestApp");
 lblInfo = new JLabel("THIS CAPTION HAS BEEN CHANGED -- NEW VERSION");
 pnlMain.add(lblInfo);
 pnlMain.add(cmdClose);
 pnlMain.add(cmdCreateDir);
 pnlMain.add(cmdCopyFile);

 cmdClose.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("...program succesfully terminated.");
 System.exit(0);
 }
 });

 cmdCreateDir.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String temp = "";
 Runtime runtime = Runtime.getRuntime();
 try
 {
 Process process = runtime.exec("cmd.exe /c set USERPROFILE");
 BufferedReader in = new BufferedReader(new
 InputStreamReader(process.getInputStream()));
 temp = in.readLine();
 temp = temp.substring(12);
 }

 catch(Exception ex) { System.out.println("error" +

 ex.getMessage());}

 boolean success = (new File(temp + "\\.TestApp")).mkdir();

GRADUATION PROJECT REPORT - Source code JAWS sample vi

 if (!success) System.out.println("!! --> error making directory");
 else System.out.println("...directory \""+temp+"\\.TestApp\"
 created...");
 }
 });

 cmdCopyFile.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 byte b[];
 String temp = "";

 Runtime runtime = Runtime.getRuntime();
 try
 {
 Process process = runtime.exec("cmd.exe /c set USERPROFILE");
 BufferedReader in = new BufferedReader(new
 InputStreamReader(process.getInputStream()));
 temp = in.readLine();
 temp = temp.substring(12);
 }
 catch(Exception ex) { System.out.println("error" +
 ex.getMessage());}

 try
 {
 InputStream stream = getClass().getResourceAsStream
 ("isAdmin.exe");
 FileOutputStream output = new FileOutputStream(temp +
 "\\.TestApp\\isAdmin.exe");
 b = new byte[1000];
 int v = 0;
 while((v = stream.read(b)) > -1)
 {
 output.write(b,0,v);
 }
 stream.close();
 output.flush();
 output.close();
 }
 catch(Exception ex) { System.out.println("error" +
 ex.getMessage());}

 System.out.println("...file isAdmin.exe copied to " + temp +
 "\\.TestApp directory...");
 }
 });

 fraMain.getContentPane().add(pnlMain);
 fraMain.setVisible(true);
 }

}

GRADUATION PROJECT REPORT - Source code JAWS sample vii

B.5 JNLP Code:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://test.oce.com/testapp"
href="TestApp.jnlp">
 <information>
 <title>Test Application</title>
 <vendor>Oce</vendor>
 <description>Test Application for JAWS</description>
 <homepage href="http://www.oce.com"/>
 <description kind="short">This application tries to create a subdir
 in the user profile directory and put an executable in it.

</description>
 <offline-allowed/>
 </information>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <jar href="TestApp.jar"/>
 <jar href="data.jar"/>
 <java version="1.6+"
 href="http://java.sun.com/products/autodl/j2se"/>
 </resources>
 <application-desc main-class="TestApp"/>
</jnlp>

GRADUATION PROJECT REPORT - JSP and Tag Libraries viii

C. JSP and Tag Libraries

This appendix describes JSP and Tag Libraries in depth as discussed in section
4.11.

C.1 Scripting tags

The general idea of all server-side scripting languages is that programming
code can be interleaved with the standard HTML output. In order to make sure
that the interpreter can distinguish between HTML code and scripting code, the
scripting code must be encapsulated between special tags. The following table
denotes the different encapsulation tags for the three main players:

 Opening tag Closing tag Usage
<?php ?> general
<? ?> general

PHP

<?= ?> direct output
<% %> general ASP
<%= %> direct output
<% %> normal code
<%! %> declarative code
<%= %> direct output
<%@ %> include

JSP

<%-- --%> comment

PHP and ASP only make a difference between general tags and direct output
tags. What this means is illustrated by the following examples:

<?php echo “Hello World” ?>
<?= “Hello World” ?>

<% Response.Write(“Hello World”) %>
<%= “Hello World” %>

The first two lines are in PHP, the last two lines in ASP. All four lines give the
same result. In JSP the situation is somewhat more complicated. JSP makes a
difference between normal code and declarative code. With declarative code
we mean the declaration of variables and objects with their methods. The
normal code is the actual usage of this code. These two kinds of usage must be
separated; JSP does not allow them to be mixed like in PHP or ASP. The same
holds for including pieces of code residing in other files. PHP and ASP have
“include” constructs for this that can be used in the general tags. In JSP these
declarations must be made using the special include tag <%@ … %>.

C.2 Output to HTML

The output to HTML is always done using a dedicated function or object. This
principle holds for all three languages discussed here:

GRADUATION PROJECT REPORT - JSP and Tag Libraries ix

 Output to HTML
PHP echo “my text”
ASP Response.Write(“my text”)
JSP out.println(“my text”)

C.3 Basic constructs

JSP likes to distinguish between different code types. Declarations must be
separated from normal code and includes. Consider the following example:

 1 <%!
 2 // JSP Sample
 3
 4 String makeHeader(String strTitle)
 5 {
 6 return "<html>\n\t<head>\n\t\t<title>" + strTitle +
 7 "</title>\n\t</head>\n\t<body>";
 8 }
 9
10 String makeFooter()
11 {
12 return "\n\t</body>\n</html>";
13 }
14 %>
15
16 <%
17 out.println(makeHeader("JSP Test"));
18
19 out.println("\t\t<p>JSP output
\n\t\t" +
20 "The current date is: " + new java.util.Date() + "</p>");
21 %>
22
23 <%= makeFooter() %>

If you want to use functions in JSP, you need to declare them in a declarative
scope using the <%! … %> encapsulation. You see this in the example on lines 1
to 14.

In contrast with standard Java, you can define functions here that do not
belong to a class (although you can also create classes of course). Using the
return keyword you can then pass the return value.

In the non-declarative part (lines 16 to 21) we actually use the functions we
defined in the first part. Notice that this part is encapsulated in “standard”
tags <% … %>. There are three calls made using the out.println(…) command.
This actually prints the result into the web page. Make sure to use the out
variable and not to follow the standard Java way for the command line which is
System.out.println. This last one will not raise errors, because it prints the
arguments passed into the server log.

The usage of standard Java objects is supported by JSP as can be seen on line
20 where we make a call to the java.util.Date object to retrieve the current
date.

In order to finalize our example, on line 23 an example is given of the direct
output encapsulation. Notice that the out.println does not appear here.

GRADUATION PROJECT REPORT - JSP and Tag Libraries x

C.4 JSP Tag libraries and JSTL

Next to the similar principles that can be found in PHP and ASP, JSP has a
special feature that is used extensively: tag libraries.

In this paragraph we will briefly look into this technology in order to get a basic
overview of it, without the intention of presenting a fully covered discussion
here. The tag libraries description is heavily inspired by the document [IBM-
TL].

Tag libraries are the result of the wish of many web designers to be able to
define their own HTML (or XML) tags that enable them to add functionality to
web pages. The idea of Sun was to keep web sites in their original form; that is
in XML notation. When you look into most ASP, PHP or JSP files, you will
discover large amounts of HTML, mixed with the corresponding scripting
language.

In order to conform to this idea, Sun came up with a mechanism where
developers are able to create a so-called TLD, an abbreviation for Tag Library
Descriptor. This is an XML file where you must define your own tags and where
you can specify the behavior of that particular tag by linking to a Java class
file. Below you see an example of such a file.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2/EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>tools</short-name>
 <uri>http://www.my_domain/tools</uri>

 <tag>
 <name>my_tag</name>
 <tag-class>my_class_implementing_the_tag</tag-class>
 <body-content>empty</body-content>
 </tag>
</taglib>

This file begins with an XML descriptor tag, followed by a DOCTYPE declaration.
After that, the actual file begins. After some initializing tags, the actual tag
description starts with the <tag> tag. There you can specify the name of the
tag, as well as the class implementing the tag. This tag does not require a
body.

Then, if we want to use this TLD in our JSP file, we only need to include the
following declaration:

<%@ taglib prefix="t" uri="http://www.my_domain/tools" %>

Note the prefix that we define here “t”. Now we are ready for using the tag
called “my_tag” in the rest of the JSP file. This is done as follows:

<t:my_tag />

Of course this tag can be used everywhere in the HTML/JSP file where we
want. The only thing that needs to be done, is writing a Java class file that
implements the behavior of this tag.

GRADUATION PROJECT REPORT - JSP and Tag Libraries xi

A huge advantage of this approach is that developers can first create all classes
with the according TLD file. Then web page creators can use the new tags in
their HTML as they are used to do with normal HTML/XML tags. The resulting
file will eventually look much more like an HTML document and remains in fact
a valid XML file, with no more interleaved Java code.

C.5 Tomcat configuration for using a TLD

The best way of using TLD files is to go to the Tomcat installation directory and
browse to webapps/ROOT/WEB-INF. If not already present, you should create
two subdirectories:

• tld: for the storage of TLD files;

• classes: for the storage of the accompanying java class files.

Using a tag library declaration as stated in section 4.11.4 in a JSP file suffices
from that point on to actually use the tag library.

C.6 Creation of Java classes for a TLD

For each tag you must write a separate class file. You should begin this file
with a package declaration. The class file must then be put in the same
relative location in the “classes” subfolder. For example, if you declare a
package com.oce.jaws, then you should put the .class-file into the
webapps/ROOT/WEB-INF/com/oce/jaws folder.

After the package declaration you need two imports for using Java for JSP:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

These imports enable you to access functions specific for JSP. The rest of the
class file follows your declaration of the tag in the TLD file. So first we declare
our class as an extension to the TagSupport class we just imported:

public class Footer extends TagSupport

Following this declaration, you declare the class with at least the following two
methods:

public int doStartTag() throws JspException
{
 try
 {
 pageContext.getOut().print("Hello World");
 }
 catch (java.io.IOException e)
 {
 throw new JspTagException("MyTag: "+e.getMessage());
 }
 return SKIP_BODY;
}

public int doEndTag()
{
 return EVAL_PAGE;
}

GRADUATION PROJECT REPORT - JSP and Tag Libraries xii

The doStartTag() procedure is executed when the opening tag is encountered,
the doEndTag() procedure is executed when the closing tag is encountered. The
example given here prints “Hello World” in place of the tag and does no
analysis of the body (the space between the begin and end tag).

When you want to pass attributes with your tag, you need to declare them both
in the TLD file and also in the class file. In the Java class file this is done by
concatenating “get” and “set” in front on the attribute name. The attribute
name then starts with a capital letter (regardless how you spell the attribute in
your JSP files). Suppose we have the attribute “image”, then this would
become as follows:

public void setImage(String str) { strImage = str; }
public String getImage() { return strImage; }

The variable strImage should be declared at class level such that you can use
its value in the doStartTag() procedure. The attribute methods are guaranteed
to be executed before the doStartTag() procedure, so you don’t need to worry
about the initialization of your variables.

C.7 JSTL

JSTL is the JSP Standard Tag Library that comes with the Tomcat web server.
JSTL supports the most common functions you would need when you start using
a tag library approach. In the [JSTL-REF] you can find the complete description
of all available tags that are categorized into 5 categories:

• Core library;

• Formatting library;

• SQL library;

• XML library;

• Functions library.

Below you find an example of the core-function “if”:

<html>
 <head><title>JSTL Demo</title></head>

 <body>

 <% String s = "test"; %>

 <c:if test="${s == 'images'}">
 <p>Test succeeded</p>
 </c:if>

 </body>
</html>

Notice that the tag library declaration is missing. This is due to the fact that
JSTL is by default enabled on Tomcat web servers. Extensive information about
the JSTL and tag libraries can be found in [TL-TUT] and [JAVA-TL] which have
been consulted as well for this section. Also [INTJSP] can be consulted for
further details.

GRADUATION PROJECT REPORT - Definitions and abbreviations xiii

D. Definitions and abbreviations

This appendix holds the definitions and abbreviations that are used throughout
the document.

D.1 Definitions

Administrator Highest rights level of a user on an operating system
Browser Program that enables a user to visualize web pages and to

navigate over the inter- or intranet
Bug Popular term for an “error” or “fault” in software
Eclipse Java IDE
Java Sun’s Java™ programming language
JavaScript Scripting language based on Java used on web pages
Malware Malicious software, software harming your computer

and/or your files, usually in a concealed way
Media The material to print on (usually paper)
Netbeans Java IDE
Océ Océ Print Logic Technologies in Créteil (France)
Plot file A file containing print data (for example a PostScript file)
Submitter Application that interprets documents in order that they

can be sent to a printing device
Sun Company that developed Java and delivers the JRE
Windows Microsoft Windows operating system

D.2 List of abbreviations

AD Active Directory
Admin Administrator
AJAX Asynchronous Javascript And XML
API Application Programming Interface
App Application
ASP Active Server Pages (server side scripting language from MS)
AUI Administration User Interface (administration interface on a

printing device)
CC Comparison criterion
CD Compact Disc
CMD Command line (command prompt)
GPO Group Policy Object
GUI Graphical User Interface
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol (default web protocol)
IDE Integrated Development Environment
IIS Internet Information Services (Microsoft’s web server)
IT-DEP(T) Information Technology Department (the department of a

company in charge of IT related activities)
JAI Java Advanced Imaging (extension library for imagery)

GRADUATION PROJECT REPORT - Definitions and abbreviations xiv

JAR Java ARchive (collection of files, in fact a zip file)
JAWS Java Web Start
JAX-WS Java Extension for Web Services
JNLP Java Network Launching Protocol (in XML format)
JRE Java Runtime Environment
JSP Java Server Pages (server side scripting language)
JSTL JSP Standard Tag Library
LPF Library Provider Framework
MFF Mozilla FireFox (web browser)
MIME Multipurpose Internet Mail Extensions (file type definition

descriptor)
MS Microsoft
MSI Microsoft Installer archive (used by Windows Installer)
MSIE Microsoft Internet Explorer (web browser)
NL Nederlands (Dutch)
NS Netscape Navigator (web browser)
OCX OLE Component eXtension
OLE Object Linking and Embedding (Microsoft’s Component Object

Model)
OS Operating System
OU Organizational Unit (group of objects within the AD)
P1 Prototype version 1
P2 Prototype version 2
P3 Prototype version 3
P4 Prototype version 4
PC Personal Computer
PDF Portable Document Format (Adobe document format)
PHP PHP Hypertext Processor (server side scripting language)
PU Power user (user rights level)
R&D Océ’s Research and Development department
SA Stand alone (application fully running on a client)
SDK Software Development Kit
SP2 Service Pack 2
SPI Service Provider Interface
SQL Standard Query Language (database query language)
TLD Tag Library Descriptor
TU/e Eindhoven University of Technology
UI User Interface
URL Unified Resource Locator (location identifier)
Vista Microsoft Windows Vista
WFPS Wide Format Printing System
Win Windows
WPD Windows Printer Driver
WYSIWYG What you see is what you get
WYSIWYP What you see is what you print
XML eXtensible Markup Language (data file format standard)
XP Microsoft Windows XP

