
OTTO ESKO

ASIP INTEGRATION AND VERIFICATION FLOW

FOR FPGA

Master of Science Thesis

Examiners: Prof. Jarmo Takala and

Mr. Pekka Jääskeläinen, M.Sc.

Examiners and topic approved in the

Computing and Electrical Engineering

Faculty Council meeting on March 3

2010

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Signal Processing and Communications Engineering

ESKO, OTTO OLAVI: ASIP Integration and Veri�cation Flow for FPGA

Master of Science Thesis, 54 pages

June 2011

Major: Embedded systems

Examiner: Prof. Jarmo Takala and Mr. Pekka Jääskeläinen, M.Sc.

Keywords: application-speci�c instruction-set processors, FPGA, integration, TTA

Over the years, user-programmable logic devices, such as FPGAs, have become a

popular platform for testing and implementing hardware designs. Intellectual Prop-

erty (IP) components and synthesizable processor cores allow complex design to be

implemented in a reasonable time, thanks to design reuse and the �exibility provided

by programmability. Unfortunately, the performance of General Purpose Processors

(GPP) is often inadequate, and creating custom �xed function hardware implemen-

tations to boost the performance is often too time consuming and expensive.

Application-Speci�c Instruction-set Processors (ASIP) are one solution to match

the performance of a custom �xed function hardware design and the �exibility of

software by tailoring the processor architecture to match the speci�c application. In

order to decrease the design time, and, thus, increase the productivity, a practical

processor design environment is needed. TTA-based Co-design Environment (TCE),

developed at Tampere University of Technology, allows the designer to tailor ASIPs

based on the Transport Triggered Architecture (TTA) processor template and to

generate ASIP implementations. However, previously the TTA ASIPs had to be

manually integrated into the target platform, which restrains the otherwise �uent

design �ow.

For this thesis, an automatic integration framework called Platform Integrator was

created for TCE. The purpose of the framework is to automate the integration �ow

of TTA ASIPs to various FPGA platforms in order to reduce the design time. The

design, implementation and veri�cation of the Platform Integrator framework and

three distinct Platform Integrator implementations are described in the thesis.

Another part of this thesis documents the veri�cation �ow of TTA ASIPs. The

thesis introduces a new veri�cation tool called TTA Unit Tester which is designed

and implemented to complete the veri�cation �ow. The purpose of the TTA Unit

Tester is to automatically verify the processor datapath resources. The di�erent

steps of the veri�cation �ow are utilized to verify the ASIP implementations created

with the Platform Integrators.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma

ESKO, OTTO OLAVI: ASIP Integration and Veri�cation Flow for FPGA

Diplomityö, 54 sivua

Kesäkuu 2011

Pääaine: Sulautetut järjestelmät

Tarkastajat: Prof. Jarmo Takala ja DI Pekka Jääskeläinen

Avainsanat: sovelluskohtaiset prosessorit, FPGA, integrointi, TTA

Uudelleenohjelmoitavien logiikkapiirien, kuten FPGA-piirien, käyttö on vuosien saa-

tossa yleistynyt digitaalisen logiikan toteuttamisalustana. FPGA-piirille syntesoita-

vat prosessoriytimet mahdollistavat toteutuksen ohjelmoitavuuden, mikä lisää suun-

nittelun juostavuutta. Lisäksi uudelleenkäytettävät loogiikkakomponentit, eli niin

sanotut IP-lohkot, helpottavat ja nopeuttavat suunnittelua. Näiden avulla moni-

mutkaisiakin järjestelmiä voidaan toteuttaa kohtuullisessa ajassa. Yleiskäyttöisten

prosessorien suorituskyky ei kuitenkaan ole aina riittävä, eikä sovelluskohtaisen lo-

giikkakomponentin tekeminen ole aina mahdollista liian suurten toteutuskustannuk-

sien vuoksi. Tällöin ratkaisua puuttuvaan suorituskykyyn pitää etsiä muualta.

Sovelluskohtaiset prosessorit (Application-Speci�c Instruction-set Processor, ASIP)

ovat yksi tapa yhdistää logiikkatoteutuksen suorituskyky ja ohjelmoitavuuden tar-

joamat edut. Yleiskäyttöistä prosessoria parempi suorituskyky saavutetaan räätälöi-

mällä prosessori sopimaan mahdollisimman hyvin tietyn sovelluksen suorittamiseen.

Jotta ASIP:n toteutusaika ja -kustannukset pysyisivät kurissa, tarvitaan toimiva ja

helppokäyttöinen prosessorisuunnitteluohjelmisto. Tampereen Teknillisessä Yliopis-

tossa kehitettävä TTA-based Co-design Environment-työkaluympäristö (TCE) mah-

dollistaa Transport Triggered Architecture-prosessoriarkkitehtuuriin (TTA) perus-

tuvien prosessoreiden räätälöimisen ja toteuttamisen. Aiemmin sovelluskohtaisen

TTA-prosessorin integroiminen halutulle kohdealustalle, kuten FPGA-piirille, vaati

kuitenkin käsityötä, joka hidasti muutoin sujuvaa suunnitteluprosessia.

Diplomityössä suunniteltiin ja toteutettiin ohjelmistokehys niin sanotulle alustain-

tegraattorille (engl. Platform Integrator), jonka tehtävänä on automatisoida TTA-

prosessorin integrointi kohdealustalle, ja siten nopeuttaa suunnitteluprosessia. Dip-

lomityössä toteutettiin alustaintegraattoriohjelmistokehyksen avulla kolme erillistä

alustaintegraattorikomponenttia ja varmennettiin niiden toimivuus testisovellusta

käyttäen.

Diplomityön toinen osuus dokumentoi TTA-prosessorien varmennusvuon. Työssä

toteutettiin uusi varmennustyökalu TTA-prosessorin resurssien yksikkötestaamiseen,

joka täydentää varmennusvuota. Varmennusvuon eri vaiheita hyödynnettiin alus-

taintegraattorien varmentamisessa.

IV

PREFACE

The work for this thesis was done in the Department of Computer Systems at Tam-

pere University of Technology as a part of the Function based platform (Funbase)

project.

I would like to thank Prof. Jarmo Takala for giving me the chance to work on

this interesting project and for his guidance and improvement ideas for this thesis.

I am also the most grateful to Pekka Jääskeläinen, M.Sc., for his guidance and

invaluable advices regarding this thesis and the work on TCE. In addition, I would

like to express my gratitude to my present and former coworkers for creating such a

pleasant working atmosphere and giving me a helping hand whenever it was needed.

Especially, I would like to thank Teemu Pitkänen for sharing his hardware expertise.

I would also like to thank my family and friends for their support throughout my

studies and life. Most of all, I would like to thank my dear Elina for her love and

support.

Tampere, May 10, 2011

Otto Esko

V

CONTENTS

1. Introduction . 1

2. Reprogrammable Logic . 3

2.1 Field Programmable Gate Array . 3

2.2 Soft-core Processors . 5

2.3 System-on-Chip Design . 6

2.3.1 Altera SOPC Builder . 8

2.3.2 Koski Framework . 9

3. Application-speci�c Instruction-set Processors 12

3.1 Transport Triggered Architecture . 12

3.1.1 Hardware Characteristics . 13

3.1.2 Programming Model . 15

3.2 TTA-based Co-design Environment . 16

3.3 ASIP Design with TCE . 17

4. Platform Integration Framework . 21

4.1 Requirements . 21

4.2 Implementation . 22

4.3 Memory Interfacing Considerations . 24

4.4 Stand-alone FPGA Integration . 25

4.5 SoC Design Flow Integration . 27

4.5.1 Avalon Integrator . 28

4.5.2 Koski Integrator . 31

5. Veri�cation Flow . 33

5.1 Top-down Veri�cation . 33

5.1.1 Veri�cation Levels . 33

5.1.2 Printouts . 36

5.1.3 Bus Trace . 37

5.2 TTA Unit Tester . 38

6. Evaluation of Results . 42

6.1 Test Application . 42

6.2 Customized Processor for CRC . 43

6.3 Stratix II Integrator . 44

6.4 Avalon Integrator . 46

6.5 Koski Integrator . 49

6.6 Summary . 51

7. Conclusions . 53

References . 55

VI

ABBREVIATIONS

ASIC Application-Speci�c Integrated Circuit

ASIP Application-Speci�c Instruction-set Processor

CMOS Complementary Metal Oxide Semiconductor

DMA Direct Memory Access

DRE Dead Result Elimination

DSE Design Space Exploration

DSP Digital Signal Processing

EDA Electronic Design Automation

EEPROM Electronically Erasable Programmable Read Only Memory

FU Function Unit

FPGA Field Programmable Gate Array

GPP General-Purpose Processor

HDL Hardware Description Language

HIBI Heterogeneous IP Block Interconnection

HW Hardware

ILP Instruction Level Parallelism

IP Intellectual Property

ISS Instruction-Set Simulator

JTAG Joint Test Action Group

LE Logic Element

LUT Lookup Table

LSU Load-Store Unit

Mbps Megabits per second

MIMO Multiple-Input Multiple-Output

N2H2 Nios II to HIBI version 2

PLA Programmable Logic Array

PLD Programmable Logic Device

RF Register File

RISC Reduced Instruction-Set Computer

ROM Read Only Memory

VII

RTC Real Time Clock

RTL Register Transfer Level

SRAM Static Random Access Memory

SW Software

SoC System-on-Chip

SoPC System-on-Programmable-Chip

TCE TTA-based Co-design Environment

Tcl Tool Command Language

TTA Transport Triggered Architecture

UART Universal Asynchronous Receiver Transmitter

UML Uni�ed Modeling Language

VHDL Very high speed IC Hardware Description Language

VLNV Vendor, Library, Name, Version

XML eXtensible Markup Language

1

1. INTRODUCTION

Reprogrammable logic devices, such as Field Programmable Gate Arrays (FPGA),

provide a fast and cost e�cient way for testing and implementing custom digital

designs. A variety of reusable Intellectual Property (IP) components allows the

designer to create complex designs in reasonable time and synthesizable soft-core

processors provide the possibility to implement functionality using software. It is

often easier and faster to implement complex functionality using software rather

than implementing the same functionality fully on hardware logic. However, while

software adds �exibility and allows recon�gurability, General-Purpose Processors

(GPP) are inferior in terms of performance and energy e�ciency in comparison to

�xed function hardware implementations.

Application-Speci�c Instruction-set Processors (ASIP) enable matching the �ex-

ibility of software and the performance of a �xed function hardware implementa-

tion by allowing the processor to be tailored to suit a speci�c program. In order

to decrease the design time compared to a custom �xed function hardware imple-

mentation, an easily customizable processor architecture is needed, together with

e�cient design tools. TTA-based Co-design Environment (TCE) [1] ful�lls these re-

quirements by providing a toolset for customizing processors based on the modular

Transport Triggered Architecture (TTA) template. However, previously, the TCE

toolset only created an ASIP core and required the designer to manually integrate

the core into the desired target platform. Manual integration was time consuming

and error prone which hindered the design productivity.

For this thesis, a Platform Integration framework for TCE was created. The

purpose of the framework is to automate the ASIP integration process to various

platforms in order to decrease design time and to reduce the change of human error,

thus increasing the design productivity. This thesis describes the requirements,

design and implementation of the Platform Integration framework.

The second part of this thesis documents the veri�cation �ow of TTA-based

ASIPs designed with TCE. In this thesis, a TTA Unit Tester tool is implemented

to complete the veri�cation �ow with automated testing support for the processor

components. The design and implementation of this tool are described in this thesis.

The thesis is divided into the following chapters. Chapter 2 introduces the basics

of reprogrammable logic devices concentrating on FPGA devices. The concept of

soft-core processors is also presented. Finally, System-on-Chip design and two di�er-

ent System-on-Chip design tools are described. Chapter 3 introduces the Transport

1. Introduction 2

Triggered Architecture template which is used for ASIP design. The design environ-

ment and design �ow of TTA-based ASIPs are also described in this chapter. The

requirements, design and implementation of the Platform Integration framework are

presented in Chapter 4. Chapter 5 documents the veri�cation �ow of TTA-based

ASIPs and introduces the TTA Unit Tester tool implemented in this thesis. Chapter

6 veri�es the Platform Integration framework functionality utilizing the veri�cation

�ow. Finally, Chapter 7 concludes this thesis.

3

2. REPROGRAMMABLE LOGIC

Programmable Logic Devices (PLD) allow the end-user to con�gure the device to

implement custom hardware designs unlike hard logic devices, such as Application-

Speci�c Integrated Circuits (ASIC), where the logic is �xed by the device manufac-

turer. First PLDs where implemented using Read Only Memories (ROM). Later,

Programmable Logic Array (PLA) devices were introduced. The PLAs consist of two

levels of programmable logic: an AND-plane followed by an OR-plane. A common

PLA con�guration method was the fuse technology, where the unneeded connec-

tions are burned open like a fuse using an electric current. Due to the con�guration

technologies, both of these PLD implementations allowed only one time program-

ming. [2] [3]

Reprogrammability was introduced by using Electronically Erasable Programmable

Read Only Memory (EEPROM) or Static Random Access Memory (SRAM) to con-

trol the transistors on the chip. Furthermore, implementing SRAM is easier than

implementing fuses on CMOS technology, which allows higher density devices. Over

the years SRAM-based FPGAs have gained a strong foothold in the market. [2] [3]

2.1 Field Programmable Gate Array

Field programmable gate arrays are programmable logic devices. The term �eld

programmable refers to the ability to �program it in the �eld�, in other words, the

programming can be done by the end-user [2]. The commonly used FPGA devices

are reprogrammable but one time programmable FPGAs exist as well. One time

programmability on CMOS is implemented using a so called antifuse technology [3].

In contrast to hard logic devices, the basic logic building blocks of FPGAs are

not transistors or logic gates. Instead, an FPGA consists of programmable Logic

Elements (LE) and programmable interconnections which allow the LEs to com-

municate with each other [3]. The anatomy of an LE can vary depending on the

FPGA vendor and the device family, but quite often a reprogrammable LE is at

least composed of a n-input Lookup Table (LUT) and a register [3]. For example,

the logic element of the Altera Stratix II FPGA [4], which is called an Adaptive Logic

Module (ALM), has eight input combinational logic section (LUT), two adders, four

multiplexers and two registers as illustrated in Fig. 2.1. These ALMs are stacked

together to create bigger entities, Logic Array Blocks (LAB) and they form a two-

dimensional array inside the device. The programmable interconnections can be

2. Reprogrammable Logic 4

D Q
To general or

local routing

reg0

To general or

local routing

datae0

dataf0

shared_arith_in

shared_arith_out

reg_chain_in

reg_chain_out

adder0

dataa

datab

datac

datad

Combinational

Logic

datae1

dataf1

D Q
To general or

local routing

reg1

To general or

local routing

adder1

carry_in

carry_out

Figure 2.1: Adaptive Logic Module (ALM) is the basic building block of logic on the Altera
Stratix II device family. The combinational logic block on the left consists of lookup tables
and multiplexers. The horizontal signals are connected to interconnections and the vertical
signals are connected to other ALMs. [4]

used to route signals from one LAB to another or to IO-blocks which are interfaced

with the physical device pins. This kind of architecture is illustrated in Fig. 2.2.

In addition to programmable components (soft logic), an FPGA can include hard

logic structures, such as general-purpose memory blocks or hardware multiplier el-

ements. Implementing these kinds of elements on hard logic normally requires less

area on the chip, consume less power and reach higher clock frequencies than their

equivalent implementations on programmable logic. On the other hand, if the user

design does not utilize these hard logic blocks, they just waste the silicon area on

the chip. Over the years, there has been a variety of di�erent hard logic blocks em-

bedded in FPGAs, ranging from fully �edged hard processor cores to computational

blocks which can be combined to support di�erent data widths for Digital Signal

Processing (DSP) applications. [3]

The key advantage of the FPGA is the �exibility provided by reprogrammability.

Designs can be tested on the target hardware from the very early stages of the design

process since the FPGA chips are standard o�-the-shelf components which can be

bought readily from the vendors. This improves the time-to-market of the product.

In ASIC design, it might take months before the target hardware is available for

testing because the chips need to be manufactured and tested during the design

process of a product which increases time-to-market. Therefore FPGAs are often

used as a test platform for ASIC designs. [3] [5]

2. Reprogrammable Logic 5

Figure 2.2: An example of an FPGA architecture. Programmable logic array blocks (LAB)
are connected together via programmable interconnection network. On the outside edges,
there are IO-blocks which are used to access device pins.

The reprogrammability of the FPGA can also be bene�cial during the life cycle of

a product. Hardware bugs can be �xed or new features can be added by upgrading

the �rmware of FPGA, which is easy and cheap in comparison to starting a new

ASIC chip manufacturing iteration. However, the �exibility comes with a price. The

reason FPGAs do not reign over ASICs, is that ASICs are superior in terms of the

area, delay, power consumption and unit price in high volume products. Kuon and

Rose have measured in their research [6] that on average, the FPGA implementations

were 35 times larger, had 3.4 to 4.6 times lower clock frequencies and consumed 7.1

to 14 times more dynamic power than their equivalent ASIC implementations. On

the other hand, the current trend shows that the ASIC manufacturing is coming

more and more expensive which favors the use of FPGAs on low volume products.

For smaller companies, FPGAs might be the only economically viable option for

implementing custom digital designs. [3] [5]

2.2 Soft-core Processors

Soft-core processors are processors which are implemented on programmable logic

such as an FPGA. Commonly, the soft-cores are written in Hardware Description

Languages (HDL) which allows them to be synthesized on di�erent FPGA tech-

nologies or even to be used in ASICs. The major FPGA vendors, such as Xilinx

and Altera, provide soft-cores optimized for their own FPGA technologies. These

soft-cores are also vendor speci�c: the typical end-user license restrict their use only

for the products of the vendor. There are also open source soft-cores available such

as the OpenRisc 1200 and the LEON3. [7]

2. Reprogrammable Logic 6

In addition to providing the option to use soft-core processors, some FPGAs

include hard processor cores. While the hard processors tend to be faster and smaller

areawise, they have a few drawbacks. First of all, the number of the processor

cores cannot be scaled to match the application. There might be too few or too

many processors for the desired application. Also, the scalability, in terms of single

thread performance, may not be achievable because the core architecture is �xed.

Finally, the placement of the hard core on the FPGA chip is �xed which can lead

to di�culties in interconnection routing between the core and other logic. [8]

Using soft-core processors allows the designer to include the exact number of pro-

cessors needed by the application to the FPGA [8]. Furthermore, a soft-core gives

the CAD (Computer Aided Design) tool more freedom to place and route the pro-

cessor [8]. Soft-core performance can also be varied in some cases. For example, the

Altera Nios II [9] soft-core is available in three di�erent versions: economy, standard

and fast. The economy version is a simple single cycle RISC (Reduced Instruction-

Set Computer) core targeted for small size and o�ers very little customizability. On

the other end, the fast version of the Nios II core is designed for high execution

performance. For example, it has a six-stage pipeline and it includes a dynamic

branch predictor. Naturally, the fast core implementation requires more logic ele-

ments from an FPGA than the economy core. In addition to the core variations,

some of the core parameters can also be altered, such as the sizes of instruction and

data caches and whether the core includes a hardware multiplier and/or a hardware

divider. The Nios II even allows instruction-set extension with user speci�ed custom

instructions. [7] Customizability allows the designer to tailor the processor to meet

the application demands better. Studies [8] [10] [11] show that varying the available

design parameters allows performance scaling and FPGA resource scaling.

2.3 System-on-Chip Design

The increasing complexity of digital designs and the demand to increase the pro-

ductivity has forced the design work from the Register Transfer Level (RTL) to a

higher abstraction level. Over the years, System-on-Chip (SoC) designs have be-

come a popular way to tackle the issue. The essential di�erence in the traditional

RTL design and the SoC design is the size of basic building blocks: instead of logic

gates and registers the designer can use complete component blocks. The range of

such blocks can vary from computational components, such as a Fast Fourier Trans-

formation (FFT) accelerator, to full �edged processor cores. These components are

often referred as Intellectual Property (IP) blocks or cores. [12] [13]

One of the key factors in increasing the productivity is the hardware design reuse.

The idea of hardware design reuse is by no means new, it has been done for decades.

What makes the di�erence is the size of the reusable design blocks. The designer can

integrate the pre-designed and pre-veri�ed IP blocks together to construct complex

2. Reprogrammable Logic 7

systems in a modular fashion. The design time saved on reusing components rather

than implementing them from scratch can signi�cantly reduce the time-to-market

of a product. Thus, selling and licensing reusable IP blocks has become a major

business over the years. [12] [14]

Integrating the IP blocks together is an essential phase in the SoC design. In the

past, the integration required more or less the use of �glue logic� implementations,

which were custom-made hardware, to link the di�erent components together to

allow them to communicate with each other. The utilization of such communication

glue logic has several disadvantages. First of all, the reusability of the components

is degraded if they require a lot of integration work per use. The custom made

communication hardware also needs to be veri�ed on every new design. Moreover,

the lack of standard communication interfaces makes the automated integration

di�cult. In order to overcome these problems, several standardized interconnection

buses have been proposed, for example the AMBA (Advanced Microcontroller Bus

Architecture) [15], created by ARM Ltd. The standard bus interfaces guarantee the

integration compatibility between the di�erent IP vendors. [12] [16]

One popular SoC design methodology is hardware/software (HW/SW) co-design

where the functionality is partitioned between software and hardware component im-

plementations. Naturally, a software implementation requires one or more processors

to be included in the system. Compared to hardware, software implementations tend

to be less e�cient in terms of execution performance and power consumption. This

is due to the overhead caused by the inherent need of the processor to fetch and de-

code instructions as well as load and store operands [5]. Software implementations

are used because they add �exibility and increase the productivity since it is of-

ten easier to implement complex functionality using software rather than hardware.

Also making changes later to the functionality tends to be easier in case software

is used. For example, multimedia applications, such as video codecs, are often dif-

�cult to implement without some use of software as they might have to support

lots of parameterizable options. State-of-the-art codecs might also require Digital

Rights Management (DRM) software which is only available in executable binary

form, thus compelling to use a processor. The key goal of HW/SW co-design is to

partition the system in such a way that the system components are implemented

in the most suitable way. The designer can, for example, use hardware accelerators

to implement the computational intensive parts of a video codec and software to

handle the complex functions and to control the encoding �ow. [5] [16] [17]

The inherent reprogrammability of an FPGA adds �exibility to the SoC design.

FPGAs can be used for rapid prototyping and veri�cation of a SoC before the design

is manufactured as an ASIC. Furthermore, FPGAs can be used in �nal products as

well. In this case, the designs are sometimes referred as System-on-Programmable-

Chip (SoPC) designs. A variety of available soft-core processors makes the FPGA

2. Reprogrammable Logic 8

Figure 2.3: The main view of Altera SOPC Builder tool. The dialog in the middle shows
the IP components and interconnections of the designed system.

an interesting platform for SoC development not only for commercial but also for

educational purposes.

2.3.1 Altera SOPC Builder

SOPC Builder [18] is a system-level design tool for System-on-Programmable-Chip

designs from Altera. The tool is mainly targeted for developing Nios II soft-core-

based systems, but it can be used for designs with or without processors. The SOPC

Builder provides a graphical user interface for the designer to create a system by

adding and connecting IP components from the IP library of the tool. The main

view of the SOPC Builder tool is presented in Fig. 2.3. The tool automatically

integrates the components together by generating an Avalon [19] interconnection

network between the components and creates a top level HDL implementation of

the design. The SOPC Builder does not have the capability to synthesize the design,

instead it relies on Altera Quartus II [20] to perform this task. The use of SOPC

Builder is tied to Altera devices.

The main bus interfaces in SOPC Builder are the Altera Avalon Interfaces [19]

which consist of Avalon Memory Mapped (Avalon-MM), Avalon Streaming (Avalon-

ST), Avalon Memory Mapped Tristate, Avalon Clock, Avalon Interrupt and Avalon

Conduit interfaces. The Avalon-MM provides a typical memory address-based read-

2. Reprogrammable Logic 9

write interface for master-slave-connections. It is perhaps the most commonly used

interface in the SOPC Builder systems. The Avalon-ST is a unidirectional source-

sink-type interface for low latency, high throughput streaming purposes. The Avalon

Memory Mapped Tristate interface resembles the Avalon-MM but it is designed for

o�-chip tristate connections. The Avalon Conduit interface is used for exporting

arbitrary signals outside of the SOPC Builder system. The exported signals can be

connected to other on-chip designs or to o�-chip components via the FPGA pins.

The Avalon interrupt interface describes the interrupt senders and receivers. The

Avalon clock interface is used to associate a clock and a reset signal to components

and their interfaces. The Avalon Interface speci�cation does not restrict the number

of di�erent interfaces a single component can have. It is also possible for a component

to include multiple instances of the same type interface.

The automatic integration of arbitrary components requires some metadata of

these components. SOPC Builder uses Hardware Description Files (_hw.tcl) writ-

ten in Tcl (Tool Command Language) for this purpose. This �le declares the general

component information, such as the name, version, static or user modi�able param-

eters and, most importantly, the Avalon Interfaces included in the component. The

interface declaration maps the actual design signals to the logical bus signals and

describes their width and direction. This signal mapping metadata allows the tool

to automatically integrate the components together without enforcing strict naming

conventions of the bus interface signals in the components. [18]

2.3.2 Koski Framework

Koski [21] is a system design framework created at Tampere University of Tech-

nology (TUT). Koski is targeted for multiprocessor SoC system-level modeling and

rapid FPGA prototyping. It also supports design space exploration. One of the

distinct features of Koski is that the system can be described and modeled using the

Uni�ed Modeling Language (UML) with an extension pro�le designed for embedded

hardware modeling. It is also possible to model the system in a more traditional

way by using a graphical tool called Kactus which is illustrated in Fig. 2.4. The

Koski design �ow is controlled using the Koski GUI tool which allows the designer

to select and con�gure the phases of the �ow. [21] [22]

Koski utilizes IP-XACT [23] to describe the metadata of the system components.

The IP-XACT standard was originally developed by the SPIRIT Consortium to pro-

vide a language independent metadata speci�cation for Electronic Design Automa-

tion (EDA). The metadata itself is stored using the eXtensible Markup Language

(XML). IP-XACT can be used for example to de�ne components, such as IP blocks

or processors, and bus interfaces, which de�ne the interfaces between components.

A bus interface de�nition describes the names, directions and widths of the logical

signals associated to the interface. A component de�nition containing a bus inter-

2. Reprogrammable Logic 10

Figure 2.4: The main view of the Kactus tool which is part of the Koski framework. Kactus
is used to model the hardware system, as shown in the top right main dialog.

face then describes how the actual component signals are mapped to the logical bus

signals of the interface. In addition, the component de�nition describes the design

�les needed to synthesize the component. Every IP-XACT de�nition also has a

VLNV (Vendor, Library, Name, Version) description which is used to identify the

components. Koski uses this metadata to integrate the components and to create a

HDL description of the system. [22] [24]

The main bus interface used in Koski is the Heterogeneous IP Block Intercon-

nection version 2 (HIBI) [25] which was designed and implemented at TUT. HIBI

is intended for integrating IP blocks together and it is designed to be a topology-

independent, scalable and yet high-performance connection network. HIBI can be

constructed in a modular fashion by using HIBI wrappers which are parameterizable

HW components. The HIBI wrappers implement a distributed arbitration of the

shared bus, and the wrappers can be used to implement transition from one clock

domain to another. The IP blocks can be directly attached to these wrappers or

there can be smart adaption blocks in between. An example of a such smart adap-

tion block is the Nios II to HIBI version 2 (N2H2) adapter [26] which was created to

attach the Nios II processor to HIBI and to implement direct memory access (DMA)

transfers via HIBI. The N2H2 adapter implements an Avalon-MM slave interface,

which the Nios II uses to con�gure the adapter to send and receive DMA transfers,

2. Reprogrammable Logic 11

and an Avalon-MM master interface, which allows the adapter component to gain

direct access to the memory. On the other side, the adapter is interfaced with a

HIBI wrapper. [25] [26]

Unlike the SOPC Builder, Koski is platform independent and can target di�erent

platforms and synthesis tools. The modular design of Koski allows 3rd party tools to

be integrated with Koski. When, for example, the designer uses a Nios II processor

in his design, the software compilation for the Nios II can be executed from the

Koski GUI. Similarly, the Koski GUI can be used to create Quartus II con�guration

settings for easy synthesis of the design. [21] [22]

12

3. APPLICATION-SPECIFIC

INSTRUCTION-SET PROCESSORS

Application-speci�c instruction-set processors are processors which are tailored to

execute a single application or a set of applications from an application domain. The

general-purpose performance of the processor can be put aside and the tailoring

e�ort is focused on the speci�c purpose. Three key factors in processor tailoring

are the performance, area and power consumption. Compared to a general-purpose

processor, an ASIP can achieve higher performance if the processor resources, such

as registers and computational units, are matched to the application at hand. The

area usage can be optimized as well. For example, if the application does not

utilize the division operation, the divider unit can be removed from the processor

architecture. Power consumption is related to the performance and area. Static

power consumption is directly proportional to area, in other words, the number of

transistors. [5] [10] [27]

One of the key motivations for using ASIPs is to increase the application perfor-

mance without the need to implement or purchase complex �xed function hardware

components. Manual IP block design can often be time consuming, and, thus, ex-

pensive. An ASIP implementation �ts between a GPP software implementation

and a pure HW implementation in terms of performance and design time. ASIP

implementations can be scalable in terms of performance per area and performance

per power consumption factors. [5] [10]

In order to save design time compared to a �xed function HW implementation,

there must be an easy and fast method for the design of ASIPs and their software

toolchains. Starting to create a new processor architecture and a compiler from

scratch is out of the question as it would be too time consuming. A customizable

processor architecture is therefore needed. The following sections will describe one

such architecture and a design toolset for implementing ASIPs using the architecture.

3.1 Transport Triggered Architecture

Instruction Level Parallelism (ILP) describes the potential to execute instructions

simultaneously [28]. In other words, if the instructions are not dependent on each

other, they could be evaluated concurrently. Exploiting the ILP has been one of the

key techniques in processor performance improvements over the years. There are

two main categories in exploiting the ILP. The �rst approach relies on hardware to

3. Application-speci�c Instruction-set Processors 13

dynamically �nd the parallel instructions during run time. For example, the modern

desktop PC processors use this approach. Naturally, this requires the inclusion

of a complex hardware logic for searching the parallel instructions which increases

processor size and power consumption. The other option is to depend on the software

compiler or the programmer to statically �nd the parallel instructions before run

time. In this approach, the performance depends heavily on the compiler. [5] [28]

Very Long Instruction Word (VLIW) processors are known for their ability to

exploit static instruction level parallelism thanks to their parallel Function Units

(FU) [28]. A VLIW instruction consists of multiple operations which are executed

concurrently in di�erent function units. These operations are scheduled statically

during compile time which means a VLIW processor does not need to include a com-

plex instruction dependency detection hardware logic which simpli�es the processor

implementation.

However, the scalability of a traditional VLIW is limited due to bottlenecks in

the architecture. The �rst bottleneck forms into the Register File (RF). In the

worst case scenario, every function unit must read and write to the register �le on

the same clock cycle. If the architecture has N function units which each have two

input ports and one output port, the register �le must have 2N read ports and N

write ports. The complexity, and, thus, the size of the register �le increases at least

in a linear fashion as a function of the RF port count. Another bottleneck comes

from the bypassing network between the function units which allows the results from

one FU to be directly written to the input of another FU without circulating the

result through the register �le. If the bypassing network is fully connected, which

means that the FU output ports are connected to all of the input ports, the network

complexity grows in a quadratic fashion as the number of FUs increase. [29]

Transport Triggered Architecture (TTA) template is based on the VLIW and

provides a solution to the bottlenecks of the traditional VLIW. TTA changes the

traditional operation based programming paradigm into an operand transport based

programming paradigm. This means that a TTA instruction does not describe

the executed operations but the performed operand transports. The operations

themselves are executed as a side e�ect of these operand transports. Thus, the

TTA instruction controls the connection network between the function units and

the register �les rather than the function units and register �les themselves. [29]

3.1.1 Hardware Characteristics

As the TTA instruction controls the InterConnection network (IC), it means that

the IC connections are visible to the programmer. Thus, the TTA can be described

as an exposed datapath architecture. The programmer-visible IC network allows the

processor designer to customize the IC connections because the programmer is aware

of the connections and can only use the existing connections. Thus, the IC customiz-

3. Application-speci�c Instruction-set Processors 14

Figure 3.1: Example of a Transport Triggered Architecture (TTA). Interconnection net-
work, which connects Function Units and Register Files together, is illustrated in the
middle.

ability allows the processor designer to control the IC network complexity. [29]

An example of a TTA processor is presented in Fig. 3.1 which shows the IC net-

work in the middle. The IC network consists of transport buses, sockets and con-

nections between them. The transport buses are used for transferring the operands.

Each bus can issue one transfer per instruction and the number of buses can be

customized. Sockets are used to connect the function unit ports to the transport

buses. [29]

TTA function units can implement one or more operations and they can be inter-

nally pipelined. An operation is executed by issuing the operand transports to the

input ports of an FU. One of these ports is a so called trigger port which has a spe-

cial purpose. When an operand is transferred to this port, the operation execution

is triggered. After the time de�ned by the static latency of the operation, the result

can be read from the output port of the FU. The FU ports are typically registers

which means that the values are stored in the ports until they are overwritten by

the next operation. This helps to reduce the register �le tra�c [30].

The register �les in TTA do not di�er much from the function units. The RFs

are connected to the IC in a similar way, and,thus, the available RF ports and their

connections are visible to the programmer. Thanks to the exposed datapath the

processor, the designer has the freedom to decide how many ports there are in each

register �le and the application code must adapt to the available resources. This

3. Application-speci�c Instruction-set Processors 15

helps in controlling the RF complexity. Besides the RF port count, the processor

designer can choose the number and the size of the registers there are in a single RF,

and, of course, the number of register �les there are in the processor architecture.

For example, a huge multiported RF can be divided into several small and simple

register �les. [31]

In addition to customizing the register �les, the TTA template allows the function

units to be modi�ed as well. The number of the function units can be changed

and the operations implemented in each unit customized as well. The number of

transport buses can also be modi�ed. As the Fig. 3.1 illustrates, a TTA processor

is constructed in a modular way which makes adding and removing components

straightforward. [29]

3.1.2 Programming Model

TTA has only one actual instruction: move, which implements operand transports.

The need to support only a single instruction combined with the static operation

scheduling makes the control logic of TTA very simple.

The operand transports of TTA are also visible to the programmer. In a tradi-

tional operation based assembly, an addition r3 = r1 + r2 could be executed as:

add r3, r1, r2

In TTA assembly, the addition is executed by de�ning the operand transports:

r1 -> add.o1

r2 -> add.t

add.r -> r3

Or, if there are multiple transport buses available, the input operands could be

transferred simultaneously:

r1 -> add.o1, r2 -> add.t

add.r -> r3

It is notable that the operation latency is visible to the programmer. In the example

above, the latency of the add operation is 1 clock edge. The operation result can be

read from the output on the next instruction after the triggering move.

One of the advantages of the operand transport paradigm is software bypass-

ing [30] and Dead Result Elimination (DRE). For example, the following code in

operation based assembly:

add r3, r1, r2

shift r6, r3, r4

store r3, r6

3. Application-speci�c Instruction-set Processors 16

could be executed on a TTA with two transport buses as:

r1 -> add.o1, r2 -> add.t

add.r -> shift.o1, r4 -> shift.t

add.r -> store.o1, shift.r -> store.t

As the example demonstrates, the addition result can be bypassed to the shift and

store operations. Likewise, the shift result is bypassed to store. Furthermore, as the

results of addition and shift can be bypassed to the next instructions, dead result

elimination removes the unnecessary result writes to the register �le. In the example,

these optimizations decreased register �le utilization by removing two register writes

and reads.

TTA also makes it easy to schedule code for custom Multiple-Input Multiple-

Output (MIMO) operations. The greatest advantage in case of MIMO operations

is that all the input and output operands do not have to be transported in a single

instruction cycle. The input port registers of a function unit hold their values until

they are overwritten and the operation results stay in the output port registers as

long as the next operation is triggered and the new results are written to the outputs.

This makes it possible to divide the operand transports to multiple instruction cycles

which puts less pressure on the register �le. For example, if there was an operation

with eight inputs and all of the operands were stored in a register �le, there would

have to be eight read ports in a VLIW register �le in order to provide all the operands

in a single instruction cycle. However, in case of TTA, the input operands can be

transported in multiple instruction cycles depending on the available RF read ports.

If there are, for example, two read ports, the input operands can be transported in

four instruction cycles.

3.2 TTA-based Co-design Environment

TTA-based Co-design Environment (TCE) [1] is a toolset for implementing applica-

tion-speci�c processors based on the TTA processor template. The main use case of

the toolset is rapid co-design of processor based accelerators with minimal manual

RTL coding. TCE toolset is developed at the Tampere University of Technology.

The most essential tools in TCE are the processor designer tool ProDe, a re-

targetable high level language compiler tcecc, the retargetable Instruction-Set Sim-

ulators (ISS) ttasim (command line version) and proxim (graphical user interface

version) and the processor generator ProGe. These tools allow high level language

(HLL) to RTL design �ow. The retargetability of the tools means that they auto-

matically adapt to the processor architecture at run time. Most of the design work

with TCE is done on the architecture level which makes the retargetability a key

factor in reducing the design time, and, thus, increasing design the productivity.

The design process is discussed in more detail in Section 3.3.

3. Application-speci�c Instruction-set Processors 17

Figure 3.2: TCE design �ow

TCE allows the designer to customize TTA processors. The designer can, for

example, change the number of function units in the architecture, modify which

operations are included in a function unit and even create new operations. The

register �les can be customized as well. The designer can change the register width,

the register �le size and the register �le port count. The number of register �les

is also customizable. The interconnection network of the processor can be tailored

as well. The number of transport buses and the connections between the FUs, RFs

and transport buses are also modi�able.

3.3 ASIP Design with TCE

The goal of the TCE ASIP design �ow, described in [32], is to produce a processor

which is able to execute a speci�c application while complying with the restrictions

set by the design requirements. TCE ASIP design �ow is illustrated in Fig. 3.2. The

design �ow inputs are the HLL source code of the desired application and the design

requirements. These requirements can, for example, de�ne the amount of FPGA

resources the implementation can use, the target execution time or performance,

the minimum clock frequency or the maximum allowed energy consumption. At

the beginning of the design �ow, the designer uses ProDe to create a starting point

architecture. ProDe stores the processor architecture description in XML-format to

an Architecture De�nition File (ADF). Alternatively, a pre-made ADF can be used

as the starting point.

3. Application-speci�c Instruction-set Processors 18

The next step is to compile the source code for the starting point architecture with

the tcecc compiler which outputs a TTA Program Exchange Format (TPEF) binary

�le. The retargetable instruction-set simulator ttasim gets the ADF and TPEF �les

as input and produces simulation results, such as execution cycle count, processor

resource utilization data and optionally execution traces which can be utilized to

extract pro�ling data. These simulation results are the feedback from the �ow. The

designer analyses the feedback and modi�es the architecture accordingly with ProDe.

Then a new iteration is started and the new feedback shows how the modi�cations

a�ected the results. This iteration process is also known as manual processor Design

Space Exploration (DSE) [33]. TCE also includes an experimental explorer [33] tool

which can be used to automate the processor design space exploration. In the

automated DSE, the designer sets goals for the exploration and then the explorer

modi�es the processor architecture until the given goals are reached.

Processor design space exploration is continued until the design requirements are

met or the designer determines that the results are adequate. It should be noticed

that at this point the maximum clock frequency of the processor is unknown, and

thus, the actual run time of the application is also unknown because the simulation

results only tell the instruction cycle count. If the design requirements set a target

clock frequency, one can determine the maximum instruction cycle count. In order

to �nd out the actual maximum clock frequency, the execution time and the FPGA

resource usage, the processor must be implemented and synthesized. The RTL im-

plementation of the processor is generated with the ProGe tool. Before this can

be done, the processor architecture resources, namely the FUs and RFs, must be

mapped to their actual RTL implementations. The FU and RF implementation are

stored in Hardware Databases (HDB), and the resource mapping is done by simply

de�ning which HDB entry is used for each architecture resource. The mapping infor-

mation is written to an Implementation De�nition File (IDF). When the mapping

is done, ProGe uses the ADF and IDF to create the processor RTL implementation

by generating the IC network and connecting the FUs and RFs together.

At this point, only the processor core has been implemented. In order to execute

applications, the core must be interfaced with the target platform. This can be done

with Platform Integrator which was implemented for this thesis. The main idea of

the Platform Integrator is to interface the core with the memory components and

the FPGA board and to create synthesis tool project �les to allow easy integration.

Platform Integrator is presented in more detail in Section 4.

After the integration, the processor can be synthesized with a 3rd party synthesis

tool. The synthesis produces an FPGA device programming �le which is used to

con�gure the design onto the FPGA for execution. The synthesis results are valu-

able feedback for the design �ow. The results determine, for example, the actual

resource usage and maximum clock frequency of the processor. The designer com-

3. Application-speci�c Instruction-set Processors 19

Figure 3.3: TCE custom operation design �ow.

pares these results with the design requirements to determine whether the iterative

design process can be �nished.

In addition, TCE allows the designer to exploit custom hardware operations which

can be used to accelerate the application. TCE allows the custom operations to be

tested and evaluated without having the RTL implementation of the custom oper-

ation, thanks to the separation of the processor architecture and implementation.

The custom operation design �ow, described in [32], is illustrated in Fig. 3.3. The

�ow begins by searching for a custom operation candidate. Application pro�ling can

be helpful for this purpose. When a candidate is found, the designer creates a custom

operation compiler de�nition by using the Operation Set Editor tool OSEd. The

compiler de�nition simply describes the name of the operation and the number of

input and output operands. In order to simulate the operation, a simulation model

is needed. This model implements the operation behavior using C/C++. Usually

the software function in the accelerated program can be exploited in de�ning the

simulation model. If, for example, the custom operation replaces a function, the

3. Application-speci�c Instruction-set Processors 20

function code can be utilized as the simulation model.

Using the new custom operation requires modi�cations to the processor archi-

tecture and the HLL source code. First, the designer must add a function unit

containing the custom operation to the architecture. At this point, the custom

operation latency must be de�ned. Sometimes it can be di�cult to determine the

operation latency before the operation hardware is implemented. The designer can

either take an educated guess or change the latency between iterations to �nd out

which latencies would be feasible.

For the software to be able to use the custom operation, the designer needs

to modify the source code to utilize the new operation. This is done by calling

the operation via TCE-speci�c operation macros or intrinsics. In case the custom

operation implements a function from the original code, these function calls are

replaced with calls to the operation macros. When the modi�cations are ready, the

application can be compiled and simulated. Feedback from the simulation will reveal

how the custom operation a�ected the execution cycle count. If the results were not

satisfying, another custom operation can be tested by starting a new iteration.

If the custom operation speedup was adequate and the designer chooses to in-

clude the custom operation to the architecture, the custom operation must be imple-

mented. This is the only step in the TCE design �ow where the designer is required

to write RTL code, but then again, using custom operations is not compulsory. The

designer can use utilize TTA Unit Tester, which was created for this thesis, to assist

in the implementation of the custom operation. TTA Unit Tester veri�es that the

RTL implementation of the custom operation is equal to its simulation model. The

TTA Unit Tester tool is described in more detail in Section 5.2. When the custom

operation implementation is ready, the custom FU is added to a hardware database

with the hdbeditor tool. This allows the FU to be reused in later designs.

21

4. PLATFORM INTEGRATION FRAMEWORK

The processor generator tool of TCE only creates the processor core. This processor

core needs to be integrated into the target platform before the design can be exe-

cuted. An e�ortless integration process is important for a �uent ASIP design �ow

because it allows the synthesis preparations to be made quickly and, thus, reduce

the time to acquire synthesis results.

Previously, the TTA core integration required manual e�ort of the designer, but

for this thesis a Platform Integration Framework was created to automate the inte-

gration �ow.

4.1 Requirements

There are two main use cases for the Platform Integrator (PI). The �rst one is to

integrate the TTA processor straight to the targeted FPGA board, in other words,

implement a stand-alone TTA on an FPGA. This option is discussed in more detail

in Section 4.4. The second option is to wrap the TTA as an IP-block which can be

used in System-on-Chip designs. This case is further discussed in Section 4.5. Both

of these use cases share the same basic integration steps which are:

1. Create a wrapper around the TTA core.

2. Connect memory components to the TTA core. In case on-chip memory is

used, the memory components need to be created and instantiated inside the

wrapper.

3. Export all unconnected signals out of the wrapper to allow external connec-

tions. These signals can include, for example, control signals, such as the

clock and reset, bus interface signals, peripheral signals and interface signals

to o�-chip devices such as memory devices and a Digital-to-Analog Converter

(DAC).

4. Perform platform speci�c tasks. For example, map the exported signals of the

processor wrapper to FPGA pins or bus signals.

5. Write project �les or metadata �les for 3rd party tools. This step makes it

easier to utilize TTA designs in other EDA tools.

The operation principle of the Platform Integrator is illustrated in Fig. 4.1.

4. Platform Integration Framework 22

Figure 4.1: The operation principle of the Platform Integrator. The Platform Integrator
connects the TTA core to memory components and conduits external signal interfaces out
of the TTA processor wrapper (presented as a dashed rectangle). In addition, the tool-
speci�c project or metadata �les of the TTA processor are generated to allow the design
to be used in 3rd party tools.

Platform Integrator needs to be able to implement the mentioned steps in an

automated fashion. Furthermore, PI should be made vendor independent in such a

way that multiple vendors can be supported. This means that the vendor speci�c

handling should take place on the lowest possible level of the framework to make it

easy to extend the vendor support later on.

The hardware support for di�erent platforms is realized by creating platform

speci�c Hardware Databases. These HDBs contain FU and RF implementations

speci�cally targeted for the platform in question. A platform speci�c HDB can, for

example, contain an LSU which includes an optimized memory controller for the

SDRAM chip available on a particular FPGA board.

4.2 Implementation

Platform Integrator was not implemented as a separate tool but it was integrated

into the ProGe [34] tool. PI is comprised of three abstract classes shown in Fig. 4.2.

PlatformIntegrator is the main class of PI. It contains the information on the

speci�c platform. Integration is performed by calling method integrateProcessor().

This method takes the TTA core created by ProGe as a parameter. The TTA core is

given as a NetlistBlock which is an object model containing the ports and parameters

of the hardware implementation. PlatformIntegrator creates a new Netlist object for

the TTA core and other integrator components. A Netlist models the connections

4. Platform Integration Framework 23

PlatformIntegrator

+integrateProcessor()

+deviceName()

+deviceFamily()

+deviceSpeedClass()

+printInfo()

#imemInstance()

#dmemInstance()

ProjectFileGenerator

+addHdlFile()

+writeProjectFiles()

MemoryGenerator

+isCompatible()

+addMemory()

+generatesComponentHdlFile()

+generateComponentFile()

#addPort()

#addParameter()

VHDLRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

Figure 4.2: Main classes of the Platform Integrator Framework

between the ports of the di�erent NetlistBlocks.

PlatformIntegrator class also includes methods for querying information about

the FPGA device such as deviceFamily(), deviceName() and deviceSpeedClass().

Method printInfo() is used to output basic information about the Platform Inte-

grator component for the designer. Protected methods dmemInstance() and imem-

Instance() are used to get appropriate MemoryGenerator object instances which are

supported by the platform and compatible with the given TTA core.

MemoryGenerator class is responsible for connecting a memory to the TTA core.

Depending on the memory type and setup, MemoryGenerator might need to cre-

ate and instantiate a memory component or a memory controller and to create the

needed connections. The di�erent memory setups are discussed in more detail in

Section 4.3. Method isCompatible() is used to determine whether the TTA core

has a compatible memory interface for the speci�c memory generator. If the core is

compatible, the method addMemory() creates the needed signals, instantiates the

memory component or a memory controller and connects it to the TTA core in

the Netlist given as a parameter. In addition, there are methods generatesCompo-

nentHdlFile() and generateComponentFile(). The �rst one is used to determines

whether the MemoryGenerator creates HDL �les and the latter is utilized to create

these �les.

One MemoryGenerator, VHDLRomGenerator, was realized for the base imple-

mentation of the Platform Integrator. This memory generator implements a simple

read-only instruction memory where the memory contents are stored as a VHDL

array of std_logic_vectors. This lets the synthesis tool to decide how to imple-

ment the actual memory and allows the tool to perform memory size optimizations.

4. Platform Integration Framework 24

VHDLRomGenerator can be used on every platform, hence it was added to the base

implementation.

ProjectFileGenerator is the base class for creating project or metadata �les from

the design. Commonly, the design HDL �les need to be listed in the project and

metadata �les and therefore, the class has method addHdlFile() for this purpose.

ProjectFileGenerator has access to the PlatformIntegrator which allows it to query

device speci�c information straight from the PlatformIntegrator. The project �le

generation is started by calling the method writeProjectFiles().

4.3 Memory Interfacing Considerations

Interfacing the TTA core with a memory can be done in di�erent ways. Figure 4.3

distinguishes the four di�erent data memory connection types supported by the

MemoryGenerator. The �rst two cases on the left use an on-chip memory. In these

cases, the MemoryGenerator generates and instantiates the memory components

inside the processor wrapper. The di�erence between these two options is the loca-

tion of the memory controller component. On the very left, the memory controller

is integrated in the load-store unit of the TTA core which means that the external

interface of LSU contains low level memory control signals. The second option from

left in Fig. 4.3 illustrates the situation where the memory controller is outside of the

TTA core in the processor wrapper. The situation is quite similar to the �rst case

with the exception that now the MemoryGenerator is also responsible for creating

and instantiating the memory controller component. In this case, the LSU can con-

tain a higher level memory interface. For example, it could only de�ne the memory

operation and the memory address and the memory controller converts them to low

level memory control signals.

The two cases on the right in Fig. 4.3 di�er from the �rst two only by using an

o�-chip memory instead of an on-chip memory. Again, the memory controller com-

ponent can either be integrated in the LSU or be created by the MemoryGenerator.

It should be noticed that the memory controller can, for example, control a cache

or even a cache hierarchy. Caches are often desired when o�-chip memories are used

since the memory access latency is longer compared to an on-chip memory.

The instruction memory interfacing di�ers a bit from the data memory interfac-

ing. The control unit of TTA is responsible for fetching the instructions from the

memory and the fetch unit contains a rather simple memory controller. The fetch

unit assumes that an instruction can be fetched with a single load operation. This

can usually be implemented with an on-chip memory, but the long instruction word

can be a problem with o�-chip memories. If the data bus width of the o�-chip

memory is smaller than the instruction word width, the MemoryGenerator needs

to generate an additional memory controller between the o�-chip memory and the

fetch unit. This memory controller reads multiple memory locations to provide a

4. Platform Integration Framework 25

Figure 4.3: Di�erent ways of connecting a data memory to the TTA core. They are
distinguished by the used memory type and the location of the memory controller.

single instruction for the fetch unit.

4.4 Stand-alone FPGA Integration

One of the use cases of the Platform Integrator is to integrate TTA processors into

FPGAs as stand-alone processors. In this case, it is typical that the interfacing with

the devices on the FPGA board is often implemented using Special Function Units

(SFU) which contain device speci�c custom operations. The SFUs can perform

rather simple operations such as reading button or switch states and lighting leds,

or more complex operations such as con�guring DAC chip parameters and playing

audio samples. These SFUs are stored in platform speci�c HDBs which are used

with the matching Platform Integrator.

Another characteristic aspect in the stand-alone FPGA integration is the mapping

of the design signals to the FPGA pins to allow access to o�-chip devices. Platform

Integrator has the information on how to connect SFU signals to the correct pins,

when the platform speci�c HDB is used. Naturally, the design clock signal also needs

to be connected to a clock source and the reset signal is to be connected as well. The

connection points of these signals are platform speci�c and possibly con�gurable.

For example, there might be multiple clock sources of di�erent frequency connected

to the FPGA.

Synthesis is also characteristic of the stand-alone TTA integration. The stand-

4. Platform Integration Framework 26

QuartusProjectGenerator

+writeProjectFiles()

-writeQPFFile()

-writeQSFFile()

-writeScripts()

Stratix2DSPBoardIntergrator

+integrateProcessor()

+printInfo()

#dmemInstance()

AlteraIntegrator

+integrateProcessor()

#imemInstance()

#dmemInstance()

AlteraMegawizMemGenerator

#runMegawizard()

#createMemParameters()

AlteraOnchipRamGenerator

+generatesComponentHdlFile()

+generateComponentFile()

#createMemParameters()

AlteraOnchipRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

#createMemParameters()

Stratix2SramGenerator

+addMemory()

+generatesComponentHdlFile()

+generateComponentHdlFile()

PlatformIntegrator

+integrateProcessor()

+printInfo()

#imemInstance()

#dmemInstance()

MemoryGenerator

+isCompatible()

+addMemory()

+generatesComponentHdlFile()

+generateComponentFile()

#addPort()

#addParameter()

ProjectFileGenerator

+addHdlFile()

+writeProjectFiles()

VHDLRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

Figure 4.4: Class diagram of the Altera Stratix II DSP Board Integrator which integrates
TTA cores as stand-alone processors on the FPGA evaluation board in question.

alone processor is prepared for synthesis, hence the project �les for synthesis tools

should be created for practicality. Furthermore, executable scripts for running the

synthesis and programming the FPGA board could be written to simplify the FPGA

�ow.

A stand-alone FPGA integrator for Altera Stratix II DSP Board [35] was imple-

mented. The class diagram of the Stratix II DSP Board Integrator (later Stratix II

Integrator) is presented in Fig. 4.4.

On-chip memory components in the Altera platform can be created with a tool

called qmegawiz [20]. A set of parameters is given to the tool which then generates

a wrapper for the Altera component altsyncram with the user de�ned parameters.

AlteraMegawizMemGenerator was implemented to call the qmegawiz tool in order

to generate on-chip memory components during the execution of Platform Inte-

grator. Two classes were derived from the AlteraMegawizMemGenerator : the �rst

was AlteraOnchipRamGenerator for creating a RAM memory component and the

other was AlteraOnchipRomGenerator which is used to create a read-only instruc-

tion memory component. Both of these classes provide the memory type speci�c

4. Platform Integration Framework 27

parameter set needed by the AlteraMegawizMemGenerator to invoke the qmegawiz.

An o�-chip memory generator Stratix2SramGenerator was also created for Stratix

II Integrator. It is utilized to interface the TTA core with the SRAM memory device

available on the FPGA evaluation board. The SRAM LSU, stored in the Stratix II

speci�c HDB, was implemented in such way that the memory controller is included

in the LSU. Thus, the Stratix2SramGenerator does not need to create a memory

controller or a memory component �le.

For the Altera speci�c integration generalizations, an abstract class AlteraInte-

grator was derived from the PlatformIntegrator. The purpose of this class is to

implement the dmemInstance() and imemInstance() methods to add support for

Altera on-chip memory generators derived from the AlteraMegawizMemGenerator.

This eases the use of on-chip memory components.

The Stratix II Integrator main class Stratix2DSPBoardIntegrator is derived from

the AlteraIntegrator. The main class controls the integration process, uses Memory-

Generators to handle memory connections and handles FPGA pin mapping. Finally,

it uses QuartusProjectGenerator, which is derived from ProjectFileGenerator, to cre-

ate project �les for the Altera Quartus II synthesis tool. These project �les list, for

example, the name of the design, FPGA device information, pin mapping informa-

tion and all the HDL �les needed to synthesize the design. QuartusProjectGener-

ator also writes shell scripts quartus_synthesize.sh and quartus_program_fpga.sh

for easy FPGA synthesis and execution process, respectively.

4.5 SoC Design Flow Integration

The other main use case of the Platform Integrator is to wrap TTA cores to IP

blocks which can be utilized in System-on-Chip designs. Characteristic in this use

case is that the �nal system is constructed with 3rd party tools and synthesized

afterwards. Therefore, the Platform Integrator does not need to perform FPGA pin

mapping because it is done later on in the SoC design �ow. However, synthesizing

the TTA IP block generated by the Platform Integrator separately from the system

is useful as it gives information about the resource usage and clock frequency of the

TTA.

IP blocks communicate with each other via bus interfaces. In order to use TTAs

in a SoC, di�erent bus interfaces must be implemented for TTA. Bus interfaces can

be interfaced from the software via SFUs which are used with custom operations

or in case of memory mapped bus interfaces, the implementation can be embedded

inside the load-store unit. These bus interface function units are stored to SoC

platform speci�c hardware databases.

SoC design tools typically utilize IP block metadata to be able to identify the

signals related to a certain bus interface. This is why the automatic metadata

generation of a TTA IP is vital for �uently importing the generated TTA IPs to

4. Platform Integration Framework 28

Figure 4.5: Example of a TTA IP block connected to the Avalon interconnection bus using
the Avalon LSU. The data memory of the TTA resides in the SDRAM which is accessed
using the SDRAM controller connected to Avalon.

other design tools. In the IP block integration, the Platform Integrator needs to

map the external interface signals of a function unit to the logical bus signals for the

metadata generation. This is similar to mapping signals to FPGA pins performed

in the stand-alone FPGA integration.

4.5.1 Avalon Integrator

The �rst TTA IP integrator created for this thesis is the Avalon Integrator. The

purpose of this integrator is to convert TTAs to Altera SOPC Builder compatible

IP components. The �nal system can then be constructed with the SOPC Builder

which allows the TTA to exploit other SOPC Builder compatible IP blocks.

In order to ensure the hardware compatibility of the TTA with the SOPC Builder,

the Avalon Memory Mapped master interface was realized for TTA. Due to the

memory mapped nature of the bus interface, it was implemented as a load-store

unit. This Avalon LSU is not interfaced with a local data memory which means

that the data memory of the processor, as well as the other IP blocks, are accessed

via the Avalon interface. The type of the data memory is de�ned in the SOPC

Builder and the FPGA board-speci�c memory controllers are then provided by the

SOPC Builder. Therefore, the Avalon Integrator does not need to care about the

data memory controllers if the Avalon LSU is used. An example of a system including

an Avalon-compatible TTA is presented in Fig. 4.5. In this example, the TTA data

memory is accessed using the SDRAM controller connected to the Avalon bus.

However, there are a few limitations set by TCE concerning SOPC Builder de-

signs. First of all, TTA programs always assume that the data memory starts from

the address zero due to the lack of a memory mapper in the current tcecc compiler.

4. Platform Integration Framework 29

Figure 4.6: Example of a TTA IP connected to the Avalon interconnection bus using the
Avalon SFU. A local memory LSU is used to access an on-chip data memory which is
hidden from the rest of the system. The Avalon SFU is utilized to communicate with the
other Avalon components.

In practice, this means that the base memory address of the data memory must be

set to zero in the SOPC Builder. Fortunately, the IP component base addresses are

user de�nable in the SOPC Builder so the issue can be easily circumvented. Another

issue is the lack of interrupts in TTA. Avalon MM slaves can send interrupts to the

master to notify about events. The Avalon LSU registers these interrupts but they

do not interrupt the normal execution of TTA. The Avalon LSU provides a custom

operation for reading the interrupt register and polling can be used to implement

event handling.

The Avalon MM interface was also implemented as an SFU to allow TTA cores

to have a local memory access which is independent of the Avalon bus congestion

and hidden from other components in the system. This kind of setup is illustrated

in Fig. 4.6. The SFU is basically the same as the Avalon LSU with the exception

that the normal load and store operations are replaced by custom avalon_load and

avalon_store operations. This is similar to using the IOWR and IORD macros

in Nios II programs to access the Avalon components. Using these operations, the

Avalon SFU can be used to access memories and other components connected to the

Avalon bus like, for example, the SDRAM controller as shown in Fig. 4.6. When a

local memory LSU is used with Avalon SFU, the Avalon Integrator must create and

connect an on-chip memory component to the TTA core. O�-chip memory can also

be used as an alternative. In this case, the memory interface signals are exported

out of the SOPC Builder design using the Avalon conduit interface in the TTA IP

component. The conduit interface can also be used for other ad-hoc connections.

The class diagram of the Avalon Integrator is illustrated in Fig. 4.7. It relies much

4. Platform Integration Framework 30

SOPCBuilderFileGenerator

+writeProjectFiles()

-createInterfaces()

-writeModuleProperties()

-writeFileList()

-writeInterfaces()

AvalonIntergrator

+integrateProcessor()

+printInfo()

#dmemInstance()

SOPCInterface

+setProperty()

+setPort()

+writeInterface()

AvalonMMMasterInterface

+writeInterface()

AlteraIntegrator

+integrateProcessor()

#imemInstance()

#dmemInstance()

AlteraMegawizMemGenerator

#runMegawizard()

#createMemParameters()

AlteraOnchipRamGenerator

+generatesComponentHdlFile()

+generateComponentFile()

#createMemParameters()

AlteraOnchipRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

#createMemParameters()

Stratix2SramGenerator

+addMemory()

+generatesComponentHdlFile()

+generateComponentHdlFile()

PlatformIntegrator

+integrateProcessor()

+printInfo()

#imemInstance()

#dmemInstance()

MemoryGenerator

+isCompatible()

+addMemory()

+generatesComponentHdlFile()

+generateComponentFile()

#addPort()

#addParameter()

ProjectFileGenerator

+addHdlFile()

+writeProjectFiles()

VHDLRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

Figure 4.7: Class diagram of the the Avalon Integrator which can be used to wrap TTAs
to Altera SOPC Builder compatible IP components

on the Altera speci�c framework created for the Stratix II Integrator. For example,

there was no need to create new memory generators. AvalonIntegrator class was

derived from AlteraIntegrator to control the integration process.

The metadata generation is handled in the SOPCBuilderFileGenerator class

which searches the Avalon interfaces from the TTA core. The interfaces are matched

according to the names, the directions and, if applicable, the widths of the interface

signals. The AvalonIntegrator in synchronized with the Avalon speci�c HDB which

guarantees successful integration. The interfaces are modeled using the SOPCInter-

face class from which AvalonMMMasterInterface is derived. These interface objects

contain the signals associated to the bus interface as well as references to other

associated interfaces. For example, every Avalon MM master is associated to an

Avalon clock interface. Further Avalon interfaces could be supported by deriving

new SOPCInterfaces and creating matching function units for them. Finally, the

SOPCBuilderFileGenerator writes a _hw.tcl metadata �le which is used to import

the design into the SOPC Builder.

4. Platform Integration Framework 31

IPXactFileGenerator

+writeProjectFiles()

-addBusInterfaces()

KoskiIntegrator

+integrateProcessor()

+printInfo()

#dmemInstance()

AlteraHibiDpRamGenerator

+addMemory()

+generatesComponentHdlFile()

+generateComponentFile()

#createMemParameters()

IPXactModel

+loadState()

+saveState()

+addBusInterface()

IPXactSerializer

+writeState()

+writeIPXactModel()

-readState()

XMLSerializer

+writeState()

+readState()

IPXactInterface

+mapPortsToInterface()

+addSignalMapping()

IPXactClkInterface

+mapPortsToInterface()

IPXactResetInterface

+mapPortsToInterface()

IPXactHibiInterface

+mapPortsToInterface()

Serializable

+loadState()

+saveState()

AlteraIntegrator

+integrateProcessor()

#imemInstance()

#dmemInstance()

AlteraMegawizMemGenerator

#runMegawizard()

#createMemParameters()

AlteraOnchipRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

#createMemParameters()

Stratix2SramGenerator

+addMemory()

+generatesComponentHdlFile()

+generateComponentHdlFile()

PlatformIntegrator

+integrateProcessor()

+printInfo()

#imemInstance()

#dmemInstance()

MemoryGenerator

+isCompatible()

+addMemory()

+generatesComponentHdlFile()

+generateComponentFile()

#addPort()

#addParameter()

ProjectFileGenerator

+addHdlFile()

+writeProjectFiles()

VHDLRomGenerator

+generatesComponentHdlFile()

+generateComponentFile()

Figure 4.8: Class diagram of the Koski Integrator. The Koski Integrator is utilized to
create Koski compatible TTA IP blocks.

4.5.2 Koski Integrator

Another IP integrator created for this thesis is the Koski Integrator which is used

for creating Koski compatible TTA IP blocks. Hardware compatibility was achieved

by implementing the HIBI interface for TTA. This implementation embedded the

N2H2 IP block inside the LSU of TTA, and, thus, allowed DMA transfers via the

HIBI bus. The HIBI LSU implementation is presented in more detail in [36].

The HIBI LSU requires dual ported RAM access for e�cient DMA transfers. One

port is reserved for the memory access of the TTA and the other one is for the N2H2.

For this purpose, a new Altera on-chip memory generator called AlteraHibiDpRam-

4. Platform Integration Framework 32

Generator was derived from the AlteraMegawizMemGenerator as shown in the class

diagram in Fig. 4.8. It works in a similar way as the other Altera memory generators

and it recognizes the HIBI LSU memory interface. The Koski Integrator does not

support o�-chip data memory interfaces, unless they are implemented using ad-hoc

connections. Even if an o�-chip memory was used, the HIBI LSU would still require

an on-chip dual port RAM for the DMA transfers.

The IP-XACT metadata generation is handled by the IPXactFileGenerator. This

class creates an IPXactModel of the TTA which describes all of the TTA interface

signals and HDL �les. Furthermore, the TTA interface signals are mapped to appro-

priate IPXactBusInterfaces when applicable. For example, the HIBI interface in the

HIBI LSU is recognized and modeled using the IPXactHibiInterface. The IP-XACT

interface support can be extended by implementing new IPXactInterface classes and

by creating matching function units to provide the hardware level compatibility.

The IP-XACT metadata is stored in the XML format. In order to easily write

the IP-XACT �les, the IPXactModel class was derived from the Serializable class

of TCE base library which enforces the child class to implement the loadState() and

saveState() methods. The IPXactSerializer class, derived from the XMLSerializer

of TCE base library, uses these methods to write and read IP-XACT �les. TCE

version 1.3 supported IP-XACT version 1.2. IP-XACT support was updated to

version 1.5 before TCE 1.4 was released.

33

5. VERIFICATION FLOW

Design veri�cation is at least as important as the implementation. Everything that

is designed must be tested and veri�ed because otherwise there is no certainty that

the design behaves as speci�ed. Veri�cation can take half of the time of the whole

design process, if not more. [37]

This chapter describes the veri�cation methods of TTA processors designed with

TCE tools. First, the veri�cation �ow of TTA processors is discussed. Then, a new

TTA Unit Tester veri�cation tool for unit testing processor datapath resources is

introduced.

5.1 Top-down Veri�cation

Veri�cation can be done on multiple abstraction levels of the design process. The

top-down approach allows the possible faults to be found on the highest possible

abstraction level which helps to isolate and target the source of the fault. TCE ver-

i�cation levels and methods are presented in Fig. 5.1. In the following sections, the

di�erent veri�cation levels are discussed in more detail followed by the descriptions

of the two di�erent veri�cation methods shown in Fig. 5.1.

5.1.1 Veri�cation Levels

The top-down veri�cation starts from the highest possible abstraction level and

moves to lower abstractions in steps. After each level transition, it must be ensured

that the design behavior does not change before moving on in the �ow. One of

the key motivation factors in this approach is that typically the design debugging

becomes harder and harder as the design abstraction moves lower towards the real

implementation. At the same time, the veri�cation execution time increases with

the exception of the FPGA execution. The levels of the TCE top-down veri�cation

�ow are the following.

Desktop Execution

First step of the veri�cation is to compile and execute the HLL application on a

standard desktop PC. A wide range of software development and debugging tools

are available in the desktop PC environment making it the most suitable option

for verifying the application software and generating test data for the later levels.

5. Veri�cation Flow 34

Figure 5.1: Top-down veri�cation of TTA processors. The veri�cation method based on
printouts is presented on the left side and on the right is the processor transport bus trace
based method. Both methods can be applied on various levels of the design process.

In general, the application execution speed is fast since desktop processor clock

frequencies are in the order of gigahertz.

Architecture Simulation

The second veri�cation level, architecture simulation, is the �rst one involving a

TTA processor. The architecture simulation is executed using the retargetable

instruction-set simulator of TCE, either ttasim or Proxim. First of all, this level

veri�es the program portability to the TTA environment. If the program behavior

changes compared to the desktop PC execution, it might indicate that the program

source code does not comply with the programming language standards or it uses

nonportable code. In rare cases, the culprit might be the compiler or the ISS.

The most of the design work in TCE is done at the architecture level which

makes this an important veri�cation level. Every time the processor architecture is

changed, it must be con�rmed that the program behavior remains unchanged. In

order to allow fast design space exploration, the veri�cation should be as automatic

as possible.

The ISS of TCE provides versatile software debugging capabilities. The user can

single step instructions, assign software breakpoints, examine the contents of reg-

ister �les and memories et cetera. Despite the program execution speed on the

5. Veri�cation Flow 35

instruction-set simulator is signi�cantly lower than on a desktop PC, often the

performance, measured in simulated instruction cycles per second, is still accept-

able. The overall simulation clock frequency depends on the TTA processor archi-

tecture and the program complexity, but often the frequency is in the megahertz

range. [38] [39]

RTL Simulation

The next veri�cation level is the RTL simulation which can be executed once the

processor HDL implementation has been generated with ProGe. Before proceeding

to simulate the whole processor, it is advisable to run the TTA Unit Tester (described

in Section 5.2) to ensure the processor units are not defective. From this perspective,

simulating the whole processor is in fact integration testing. Assuming that the

units are veri�ed to work, the errors found on this level are likely to be caused by

integration issues.

The fundamental di�erence in the architecture and RTL simulation is that the

RTL simulation is focused on observing and debugging the hardware operation

rather than the software. While the user can inspect memory and register �le

contents as well as the internal registers of the function units, software breakpoints

are not available per se. In other words, the RTL simulation gives a detailed view

of the hardware execution but has very limited means to debug the software. The

greatest disadvantage of the RTL simulation is the low simulation clock frequency

which can be, depending on the design size and complexity, up to six orders of

magnitude slower than the real hardware execution [40] and often two orders of

magnitude slower than the architecture simulation.

FPGA Execution

The �nal veri�cation level is executing the design on FPGA hardware. If the RTL

simulation was a success, this level veri�es that the integration to the target FPGA

and the synthesis process were successful. For example, mapping the design signals

to the FPGA pins can be surprisingly error prone if done manually. Fortunately, the

Platform Integrator does this automatically. One possible pitfall after the synthesis

is executing a design which does not meet the timing constraints. Some synthesis

tools, like the Altera Quartus II, will write the FPGA programming �le regardless

of the timing analyser result, making it easy to accidentally test such con�guration

on the target hardware.

The FPGA execution breaks the trend of the execution speed slowdown in the

veri�cation because the design can be executed on high clock frequency. On the

downside, the visibility to the hardware state is mostly lost. That is to say, the

FPGA execution can be done quickly but usually the veri�cation output is binary:

5. Veri�cation Flow 36

the design either works or does not work. In-system logic analyzers can be used to

redeem the situation to some extent. They provide capabilities to capture signal

waveforms during execution but the captured data size is usually quite limited.

If the design is to be implemented as an ASIC, the FPGA execution would be

just another intermediate level before the �nal product. Typically, an FPGA might

not be able to reach the high target clock frequency of an ASIC but the veri�cation

speed on the FPGA is signi�cantly faster in comparison to the RTL simulation. The

advantage of the FPGA veri�cation is that the design can be tested on hardware

before the �nal target hardware is manufactured.

5.1.2 Printouts

The printout veri�cation method presented on the left side of Fig. 5.1 relies on

printing data during the execution. This acquired data is used to verify calculation

results and track the program execution. The standard C functions such as printf(),

puts() and putchar() can be utilized for this purpose which ensures the veri�cation

code portability between the desktop PC and the TTA environment. Thus, the

reference printout is created on the desktop PC environment and the printouts from

the subsequent levels are compared to this reference.

Printing in the TTA environment requires the processor architecture to include

a function unit which implements an operation called STDOUT. This operation

is utilized to output a single character to a �standard output device�, whatever

that is in the integrated platform. In TCE, the standard C printing functions are

implemented in such a way that they utilize the STDOUT operation. By default,

the simulation model of this operation outputs the printed characters to the main

window of the instruction-set simulator.

The RTL simulation requires an implementation for the function unit containing

the STDOUT operation. Fortunately, the RTL simulation implementation does

not have to be synthesizable, thus, for example, the textio-package of VHDL can

be used to print the characters to a text �le. However, for the FPGA execution

the implementation must be synthesizable and the implementation method is target

FPGA board dependent. Typically, FPGA evaluation boards provide an UART

(Universal Asynchronous Receiver Transmitter) connection via a serial cable or a

JTAG (Joint Test Action Group) cable to communicate with the host PC. FPGA

boards might also have a display or a display connector which allows the characters

to be printed on a separate screen but this approach would prevent the automatic

printout comparison.

Figure 5.2 shows an example of acquiring the TTA printouts from di�erent the

veri�cation levels. The TTA executes a trivial hello world application:

#include <stdio.h>

int main() {

5. Veri�cation Flow 37

Figure 5.2: Example of acquiring printouts from the TTA. On the left is a screen cap-
ture from the ttasim instruction-set simulator. The middle terminal executes the RTL
simulation with GHDL and shows the generated printout �le. On the right side window,
the nios2-terminal program is executed to the capture characters sent from the FPGA
evaluation board.

printf("Hello World!\n");

return 0;

}

which outputs the line �Hello World!�. The left window in the Fig. 5.2 shows the

output from ttasim, and the RTL simulation with GHDL is executed in the middle

window. On the right is the output from the Altera Stratix II FPGA evaluation

board. The printing is implemented using the JTAG UART IP block provided by

Altera which allows the characters to be captured in the nios2-terminal program

executed on the host PC.

5.1.3 Bus Trace

The bus trace veri�cation method is based on recording the transport bus values of

the processor at each clock cycle. This allows the execution to be veri�ed on a much

greater resolution than with the printout method. However, the bus traces cannot

be acquired from the desktop PC execution because the transport buses are TTA

speci�c. Thus, the bus trace cannot be used to verify the program porting between

the desktop PC and TTA environment.

The instruction-set simulator of TCE saves the bus trace to a text �le when the

bus trace option is enabled. Bus traces can also be obtained from the RTL simula-

tion if ProGe is instructed to generate a bus tracing module to the interconnection

network of the processor. This module is implemented using the textio-package of

VHDL, thus, it cannot be synthesized. The module prints the trace to a text �le

for easy comparison. Bus traces could also be recorded from the FPGA execution,

for example, using a JTAG based bus tracing module. However, such module has

not been implemented yet.

The drawback of using the bus trace method is that it slows down the simulation.

This is due to the increased �lesystem I/O operations caused by the bus trace data

saving. The bus trace acquisition will probably slow down the FPGA execution as

well if the bus trace data cannot be transferred unintrusively. In other words, the

5. Veri�cation Flow 38

processor might need to be stalled during the time the data is transferred to the

host PC.

5.2 TTA Unit Tester

As most of the design work in TCE is done on the architecture level, it is important

to verify that the simulation models of processor datapath components, function

units and register �les, behave equally to their respective RTL implementations

stored in HDBs. Otherwise, the processor implementation generated by ProGe may

di�er from its architecture model and behave di�erently. Testing the function unit

implementations separately before the RTL simulation of the whole processor also

helps in isolating the sources of the potential faults.

In order to ease the FU and RF testing, a tool called TTA Unit Tester was

created. The TTA Unit Tester tool should be highly automated and should not

require user intervention in testing. The tool needs to:

• be able to fetch the FU and RF implementations from the HDBs speci�ed in

the IDF.

• create randomized input stimuli for the tested units and generate the reference

output using the operation simulation models.

• automate the 3rd party RTL simulator execution

• have the ability to save the created testbench �les and output the RTL simu-

lation commands for unit debugging purposes.

The testing framework should also be constructed in such a way that it provides

a general-purpose interface for testing arbitrary units stored in an HDB. This al-

lows the framework also to be used for testing hardware databases and possibly be

integrated into the HDBManager tool.

The operation principle of the TTA Unit Tester tool is illustrated in Fig. 5.3.

The function units and register �les (later units) to be tested are identi�ed by the

processor implementation de�nition �le given to the tool. One by one, the tool will

fetch a unit implementation from an HDB and recognizes the operations which the

unit implements. The TTA Unit Tester will then generate input stimuli vectors

for all the operations implemented by the unit. Operation reference output vectors

are created by using the corresponding operation simulation models. Next, the tool

creates an RTL testbench for the unit under test. The testbench feeds the input

stimuli to the unit and compares the produced output with the reference output

vectors. If they di�er, the testbench produces failing assertions.

In order to simulate the testbench, an RTL simulator is needed. For this purpose,

the TTA Unit Tester uses a 3rd party RTL simulator, such as the open source

5. Veri�cation Flow 39

Figure 5.3: The operation principle of the TTA Unit Tester. The TTA Unit Tester cre-
ates input stimuli for the tested operations and uses the operation simulation models to
create the reference output. Using this data, an RTL testbench is generated for the unit
implementation which is executed using a 3rd party RTL simulator.

GHDL [41] or the commercial ModelSim [42], to execute the testbench simulation.

The simulator outputs testbench simulation reports which are used to determine

whether the test was successful or not.

The TTA Unit Tester can also be useful when creating function unit implementa-

tions for custom operations. Typically, the function unit simulation model is avail-

able when custom operations are implemented which allows the TTA Unit Tester to

be utilized during the implementation process. The custom operation implementa-

tion is iterated until it passes the TTA Unit Tester.

It should be noted that this kind of method cannot be used to provide a thorough

veri�cation of nontrivial units because the number of possible input data combina-

tion increases exponentially as a function of input signals. For example, a unit with

a single 32-bit input port has 232 possible input combinations alone and adding the

function unit control signals, such as the input operand load signal and the global

lock signal, to the equation increases the number of possible combinations even fur-

ther. In case the testbench gives failing assertions, it can be determined that the

architecture model and the implementation of a unit di�er from each other. If the

testbench execution is successful, it only veri�es that the unit architecture model

and implementation are equal on some input combinations but not necessarily on

all input combinations.

5. Veri�cation Flow 40

ImplementationTesterHDBManager

TestbenchGenerator

FUTestbenchGenerator

RFTestbenchGenerator

ImplementationSimulator

GHDLSimulator ModelsimSimulator

HDBTester

TTAUnitTesterMachineImplementation

FUState

MachineStateModel

RegisterFileState

TCE Library

Implementation Tester Library

Command Line
User Interface

HDB Library

TTA Simulator Library

Figure 5.4: Class diagram of TTA Unit Tester. Implementation was divided to an User
Interface component and a separate Implementation Tester Library component. Tool also
uses existing library components from TCE Library for accessing HDBs and simulating
the tested units.

The class diagram of the TTA Unit Tester is presented in Fig. 5.4. The TTAU-

nitTester module provides a command line user interface to the tool. TTAUnitTester

takes the IDF of the processor to be tested as a parameter and constructs a Ma-

chineImplementation object model out of it. The MachineImplementation is used

to identify in which HDB �les the tested units are stored. The HDBTester is a

middle class which generalizes the testing of units stored in a HDB by creating an

ImplementationTester object for each requested HDB. It also provides methods for

testing a single FU or RF entry or all entries inside the HDB.

The actual functionality resides in the Implementation Tester Library. The Im-

plementationTester is the main class of the library. It uses the HDBManager to

fetch FU and RF entries from HDBs and then veri�es that the speci�ed FU or RF

can be tested. An FU cannot be tested if:

• the HDB entry of the FU lacks architecture or implementation, because in

this case the unit cannot be used in both architecture simulation and RTL

simulation,

• the FU is not fully pipelined. However, support for complex pipelines could

be added later on,

• the FU connects to a memory because the HDB does not contain detailed

5. Veri�cation Flow 41

information on the expected memory component,

• the FU has external ports because the behavior of the unit might depend on

external events or

• the FU has only one unidirectional port because in this case, the input stimulus

cannot be written to the unit or the e�ect of input stimulus cannot be observed.

In case the unit cannot be tested, appropriate messages are displayed to the user.

The TestbenchGenerator class generalizes the RTL testbench creation. The classes

FUTestbenchGenerator and RFTestbenchGenerator, derived from the Testbench-

Generator, handle the unit type speci�c sections through the virtual function gen-

erateTestbench(). They construct a MachineStateModel which includes the unit

under test. The MachineStateModel implements the architecture simulation of the

unit which is used to create the reference output from the generated input stimuli.

At the end, the RTL testbench is written to a speci�c �le.

Interfacing with the RTL simulation tools is implemented in the Implementa-

tionSimulator class. This abstract base class has methods compile() and simulate()

which are realized in the derived simulation tool speci�c classes GHDLSimulator

and ModelsimSimulator. The subclass executes the simulation and �lters the out-

put messages for testbench assertions and simulation tool speci�c error messages,

which are displayed to the user if found.

42

6. EVALUATION OF RESULTS

This chapter describes how the Platform Integrators implemented in this thesis are

veri�ed to work using a test application. This test application is implemented using

a TTA design on all three platforms and the results are veri�ed according to the

veri�cation �ow described in Section 5. The following section brie�y introduces the

test application and the initial modi�cations for veri�cation purposes. After that,

the ASIP design process for this application is summarized followed by the platform

speci�c sections. All the test phases in the following sections were executed on a

VirtualBox [43] version 3.2.4 virtual machine running the 32-bit Fedora 14 Linux

operating system. The host PC is equipped with an Intel Core 2 Quad Q9400

processor running in 2.66 GHz clock frequency and 4 GB of RAM and it runs the

Windows XP SP3 operating system.

6.1 Test Application

Cyclic Redundancy Check (CRC) is a checksum algorithm designed to be used as

an error-detection method in data communications and storage. There is a variety

of di�erent polynomials which can be used for CRC, but in this case, the CRC-32-

IEEE 802.3 was chosen because it is commonly used in Ethernet [44] and some other

standards. The CRC-32 evaluates a 32-bit checksum from a variable length of input

data.

The implementation of the CRC-32 used in this thesis is written by Michael Barr

and the C language source code is released under a public domain license [45]. The

code includes three di�erent polynomials and two methods for calculating CRC, but

only the CRC-32-IEEE 802.3 polynomial and the faster method for calculating CRC

are considered in this case.

The �rst step in the design process was to compile the code for the desktop PC

and verify that the program works. Next, random input data sets were created and

the corresponding checksums were evaluated and stored for veri�cation purposes.

The data set sizes range from 60 to 1518 bytes which is the size of an Ethernet

frame without the checksum [44]. These data sets were used to verify the TTA

implementation. An automatic result veri�cation system was also created using the

reference checksums stored in the data sets. If the evaluated checksum equals to

the reference, letter O is printed and in case they di�er, letter N is printed. The

CRC calculation was set to be iterated 100 times to be able to measure the run

6. Evaluation of Results 43

times more accurately since calculating a single CRC does not take a very long

time. Finally, the reference output of the desktop PC execution was stored to a text

�le for veri�cation purposes according to the Fig. 5.1. For later comparison, the

execution time of the test application was measured on the desktop PC using the

gettimeofday() function. As expected, the execution time on the desktop PC was

short, around two milliseconds.

6.2 Customized Processor for CRC

The �rst step in the ASIP design �ow presented in Fig. 3.2 is to choose a starting

point architecture and then compile and simulate the application. From the point

of view of the veri�cation �ow, the application portability to TTA is veri�ed on

this step. A minimalistic TTA, which contains the minimum resources needed by

the tcecc to compile C code, was used as the starting point. However, Real Time

Clock (RTC) and STDOUT function units where added to the architecture to allow

the accurate measuring of the execution time and printing from the TTA. After the

architecture simulation with ttasim, the simulation console printout was veri�ed to

be equal with the reference printout from the desktop PC execution.

Unsurprisingly, the minimalistic TTA did not o�er optimal performance. The

execution time for iterating 100 times the calculation of the CRC checksum from

1 518 bytes of input data was 520 582 ms assuming a clock frequency of 100 MHz.

The performance of the architecture can be measured in megabits per second (Mbps),

which tells how much input data can be processed in one second. The minimalistic

TTA can merely calculate CRC checksums at the rate of 2.22 Mbps. Therefore, the

iterative processor design space exploration was started to increase the performance.

The number of transport buses and registers was increased and the function unit

setup was optimized. [36]

Execution pro�ling revealed that the most of the execution time was spent per-

forming bit pattern re�ections. In software, the bit pattern is re�ected iteratively

one bit at a time. However, on hardware, the bit pattern re�ection can be imple-

mented with simple crosswiring which allows the whole bit pattern to be re�ected

at once. The bit pattern re�ections for 8 and 32 bit data widths were implemented

as custom operations which resulted in a notable speed up: the execution time

dropped from 82.38 ms to 21.27 ms. Measured in throughput, the performance in-

creased from 14.06 Mbps to 54.45 Mbps. The �nal architecture is called CRC TTA

and the resources of the architecture are listed in Table 6.1.

The architecture simulation time of the CRC TTA executing the CRC application

is short, around 1.5 seconds, measured with the Linux command line program time.

Overall simulation cycle count, including the result veri�cation and the calculation

time printing, is 2 132 934 cycles. Thus, in this case, the simulator executes around

1.4 million instructions cycles per second which equals to a simulation frequency of

6. Evaluation of Results 44

Table 6.1: Datapath resources of the CRC TTA processor

Resource name # Description

Alu_comp 1 FU with operations: add, sub, eq, gt, gtu
Logic 1 FU with operations: and, ior, xor
Shifter 1 FU with operations: shl, shr, shru
Re�ecter 1 FU with custom operations: re�ect8 ja re�ect32
LSU 1 Load-store unit
RTC 1 FU with operations: RTC, RTIMER
IO 1 FU which implements STDOUT operation
Register �le 1 Includes 16 32-bit registers, 1 read and 1 write port
Boolean RF 1 Includes 2 1-bit registers, 1 read and 1 write port
IU 1 Long immediate unit with 1 32-bit registers and 1

read port
Control Unit 1 Control Unit of the processor
Transport bus 3 Fully connected transport bus

1.4 MHz.

6.3 Stratix II Integrator

The Stratix II Integrator was used to integrate the designed CRC TTA for stand-

alone execution on the Stratix II FPGA evaluation board. The main purpose of

this section is to verify the operation of the Stratix II Integrator. For performance

comparison to the existing soft-cores, the same CRC application was implemented on

the Altera Nios II/f soft-core processor to give a reference point for the performance.

The CRC TTA processor was integrated into the Stratix II using on-chip memo-

ries for instruction and data memory. In this case, the stand-alone integration did

not require any modi�cations to the architecture. The implementations for the plat-

form speci�c function units, such as the load-store unit and the STDOUT function

unit, must be selected from the Stratix II HDB for successful stand-alone integra-

tion. At this point, the selected STDOUT implementation used nonsynthesizable

structures for RTL simulation purposes. Before moving to the RTL simulation, the

TTA Unit Tester was utilized to verify the function units and register �les.

The RTL simulation is the third veri�cation level in the veri�cation �ow illus-

trated in Fig. 5.1. The RTL simulation was executed with Modelsim 6.6d using its

default settings. Both the printout and bus trace methods were used to verify the

behavior of the processor. The execution time of the RTL simulation was 2 minutes

55 seconds which equal 175 seconds. The simulation clock cycle count was 5 cycles

longer compared to the architecture simulation due to initializations. At the begin-

ning of simulation, the reset signal is active and the �rst instruction is executed after

the instruction fetch delay when the reset signal is released. The total simulation

6. Evaluation of Results 45

Table 6.2: Performance and logic element (LE) utilization comparison between the di�erent
TTA processors and Nios II/f implementations with and without custom operations. The
clock frequency was 100 MHz on all of the test cases.

Architecture
Execution
time / ms

Performance
/ Mbps

LE Usage

Minimalistic TTA 520.58 2.22 1 248
CRC TTA w/o custom op 82.38 14.06 1 738
CRC TTA w/ custom op 21.27 54.45 1 810
Avalon LSU TTA 25.52 44.82 1 911
Avalon SFU TTA 21.27 54.45 1 990
Nios II/f 215.66 5.63 1 563
Nios II/f w/ custom op 37.98 31.98 1 563

cycle count is then 2 132 939 cycles. Thus, the RTL simulator executed 12 188 clock

cycles per second which equals to a simulation clock frequency of approximately

12.2 kHz. In this case, the RTL simulation was two orders of magnitude slower

compared to the architecture simulation.

The �nal step was to synthesize the design for the target FPGA. For synthesis,

the STDOUT implementation was switched to a synthesizable JTAG UART based

one, and the processor generation and integration was executed again. The synthesis

was performed with Quartus II version 8.0 and the results are listed in Table 6.2.

The execution on FPGA was fast since the target clock frequency of 100 MHz was

used, and, thus, the execution time was approximately 21.27 milliseconds. However,

the dominant time in the FPGA veri�cation phase, apart from the synthesis, is the

time consumed in FPGA programming which took 16.2 seconds in this case.

The same CRC application was implemented on Nios II/f to provide a reference

point for the performance of the TTA designs. The block diagram of the Nios II

system constructed with the SOPC Builder is presented in Fig. 6.1 which shows the

essential components needed for testing. On-chip memories were used to eliminate

the di�erences caused by the memory latency. The same re�ection custom operations

were also implemented for Nios II as an instruction set extension and the application

was executed with and without the custom operations. The target clock frequency

was set to the same 100 MHz. [36]

The synthesis and performance results of the Nios II and the CRC TTA are listed

in Table 6.2. Both of the Nios II test cases were executed on the same hardware, thus

the logic element usage is constant. The results show that the standard Nios II/f

lacks the ability to exploit ILP as well as a TTA and therefore the performance

is inferior. Extending the Nios II/f instruction-set with the re�ection operations

improved the performance because the most time consuming part of the algorithm

was executed on hardware. But the performance was still only about 59 % of the

6. Evaluation of Results 46

Figure 6.1: The Nios II/f system used in the performance comparison. The interval timer
IP block is used to accurately measure the application execution time and the JTAG UART
was utilized to print results from the execution.

performance of the CRC TTA with the custom operations. In addition, the CRC

TTA with the custom operations only consumes approximately 17 % more logic

elements than the Nios II/f which is justi�ed considering the performance boost.

6.4 Avalon Integrator

The veri�cation of the Avalon Integrator is performed in this section using the

same CRC test application. This section is divided in two parts. First, the Avalon

Integrator is tested using the Avalon LSU and then with the Avalon SFU. In order

to demonstrate the ability of TTA to utilize SOPC Builder IP blocks, changes were

made to the ASIP architecture which was created in Section 6.2. Both the RTC and

STDOUT function units were removed from the architecture and they were replaced

with the interval timer and JTAG UART Avalon IP components [46].

In order to use the Avalon Integrator, an Avalon function unit must be in-

cluded in the processor architecture. First, the local memory load-store unit is

replaced with the Avalon LSU. Because the Avalon LSU has one additional op-

eration, AVALON_READ_IRQ, compared to the local memory LSU, the switch

cannot be done simply by de�ning a di�erent implementation in the IDF before

generating the processor.

Because the interval timer and the JTAG UART are now SOPC Builder IP blocks,

the application source code must also be updated. The interval timer [46] must

be initialized to act as a high resolution timer by writing to its memory mapped

con�guration register. Timer snapshots are acquired by �rst writing to the memory

mapped snapshot register which triggers the IP block to save the current timer value.

Then the value can be read from the snapshot register. In order to enable printing

with the Avalon JTAG UART [46], a new putchar() implementation, described in

6. Evaluation of Results 47

int putchar(int ch) {

volatile int* ctrl = (int*) JTAG_UART_CTRL_REG_ADDR;

volatile int* data = (int*) JTAG_UART_DATA_REG_ADDR;

/* wait until space in buffer */

while ((*ctrl & JTAG_UART_WRITE_BUFFER_MASK) == 0)

;

*dataReg = (int) ch;

return ch;

}

Figure 6.2: Implementing putchar() using JTAG UART IP block via the Avalon LSU

Figure 6.3: A SoPC design with a TTA IP. The TTA core uses the Avalon load-store unit
(LSU) to interface with the Avalon bus. The data memory of the TTA, like the other IP
blocks, are accessed via Avalon.

Fig. 6.2, is de�ned. This function �rst waits until there is space in the write data

bu�er and then writes the character to the data bu�er. As the IP block registers

are memory mapped, they can be accessed using pointers.

The downside of using the Avalon IP blocks is that they make the veri�cation

process more complicated. These IP blocks are not usable in the architecture simu-

lation, and in this case, it means that the printouts cannot be acquired from ttasim.

One way to circumvent this issue is to include the STDOUT function unit in the

architecture during architecture simulation to acquire the printouts and then remove

this function unit before proceeding to the next veri�cation level. The utilization of

the IP blocks also complicates the bus trace veri�cation if the execution �ow of the

application depends on external events. For example, if a memory mapped register

is polled while waiting for a speci�c value, the number of polling iterations may vary

resulting in di�ering bus traces. Thus, the veri�cation of a TTA IP requires more

e�ort of the designer.

6. Evaluation of Results 48

When the architecture and source code modi�cations are ready, the Avalon Inte-

grator is executed to create a SOPC Builder IP component of the TTA. Then, the

TTA IP can be imported to the SOPC Builder by adding the TTA directory to the

IP search path of the SOPC Builder. The block diagram of the created TTA SOPC

system is presented in Fig. 6.3. The system was simulated with Modelsim to verify

correct operation. Calculating the 100 iterations of the CRC with the Avalon LSU

TTA system took 25.52 ms which equals a throughput of 44.82 Mbps. The perfor-

mance reduction is due to the longer memory access latency via Avalon compared

to a local memory access.

The last step was to synthesize the system and verity its operation on the FPGA.

The synthesis results are listed in Table 6.2. The printout acquired from the FPGA

execution veri�ed that the system produced correct results.

As another test case, the Avalon bus is accessed using the Avalon SFU, which

allows a local memory LSU to be used for accessing the data memory. Therefore,

the architecture needs to include both a local memory LSU and the Avalon SFU.

This setup required changes to the IP block controlling functions. The memory

mapped registers could no longer be accessed using pointers since the LSU was

no longer interfaced with the Avalon bus. Instead, _TCE_AVALON_LDW and

_TCE_AVALON_STW custom operation macros are utilized to read and write

32-bit words via the Avalon. For example, the modi�cations needed for the putchar()

implementation presented in Fig. 6.2 are illustrated in Fig. 6.4.

The TTA IP with Avalon SFU was created with the Avalon Integrator. In this

setup, the Avalon Integrator also created the data memory component for the TTA

IP as illustrated in Fig. 6.5. The created system was simulated with Modelsim

to verify the operation and then synthesized. The synthesis results are listed in

Table 6.2 which shows that the current system is 79 LEs bigger than the Avalon

LSU TTA system. The di�erence is explained by the need for both the Avalon

SFU and the local memory LSU instead of just the Avalon LSU. Finally, the FPGA

execution veri�ed that the system functioned correctly also after the synthesis. The

results show that the CRC calculation time has dropped to 21.27 ms, thanks to the

int putchar(int ch) {

unsigned int reg = 0;

/* wait until space in buffer */

while ((reg & JTAG_UART_WRITE_BUFFER_MASK) == 0) {

_TCE_AVALON_LDW(JTAG_UART_CTRL_REG_ADDR, reg);

}

_TCE_AVALON_STW(JTAG_UART_DATA_REG_ADDR, ch);

return ch;

}

Figure 6.4: Implementing putchar() using the JTAG UART IP block via the Avalon SFU

6. Evaluation of Results 49

Figure 6.5: A SoPC design with a TTA which accesses the Avalon components using the
Avalon SFU. In this case, both the instruction and data memories are inside the TTA IP
block and hidden from the rest of the system.

local memory access. This is the same result as with the stand-alone CRC TTA as

shown in Table 6.2.

6.5 Koski Integrator

The Koski Integrator was evaluated in [36]. The setup, which was used in Koski

Integrator test, is presented in Fig. 6.6. The Nios II/f is the master processor in

the system and the CRC TTA IP block is utilized as a CRC accelerator. Nios II/f

executes the eCos [47] real time operating system and utilizes HIBI for Inter-process

Communication (IPC).

The CRC calculation is implemented as an IPC function call through HIBI. The

IPC realization on the Nios II was implemented as a device driver called crc_tta_drv

which implements the communication protocol between the Nios II and the TTA.

Respectively, the main program of the CRC TTA was also modi�ed to implement

the counterpart to this communication protocol. A sequence diagram of the com-

munication is illustrated in Fig. 6.7. The Nios II �rst initializes the driver by setting

a callback function which will be called when the CRC result is ready. This allows

the Nios II to perform other task meanwhile the TTA calculates the CRC checksum.

The CRC evaluation is started by calling the calculate function of the driver which

noti�es the TTA by sending the size of the data to be evaluated. The TTA then

initializes a HIBI channel for receiving the data and acknowledges the Nios II. Then

the Nios II will initialize a DMA transfer for sending the data and execution returns

to its main program. When the CRC checksum is ready, it is sent to the Nios II.

Receiving the CRC checksum interrupts the Nios II execution and gives the con-

6. Evaluation of Results 50

Figure 6.6: The design used for testing Koski Integrator [36].

trol to the crc_tta_drv which uses the given callback function to deliver the CRC

checksum to the main program.

The CRC TTA processor was wrapped to a Koski compatible IP block using the

Koski Integrator which requires the architecture to include the HIBI LSU stored in

Koski speci�c HDB. The CRC TTA IP block was imported to the Kactus design tool

which was used to assemble the design depicted in Fig. 6.6. The Nios II/f processor

in the system was a ready made component in the Koski IP library and its clock

Figure 6.7: Sequence diagram of the communication between the Nios II/f and the CRC
TTA for calculating a CRC checksum

6. Evaluation of Results 51

Table 6.3: Synthesis results of the Koski test system for Stratix II. The target clock fre-
quency was set to 50 MHz

Entity LE usage

Whole system 13 908
TTA IP block 3 296
Nios II/f system 5 616

Table 6.4: Test case execution times from di�erent veri�cation levels measured with stand-
alone Stratix II TTA.

Veri�cation level
Execution
time / s

Execution
frequency
/ MHz

Desktop PC 0.002 2660.00
Arch. simulation (ttasim) 1.500 1.40
RTL simulation (Modelsim) 175.000 0.01
FPGA programming (Stratix II) 16.000 -
FPGA execution (Stratix II) 0.021 100.00

frequency was set to 50 MHz. This was chosen as the clock frequency of the whole

system. The Koski tools were used to create a top level VHDL implementation of

the system which was then synthesized for the Stratix II. The synthesis results are

listed in Table 6.3. The LE usage increase in TTA is mostly due to the HIBI LSU

which includes the N2H2 DMA controller. The ready made Nios II/f con�guration

used in this test case includes a variety of peripheral controllers which increase the

resource usage compared to the Nios II/f used in Section 6.3. Finally, the system

was executed on the FPGA to verify its correct behavior.

6.6 Summary

This section showed that the created Platform Integrators are able to successfully

integrate TTAs into a stand-alone processor setup and to a wrapped IP block. The

results gathered in Table 6.2 show the scalability of the TTA as an ASIP template.

Tailoring the processor architecture resulted in 24.5 times better performance com-

pared to the minimalistic TTA while the resource usage only increased by a factor

of 1.45. The performance comparison against the Nios II/f soft-core demonstrates

the capability of the TTA to exploit instruction level parallelism better than the

scalar RISC based processor.

The veri�cation �ow presented in Chapter 5 was utilized in testing the Platform

Integrators. Table 6.4 presents the veri�cation execution times of the stand-alone

6. Evaluation of Results 52

CRC TTA test case from the di�erent veri�cation levels. These results motivate the

desire to �nd bugs and faults at the highest possible level since the execution time

increases when moving to lower levels. For example, the execution time of the RTL

simulation is over two orders of magnitude slower than the architecture simulation

which makes a signi�cant di�erence. The FPGA execution breaks the trend of the

slowdown, but then again, the debugging capabilities on FPGA are limited. It is

also worth noticing that the FPGA execution time was only 10 times slower than

the execution time on the desktop PC while there is 26.6x di�erence in the execution

clock frequency.

Veri�cation speed is important, especially, when more complex designs and pro-

grams are veri�ed. For example, it could take a few minutes to execute and verify

a multicore video encoder ASIP on an FPGA, but executing the same test in the

architecture simulator might take several hours and the RTL simulation could take

days to �nish. This emphasizes the importance of using the right veri�cation level

for debugging problems.

53

7. CONCLUSIONS

This thesis introduced a platform integrator framework for TCE ASIP design toolset.

The purpose of this framework is to automate and speed up the integration process of

TTA processors to a target FPGA. Another use case for the framework is to create

TTA IP components which can be utilized in System-on-Chip design tools. The

requirements and design of the Platform Integrator were described and documented

in the thesis. The Platform Integrator design aims to be FPGA vendor independent

to allow support for various FPGA vendors to be added in future.

Three Platform Integrator components were implemented and introduced in this

thesis. The �rst one, Stratix II Integrator, realizes the stand-alone FPGA integration

and the two other, the Avalon Integrator and the Koski Integrator, implement the

TTA IP wrapper integration. The hardware units for supporting these Platform

Integrators were also implemented for the thesis.

The second part of this thesis documented the veri�cation �ow of TTA proces-

sors. The top-down approach of the multi-level veri�cation �ow makes it possible to

discover faults at the highest possible design abstraction level which helps in isolat-

ing the source of the fault. A new veri�cation tool, TTA Unit Tester, was created

to improve the veri�cation process. This tool is utilized to test and verify individ-

ual function units and register �les before generating the processor implementation.

Thus, the tool adds another veri�cation level to the �ow. The thesis presented the

requirements and design of TTA Unit Tester tool.

The implemented Platform Integrators were veri�ed to work using a test appli-

cation. These test cases demonstrated that the Platform Integrators create synthe-

sizable and functional hardware. In order to increase the performance, a tailored

TTA processor with custom operations was designed to match the test application.

The test cases followed the described veri�cation �ow starting from the desktop PC

execution and �nally �nishing to the FPGA execution. The veri�cation execution

times were measured from the di�erent veri�cation levels in order to emphasize the

importance of �nding the potential faults as early as possible in the veri�cation

�ow. For example, the di�erence in the execution speed between the architecture

simulation and the RTL simulation was over two orders of magnitude.

The goals of the thesis were reached but the platform integration framework still

has room for improvements. For this thesis, only the support for Altera FPGA

platforms was implemented. Although the framework was designed to be vendor

independent, it has not been put to a proper test yet in this regard. Another point

7. Conclusions 54

for improvement is the on-chip memory generation which relies on the Quartus II

command line tools on the Altera speci�c platforms. This might cause problems

for the code maintainability as the implementation depends on 3rd party tools.

Therefore, an alternative solution would be desirable. As a future improvement, the

memory generator components could also create memory hierarchies in addition to

direct memory connections.

55

REFERENCES

[1] TCE: TTA-Based Codesign Environment. [Online] http://tce.cs.tut.fi.

[2] S.D. Brown. An overview of technology, architecture and CAD tools for pro-

grammable logic devices. In Proc. IEEE Custom Integrated Circ. Conf., pages

69�76, May 1994.

[3] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.

Found. Trends Electron. Des. Autom., 2:135�253, Feb. 2008.

[4] Altera Corporation. Stratix II Device Handbook, Volumes 1-2, Jul.

2009. [Online] http://www.altera.com/literature/hb/stx2/stratix2_

handbook.pdf.

[5] K. Keutzer, S. Malik, and A.R. Newton. From ASIC to ASIP: The next design

discontinuity. In Proc. IEEE Int. Conf. Computer Design: VLSI in Computers

and Processors, pages 84�90, 2002.

[6] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs. IEEE

Trans. Computer-Aided Design Integrated Circ. Syst., 26(2):203�215, Feb. 2007.

[7] J. Tong, I. Anderson, and M. Khalid. Soft-core processors for embedded sys-

tems. In Proc. Int. Conf. Microelectronics, Dhahran, Saudi Arabia, Dec. 16�19

2006.

[8] P. Yiannacouras, J. Rose, and J.G. Ste�an. The microarchitecture of FPGA-

based soft processors. In Proc. Int. Conf. Compilers, Arch. and Synth. Embed-

ded Syst., pages 202�212, 2005.

[9] Altera Corporation. Nios II Processor Reference Handbook, Dec. 2010. [Online]

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf.

[10] P. Yiannacouras, J.G. Ste�an, and J. Rose. Application-speci�c customization

of soft processor microarchitecture. In Proc. Int. Symp. Field Prog. Gate Arrays,

pages 201�210, 2006.

[11] M. Labrecque, P. Yiannacouras, and J.G. Ste�an. Scaling soft processor sys-

tems. In Proc. Int. Symp. Field-Programmable Custom Computing Machines,

pages 195�205, Apr. 2008.

[12] M. Keating and P. Bricaud. Reuse Methodology Manual for System-on-a-Chip

Designs. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

REFERENCES 56

[13] S.J.E. Wilton and R. Saleh. Programmable logic IP cores in SoC design: op-

portunities and challenges. In Proc. IEEE Conf. Custom Integrated Circuits,

pages 63�66, 2001.

[14] G. Martin and H. Chang. System-on-chip design. In Proc. Int. Conf. ASIC,

pages 12�17, Oct. 2001.

[15] D. Flynn. AMBA: Enabling reusable on-chip designs. Micro, IEEE, 17(4):20�

27, Jul. 1997.

[16] W. Badawy and G.A. Jullien, editors. System-on-Chip for Real-Time Applica-

tion. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[17] W. Wolf. Modern VLSI Design. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 3rd edition, 2002.

[18] Altera Corporation. SOPC Builder User Guide, Dec. 2010. [Online] http:

//www.altera.com/literature/ug/ug_sopc_builder.pdf.

[19] Altera Corporation. Avalon Interface Speci�cation, Aug. 2010. [Online] http:

//www.altera.com/literature/manual/mnl_avalon_spec.pdf.

[20] Altera Corporation. Quartus II Handbook Version 10.1 Volumes 1-3, Dec.

2010. [Online] http://www.altera.com/literature/hb/qts/quartusii_

handbook.pdf.

[21] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T.D. Hämäläi-

nen, J. Riihimäki, and K. Kuusilinna. UML-based multiprocessor SoC design

framework. ACM Trans. Embedded Computing Syst., 5:281�320, 2006.

[22] T. Koskinen. Metadata-based Automated Con�guration of System-on-Chip.

Master's thesis, Tampere University of Technology, Finland, Jun. 2009.

[23] Accelera Organization Inc., IP-XACT Technical Committee. [Online] http:

//www.accellera.org/activities/ip-xact/.

[24] The SPIRIT Consortium. IP-XACT User Guide v1.2, Jul. 2006.

[25] E. Salminen. On Design and Comparison of On-Chip Networks. PhD thesis,

Tampere University of Technology, Finland, 2010.

[26] A. Kulmala. Multiprocessor system with general-purpose interconnection archi-

tecture on FPGA. Master's thesis, Tampere University of Technology, Finland,

Aug. 2005.

[27] A.P. Chandrakasan and R.W. Brodersen. Minimizing power consumption in

digital CMOS circuits. Proc. IEEE, 83(4):498�523, Apr. 1995.

REFERENCES 57

[28] J.L. Hennessy and D.A. Patterson. Computer Architecture, Fourth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2006.

[29] H. Corporaal. Microprocessor Architectures: From VLIW to TTA. John Wiley

& Sons, Inc., New York, NY, USA, 1997.

[30] V. Guzma, P. Jääskeläinen, P. Kellomäki, and J. Takala. Impact of software

bypassing on instruction level parallelism and register �le tra�c. In Proc. Int.

Workshop Embedded Computer Syst.: Architectures, Modeling and Simulation,

pages 23�32, 2008.

[31] J. Janssen and H. Corporaal. Partitioned register �le for TTAs. In Proc. Int.

Symp. Microarchitecture, pages 303�312, 1995.

[32] O. Esko, P. Jääskeläinen, P. Huerta, C.S. de La Lama, J. Takala, and J.I.

Martinez. Customized exposed datapath soft-core design �ow with compiler

support. In Proc. Int. Conf. Field Programmable Logic and Applications, pages

217�222, 2010.

[33] J. Mäntyneva. Automated Design Space Exploration of Transport Triggered

Architectures. Master's thesis, Tampere University of Technology, Finland,

Jul. 2009. http://tce.cs.tut.fi/.

[34] L. Laasonen. Program Image Generator and Processor Generator for Transport

Triggered Architectures. Master's thesis, Tampere University of Technology,

Finland, Apr. 2007. http://tce.cs.tut.fi/.

[35] Altera Corporation: DSP Development Kit, Stratix II Professional

Edition. [Online] http://www.altera.com/products/devkits/altera/

kit-dsp-2S180.html.

[36] O. Esko. Utilizing Transport Triggered Processors on FPGA-based system-on-

chip. Bachelor's Thesis, Tampere University of Technology, Finland, Mar. 2011.

http://tce.cs.tut.fi/.

[37] C. Pixley, N.R. Strader, W.C. Bruce, Jaehong Park, M. Kaufmann, K. Shultz,

M. Burns, J. Kumar, Jun Yuan, and J. Nguyen. Commercial design veri�cation:

methodology and tools. In Proc. Int. Test Conf., pages 839�848, Oct. 1996.

[38] V. Korhonen. Tools for Fast Design of Application-speci�c Processors. Master's

thesis, Tampere University of Technology, Finland, Jan. 2009. http://tce.cs.

tut.fi/.

REFERENCES 58

[39] P. Jääskeläinen. Instruction Set Simulator for Transport Triggered Architec-

tures. Master's thesis, Tampere University of Technology, Finland, Sep. 2005.

http://tce.cs.tut.fi/.

[40] C. Pixley, N.R. Strader, W.C. Bruce, J. Park, M. Kaufmann, K. Shultz,

M. Burns, J. Kumar, J. Yuan, and J. Nguyen. Commercial design veri�ca-

tion: methodology and tools. In Proc. Int. Test Conf., pages 839�848, Oct.

1996.

[41] GHDL: Open Source VHDL simulator. [Online] http://ghdl.free.fr/.

[42] Mentor Graphics ModelSim: Advanced Simulation and Debugging. [Online]

http://model.com/.

[43] Oracle: VirtualBox home page. [Online] http://www.virtualbox.org.

[44] IEEE Standard for Information Technology�Telecommunications and Infor-

mation Exchange Between Systems�Local and Metropolitan Area Networks�

Speci�c Requirements Part 3: Carrier Sense Multiple Access With Collision De-

tection (CSMA/CD) Access Method and Physical Layer Speci�cations - Section

One. IEEE Std 802.3-2008 (Revision of IEEE Std 802.3-2005), pages c1�597,

2008.

[45] M. Barr: Example implementation for calculating CRC. [Online] http://www.

netrino.com/code/crc.zip.

[46] Altera Corporation. Embedded Peripherals IP User Guide, Dec. 2010. [Online]

www.altera.com/literature/ug/ug_embedded_ip.pdf.

[47] eCos: eCos home page. [Online] http://ecos.sourceware.org/.

