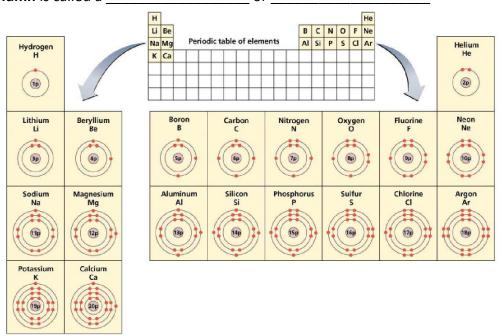
Do Now: Periodic Table Review...

- 1. Why do all elements want to be like a noble gas?
- 2. In terms of electrons, what can an atom do to try to be like a noble gas?

Periodic Table of Elements

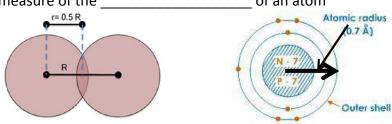

• Is organized....

o by increasing ______

o based on elements with ______

• Each row is called a ______

• Each **column** is called a or

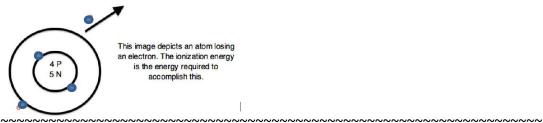

- 1. As you go across a period (left to right):
 - a. Does the number of energy levels change?
 - b. Do you get closer or further from a noble gas element?
- 2. As you go down a group (top to bottom):
 - a. Does the number of energy levels change?
 - b. Do you get closer or further from a noble gas?

Periodic Trends

A periodic trend is a pattern for a specific characteristic of an element that is observed in the periodic table. These trends are general and have their exceptions.

1. Atomic Radius:

• A measure of the _____ of an atom


2. Electronegativity

• Can be thought of as an atom's _____ or greediness for electrons ("greedy like the Grinch")

3. <u>Ion</u>ization Energy

- The amount of _____required to _____ from the outermost shell of an atom
- A measure of an atom's ability to ______ and form a cation

1. Look up and record the value for the atomic radius for Mg and Ca. Which one has a greater atomic radius?

1) Mg _____ 2) Ca _____

2. Look up and record the value for the electronegativity for Mg and Ca. Which one has a greater electronegativity?

1) Mg _____ 2) Ca ____

3. Look up and record the value for the ionization energy for Mg and Ca. Which one has a greater ionization energy?

1) Mg _____ 2) Ca ____

Name	
Date	Block

REFERENCE TABLE

Atomic Number	Symbol	Name	First Ionization Energy (kJ/mol)	Electro- negativity	Melting Point (K)	Boiling* Point (K)	Density** (g/cm ³)	Atomic Radius (pm)
1	Н	hydrogen	1312	2.2	14	20.	0.000082	32
2	He	helium	2372			4	0.000164	37
3	Li	lithium	520.	1.0	454	1615	0.534	130.
4 5	Be B	beryllium boron	900. 801	$\frac{1.6}{2.0}$	1560. 2348	$2744 \\ 4273$	$\frac{1.85}{2.34}$	99 84
				Section Company	2040	4213	2.04	
6	Ç	carbon	1086	2.6				7 5
7 8	N O	nitrogen	1402 1314	3.0 3.4	63 54	77 90.	0.001145	71 64
9	F	oxygen fluorine	1681	4.0	53	85. 85	$0.001308 \\ 0.001553$	60.
10	Ne	neon	2081	_	24	27	0.000825	62
11	Na	sodium	496	0.9	371	1156	0.97	160.
12	Mg	magnesium	738	1.3	923	1363	1.74	140.
13	Al°	aluminum	578	1.6	933	2792	2.70	124
14	Si	silicon	787	1.9	1687	3538	2.3296	114
15	P	phosphorus (whit	e) 1012	2.2	317	554	1.823	109
16	S	sulfur (monoclini		2.6	388	718	2.00	104
17	Cl	chlorine	1251	3.2	172	239	0.002898	100.
18	Ar	argon	1521		84	87	0.001633	101
19 20	K Ca	potassium calcium	419 590.	0.8 1.0	337 1115	$1032 \\ 1757$	$0.89 \\ 1.54$	200. 174
21 22	Se Ti	scandium	633 659	1.4 1.5	1814 1941	3109 3560.	2.99 4.506	159 148
23	V	titanium vanadium	651	1.6	2183	3680.	4.506 6.0	146
24	Čr	chromium	653	1.7	2180.	2944	7.15	130.
25	Mn	manganese	717	1.6	1519	2334	7.3	129
26	Fe	iron	762	1.8	1811	3134	7.87	124
27	Co	cobalt	760.	1.9	1768	3200.	8.86	118
28	Ni	nickel	737	1.9	1728	3186	8.90	117
29	$\mathbf{C}\mathbf{u}$	copper	745	1.9	1358	2835	8.96	122
30	Zn	zine	906	1.7	693	1180.	7.134	120.
31	Ga	gallium	579	1.8	303	2477	5.91	123
32	Ge	germanium	762	2.0	1211	3106	5.3234	120.
33 34	As Se	arsenic (gray) selenium (gray)	944 941	2.2 2.6	1090. 494	958	5.75 4.809	120. 118
35	Br	bromine	1140.	3.0	266	332	3.1028	117
				0.0	- TO	7,400,000,000	100000000000000000000000000000000000000	111111111111111111111111111111111111111
36 37	Kr Rb	krypton rubidium	1351 403	0.8	116 312	120. 961	0.003425 1.53	116 215
38	Sr	strontium	403 549	1.0	1050.	1655	2.64	190.
39	Y	yttrium	600.	1.2	1795	3618	4.47	176
40	Zr	zirconium	640.	1.3	2128	4682	6.52	164
41	Nb	niobium	652	1.6	2750.	5017	8.57	156
42	Mo	molybdenum	684	2.2	2896	4912	10.2	146
43	Tc	technetium	702	2.1	2430.	4538	11	138
44 45	Ru Rh	ruthenium rhodium	710. 720.	2.2 2.3	2606 2237	4423 3968	$12.1 \\ 12.4$	136 134
_								
46 47	Pd	palladium silver	804 731	2.2 1.9	$1828 \\ 1235$	3236 2435	$12.0 \\ 10.5$	130. 136
48	$_{ m Cd}^{ m Ag}$	cadmium	868	1.7	594	1040.	8.69	140.
49	In	indium	558	1.8	430.	2345	7.31	142
50	Sn	tin (white)	709	2.0	505	2875	7.287	140.
51	Sb	antimony (gray)	831	2.1	904	1860.	6.68	140.
52	Te	tellurium	869	2.1	723	1261	6.232	137
53	I	iodine	1008	2.7	387	457	4.933	136
54	Xe	xenon	1170.	2.6	161	165	0.005366	136
55	Cs	cesium	376	0.8	302	944	1.873	238
56	Ba	barium	503	0.9	1000.	2170.	3.62	206
57	La	lanthanum	538	1.1	1193	3737	6.15	194

Honors	Chemistry
Ms. Ye	

Name	
Date	Block

Periodic Trends War

This is an adaptation of the card game 'war', except instead of using playing cards, we will use cards with an element on it.

Instructions:

- 1. Get into groups of 4. Distribute the cards so that everyone has ONE card that is numbered 1-6
- 2. For each round, you will be comparing your element cards and a specific value from the provided reference table. For each round, make sure you turn over the element card that corresponds to the round number.
- 3. As a group, order the cards from smallest value to largest value. Then, determine who wins the round based on who has the greatest value for the trend you are looking at for this turn.
- 4. Fill in each row of the following table as you complete each round

Round	Periodic Trend to Compare	Your element and its value from the reference table	Order of elements (from smallest to largest value)	Winner (greatest value)
1	Atomic Radius			
2	Electronegativity			
3	Ionization Energy			
4	Ionization Energy			
5	Electronegativity			
6	Atomic Radius			

Honors	Chemistry
Ms. Ye	

Name		
Date	Block	

PERIODIC TABLE INDEPENDENT STUDY PART 1

Questions: Based on the values you filled in the table, answer the following questions (each question matches the corresponding round number in the table):

1.	Rou	ind 1:
	a)	Place your elements in order of increasing atomic number
	b)	In general, what happens to atomic radius as you compare elements going down a group (top to bottom)?
	c)	Based on what you know about the structure of an atom, why do you think this occurs?
2	Pou	ınd 2:
۷.		Place your elements in order of increasing atomic number
	b)	In general, what happens to electronegativity as you compare elements going across a period (left to right)?
	c)	Based on what you know about an atom's desire to obtain a noble gas electron configuration, why do you think this occurs?
3.	_	and 3:
	a)	Place your elements in order of increasing atomic number
	b)	In general, what happens to ionization energy as you compare elements going down a group (top to bottom)?
	c)	Based on what you know about the structure of an atom and the definition for ionization

energy, why do you think this occurs?

Hor	ors	Chemistry
Mc	۷۵	

Name	
Date	Block

4. Round 4:

a) Place your elements in order of increasing atomic number

b) In general, what happens to ionization energy as you compare elements going across a period?

c) Based on what you know about an atom's desire to obtain a noble gas electron configuration, why do you think this occurs?

5. Round 5:

a) Place your elements in order of increasing atomic number

b) In general, what happens to electronegativity as you compare elements going down a group?

c) Based on what you know about the structure of an atom and the definition for electronegativity, why do you think this occurs?

6. Round 6:

a) Place your elements in order of increasing atomic number

b) In general, what happens to atomic radius as you compare elements going across a period?

Honors	Chemistry
Ms. Ye	

Name	
Date	Block

Independent Study: Periodic Table Part 2

the	e following questions: What was the first way that Mendeleev organized his element cards?
2.	Why did Mendeleev organize the element cards into several short rows and columns?
3.	Why is the element table called the "periodic" table of elements?
4.	Why did Mendeleev move Titanium (and the elements after it) to the right after organizing his table? What occurred as a result?
5.	How was Mendeleev able to predict elements?
6.	What part of Mendeleev's original periodic table is still used in the way the periodic table is currently organized?

How is the Periodic Table Organized?

Below is a portion of the periodic table. In the answer spaces provided in the table, fill in the appropriate information for each element as indicated in the key below. Then, answer the questions that follow.

[1] H [2]	Key [1] atomic number [2] abbreviated electron configuration [3] number of energy levels (shells) [4] number of valence electrons						
[1] Li [2] [3] [4]	Be [1] [2] [3] [4]	[1] [2] [3] [4]	C [1] [2] [3] [4]	[1] [2] [3] [4]	0 [1] [2] [3] [4]	[1] [2] [3] [4]	Ne [1] [2] [3] [4]
[1] [2] [3] [4]	Mg [1] [2] [3] [4]	[1] [2] [3] [4]	Si [1] [2] [3] [4]	P [1] [2] [3] [4]	S [1] [2] [3] [4]	[1]	Ar [1]

Base your answers to the following questions on the information you filled out in the table above:

- 1. In what order are the elements of the Periodic Table arranged?
- 2. What do all the elements in the same group of the Periodic Table have in common?
- 3. What do all the elements in the same period of the Periodic Table have in common?
- 4. Imagine element number 15 had never been discovered. What characteristics would you predict it to have based on its location on the periodic table?

Н							He
Li	Be	В	C	N	O	F	Ne
Na	Mg	Al	Si	?	S	Cl	Ar
K	Ca	}					

5. Based on how Mendeleev organized the elements of the periodic table, which characteristic (of the 4 in the table above) do you think is responsible for elements in the same group for having similar chemical properties?