Slide 1		
	RedOx Chemistry	
	When it's barely chemistry, it's RedOx Chemistry	
Slide 2		1
Silue 2	What is Chemistry?	
	Chemistry is often defined as "making and	
	breaking bonds"; rearranging atoms to form new substances.	
	new substances.	
	There is one class of molecular reactions that is incredibly important but defies this definition:	
	electrochemistry.	
Slide 3]
21140	Consider 2 molecules	
	FeO and Fe ₂ O ₃	
	Are they different?	
	Yes.	
	What's the difference?	
	Iron (II) oxide vs. Iron (III) oxide The Oxidation State is different.	
		J

Slide 4		
	Are you stuck with your oxidation state?	
	Asked a different way: If you are iron in FeO, are you stuck being Fe ²⁺ forever?	
	In fact, you can change oxidation states as often is you like. But, there's a catch	
	How do you change oxidation states?	
	Add or subtract electrons. Fe ²⁺ has 1 more electron than Fe ³⁺	
01:1 5		1
Slide 5	What does this reaction look like?	
	Fe ²⁺ → Fe ³⁺ + 1 e ⁻	
	Is this a "real" reaction?	
	Depends on what you mean by "real" and by reaction. Something changed, but no atoms	
	were rearranged so it isn't like the other reactions we've seen before. And, you might	
	ask, what happens to the electron?	
Slide 6	This is an "electrochemical" reaction	
	Fe ²⁺ \rightarrow Fe ³⁺ +1e ⁻	
	It's a special kind of process, part electrical and	
	part (barely) chemical. The atom changes oxidation state and creates an electron. The	
	electron can do useful work (power your Ipod) or chemical work (change the oxidation state	
	of something else).	

01. 1

α		1		
· .	1	α	Δ	. 1
S		u		7

Electrons come, electrons go

 $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}$

Mn⁵⁺ + 3 e- → Mn²⁺

When electrons "go", it is called an "oxidation". When electrons "come", it is called a "reduction". [It's easiest to remember that a "reduction" reduces the charge on the ion (oxidation state).]

Slide 8

Like acids and bases...

Oxidation and Reduction always happens simultaneously:

Oxidation half-reaction: $Fe^{2+} \rightarrow Fe^{3+} + 1e^{-}$

Reduction half-reaction: Mn⁵⁺ + 3 e- \rightarrow Mn²⁺

Full reaction: $3 \text{ Fe}^{2+} + \text{Mn}^{5+} \rightarrow 3 \text{ Fe}^{3+} + \text{Mn}^{2+}$

WTFDYGT????????????

Slide 9

Chemical reactions don't have electrons

Oxidation and Reduction half-reactions balance so that no NET electrons remain

Oxidation gives you 1 e-: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^{-}$

Reduction needs 3: $Mn^{5+} + 3 e- \rightarrow Mn^{2+}$

3 x (Fe²⁺ → Fe³⁺ + 1 e⁻)

+ $Mn^{5+} + 3e^{-} \rightarrow Mn^{2+}$ 3 Fe²⁺ + Mn⁵⁺ + 3e⁻ \rightarrow 3 Fe³⁺ + Mn²⁺ + 3e⁻

3 Fe²⁺ + Mn⁵⁺ \rightarrow 3 Fe³⁺ + Mn²⁺

Slide 10	Is it always that easy?	
	Is it always that easy?	
	Of course NOT! Unbalanced equation:	
	CuO + FeO \rightarrow Fe ₂ O ₃ + Cu ₂ O	
	What's seing on hour?	
	What's going on here?	
	Well, it is a redox reaction but it is a little less obvious than when I am just showing the ions.	
	The oxidation state is hidden in the molecules.	
Slide 11		
Slide 11	Is it always that easy?	
Slide 11	Is it always that easy? $CuO + FeO \rightarrow Fe_2O_3 + Cu_2O$	
Slide 11		
Slide 11	$CuO + FeO \rightarrow Fe_2O_3 + Cu_2O$	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO - copper (II) oxide Cu ₂ O - copper (I) oxide FeO - iron (II) oxide Fe ₂ O ₃ - iron (III) oxide	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide Fe ₂ O ₃ – iron (III) oxide How do you know? Remember our nomenclature: O is always –	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide Fe ₂ O ₃ – iron (III) oxide How do you know? Remember our nomenclature: O is always –	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide Fe ₂ O ₃ – iron (III) oxide How do you know? Remember our nomenclature: O is always –	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide Fe ₂ O ₃ – iron (III) oxide How do you know? Remember our nomenclature: O is always –	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide Fe ₂ O ₃ – iron (III) oxide How do you know? Remember our nomenclature: O is always –	
Slide 11	CuO + FeO \Rightarrow Fe ₂ O ₃ + Cu ₂ O CuO – copper (II) oxide Cu ₂ O – copper (I) oxide FeO – iron (II) oxide Fe ₂ O ₃ – iron (III) oxide How do you know? Remember our nomenclature: O is always –	

Slide 12

Is it always that easy?

 $CuO + FeO \rightarrow Fe_2O_3 + Cu_2O$

CuO – copper (II) oxide Cu₂O – copper (I) oxide

FeO – iron (II) oxide Fe₂O₃ – iron (III) oxide

Looked at this way, it is clearer that the Cu is going from +2 on the left to +1 on the right (reduction) at the same time that the iron is going from +2 on the left to +3 on the right (oxidation).

Slide 13	How do I balance the equation?	
	How do I balance the equation?	
	$CuO + FeO \rightarrow Fe_2O_3 + Cu_2O$	
	Balancing redox reactions is similar to regular	
	equations BUT it also requires that you balance the charges as well.	
	Fortunately, there is a relatively easy system that	
	ALWAYS works! Just follow the 7-ish easy	
	steps!	
C1: 1 - 1 4		1
Slide 14	1 – Separate into ½ reactions	
	$CuO + FeO \rightarrow Fe_2O_3 + Cu_2O$	
	Break the full reaction into 2 half-reactions:	
	Oxidation: FeO → Fe ₂ O ₃	
	Reduction: CuO → Cu ₂ O	
	We treat them separately from now on.	
		I
Slide 15	2 – Balance each ½ reaction, ignoring	
	O and H	
	Oxidation: FeO \rightarrow Fe ₂ O ₃	
	Reduction: CuO → Cu ₂ O	
	Just want same number of atoms on each side.	
	Oxidation: 2 FeO \rightarrow Fe ₂ O ₃	

Reduction: $2 CuO \rightarrow Cu_2O$

S	•		_	6
. •		"	_	11

3 – Balance the oxygen by adding water

This is more logical than it seems since most electrochemistry occurs in aqueous media.

 $\begin{array}{ccc} \text{Oxidation: } 2 \, \text{Fe}_2 \text{O} \, \rightarrow & \text{Fe}_2 \text{O}_3 \\ & 2 \, 0 & 3 \, 0 \\ \\ \text{Reduction: } 2 \, \text{CuO} \, \rightarrow & \text{Cu}_2 \text{O} \\ & 2 \, 0 & 1 \, 0 \\ \\ \text{Oxidation: } 2 \, \text{Fe}_0 \text{O} \, + & \text{H}_2 \text{O} \, \rightarrow & \text{Fe}_2 \text{O}_3 \\ \end{array}$

Reduction: 2 CuO \rightarrow Cu₂O + H₂O

α	٠.	- 1		1	_
·	1	α	Δ		- 1
S		u			7
\sim	-	-	_	-	•

4 – Balance the hydrogen by adding H^{+}

This is also more logical than it seems, since aqueous solutions (as we've seen) are generally either acidic or basic.

Oxidation: 2 FeO + $H_2O \rightarrow Fe_2O_3$ Reduction: 2 CuO \rightarrow Cu₂O + H_2O

Oxidation: 2 FeO + $H_2O \rightarrow Fe_2O_3 + 2 H^+$ Reduction: 2 CuO + 2 $H^+ \rightarrow Cu_2O + H_2O$

Slide 18

The atoms are balanced

At this point, the two half-reactions should be balanced based only on the atoms. But notice that the charge isn't balanced!

 $\begin{array}{ll} \text{Oxidation: 2 FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + 2 \text{ H}^+\\ & \text{0 charge} & + \text{2 charge}\\ \\ \text{Reduction: 2 CuO} + 2 \text{ H}^+ \rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O}\\ & + \text{2 charge} & \text{0 charge} \end{array}$

α	•	1	-1	_
✓ I	1	de		9
. 71		"		~

5 – Balance the charges by adding electrons

$$\begin{split} \text{Oxidation: 2 FeO} + \text{H}_2\text{O} &\rightarrow \text{Fe}_2\text{O}_3 + 2 \text{ H}^+\\ &\quad \text{O charge} \qquad + 2 \text{ charge} \\ \text{Reduction: 2 CuO} + 2 \text{ H}^+ &\rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O}\\ &\quad + 2 \text{ charge} \qquad \text{O charge} \end{split}$$

Oxidation: 2 FeO + $H_2O \rightarrow Fe_2O_3 + 2 H^+ + 2 e^-$

Reduction: 2 CuO + 2 H $^+$ + 2e $^ \rightarrow$ Cu₂O + H₂O

Slide 20

6 – Combine the half-reaction, eliminating any electrons

I want to add the 2 reactions together, making sure the electrons cancel on each side. (easy here)

Ox: $2 \text{ FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + 2 \text{ H}^+ + 2 \text{ e}^-$ 2 electrons on rightRed: $2 \text{ CuO} + 2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O}$ 2 electrons on left

I just add them together as is. If there were a different number of electrons, I'd need to multiply the reactions by whatever factors make them the same.

Slide 21

6 – Combine the half-reaction, eliminating any electrons and canceling common components

I want to add the 2 reactions together, making sure the electrons cancel on each side. (easy here)

Ox: 2 FeO + $H_2O \rightarrow Fe_2O_3 + 2 H^+ + 2 e^-$

$$\begin{split} & \text{Red: } \underline{2 \text{ CuO}} + \underline{2 \text{ H}^+ + 2 \text{ e}^-} \rightarrow \underline{\text{Cu}_2 \text{ O}} + \underline{\text{H}_2 \text{ O}}' \\ 2 \text{ FeO} + \underline{\text{H}_2 \text{ O}} + \underline{2} \text{ CuO}' + 2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \underline{\text{Fe}_2 \text{ O}_3} + 2 \text{ H}^+ \\ & + 2 \text{ e}^{-+} \text{Cu}_2 \text{ O} + \underline{\text{H}_2 \text{ O}} \end{split}$$

Slide 22	7-ish – IF in basic solution rather than acid, add OH⁻ to both sides to eliminate the H⁺ 2 FeO + 2 CuO → Fe ₂ O ₃ + Cu ₂ O Not a factor here!	
Slide 23	New example: Balance the following equation in basic solution: $ClO_{4^{-}(aq)} + Cl^{-}_{(aq)} \rightarrow ClO_{3^{-}(aq)} + Cl_{2(aq)}$ We just need to apply our 7-ish steps.	
Slide 24	New example: Balance the following equation in basic solution: $ClO_4^-(aq) + Cl^-(aq) \Rightarrow ClO_3^-(aq) + Cl_2(aq)$	

SI	:	.1	_	1	_
	п	(1	е.	- /.	7

1 – Separate into ½ reactions

 $\mathsf{CIO_4^-}_{(\mathsf{aq})} + \mathsf{CI^-}_{(\mathsf{aq})} o \mathsf{CIO_3^-}_{(\mathsf{aq})} + \mathsf{CI_2}_{(\mathsf{aq})}$

What's changing oxidation state? Cl $^-$ - oxidation state is -1 Cl $_2$ - oxidation state is 0 (all elementals are 0) ClO $_4$ WTFITOS? ClO $_3$ WTFITOS?

Slide 26

1 – Separate into ½ reactions

 $\mathsf{CIO_{4^{-}(aq)}} + \mathsf{CI^{-}}_{(aq)} \xrightarrow{} \mathsf{CIO_{3^{-}(aq)}} + \mathsf{CI_{2}}_{(aq)}$

What's changing oxidation state? Cl⁻ - oxidation state is -1 Cl₂ - oxidation state is 0 (all elementals are 0) ClO₄ - Cl is +7 (O is -2, ion is -1 overall) ClO₃ - Cl is +5 (O is -2, ion is -1 overall)

Slide 27

1 – Separate into ½ reactions

 $CIO_4^-_{(aq)}+CI^-_{(aq)} \rightarrow CIO_3^-_{(aq)}+CI_{2(aq)}$ Break the full reaction into 2 half-reactions:

Oxidation: $\text{Cl}^{-}_{(aq)} \rightarrow \text{Cl}_{2 \, (aq)}$

Reduction: $ClO_{4\ (aq)}^{-} \rightarrow ClO_{3\ (aq)}^{-}$

We treat them separately from now on.

lide 28	2 – Balance each ½ reaction, ignoring O and H	
	Oxidation: $Cl_{(aq)} \rightarrow Cl_{2(aq)}$	
	Reduction: $ClO_{4^-(aq)} \rightarrow ClO_{3^-(aq)}$	
	Just want same number of atoms on each side.	
	Oxidation: 2 $Cl_{(aq)} \rightarrow Cl_{2(aq)}$	
	Reduction: $ClO_{4 (aq)} \rightarrow ClO_{3 (aq)}$	
	(44)	
. 1 . 20		.
ide 29	3 – Balance the oxygen by adding	
	water	
	Oxidation: $2 \operatorname{Cl}_{(aq)} \rightarrow \operatorname{Cl}_{2 (aq)}$	
	Reduction: $ClO_{4 (aq)} \rightarrow ClO_{3 (aq)}$	
	Oxidation: 2 $\text{Cl}_{(aq)} \rightarrow \text{Cl}_{2 (aq)}$	
	Reduction: $ClO_{4 (aq)} \rightarrow ClO_{3 (aq)} + H_2O_{(l)}$	
ide 30		1
140 50	4 – Balance the hydrogen by adding H ⁺	
	Oxidation: 2 Cl $_{(aq)} \Rightarrow Cl_{2(aq)}$	
	Reduction: $CIO_4^{-}(aq) \rightarrow CIO_3^{-}(aq) + H_2O_{(1)}$	

Oxidation: 2 $\text{Cl}_{\text{-}}_{\text{(aq)}} \rightarrow \text{Cl}_{\text{2 (aq)}}$

Reduction: $CIO_4^-_{(aq)} + 2 H^+_{(aq)} \rightarrow CIO_3^-_{(aq)} + H_2O_{(I)}$

Silue 3	Slide 3	1
---------	---------	---

5 – Balance the charges by adding electrons

$$\begin{split} \text{Oxidation: 2 CI}^-_{(aq)} &\to \text{CI}_{_{2(aq)}} \\ &\quad 2^*(-1) \quad 0 \\ \text{Reduction: CIO}_{a^*_{_{1}(aq)}} + 2 \text{ H}^+_{_{1}(aq)} &\to \text{CIO}_{3^*_{_{1}(aq)}} + \text{H}_2\text{O}_{(||)} \\ &\quad -1 + 2(1+) = +1 \qquad -1 \end{split}$$

Oxidation: 2 CI
$$_{(aq)} \rightarrow CI_{2(aq)} + 2 e^{-}$$

Reduction:
$$CIO_4^-_{(aq)} + 2 H^+_{(aq)} + 2 e^- \rightarrow CIO_3^-_{(aq)} + H_2O_{(I)}$$

Slide 32

6 – Combine the half-reaction, eliminating any electrons

$$\begin{split} \text{Ox: 2 CI'}_{(aq)} & \rightarrow \text{Cl}_{(aq)} + 2 \text{ e}^-\\ & 2 \text{ electrons} \\ \text{Red: CIO}_{4^-(aq)} + 2 \text{ H}^+_{(aq)} + 2 \text{ e}^- \rightarrow \text{CIO}_{3^-(aq)} + \text{H}_2\text{O}_{(j)} \\ & 2 \text{ electrons} \end{split}$$

$$2 \; \text{Cl}^{\text{-}}_{\;\; (aq)} + \text{ClO}_{4 \;\; (aq)} + 2 \; \text{H}^{\text{+}}_{\;\; (aq)} + 2 \; \text{e}^{\text{-}} \Rightarrow \; \text{Cl}_{2 \;\; (aq)} + 2 \; \text{e}^{\text{-}} + \; \text{ClO}_{3 \;\; (aq)} + \mathcal{H}_{2}^{\text{-}}O_{(I)}$$

$$2~\text{Cl}^{\text{-}}_{\text{ (aq)}} + \text{ClO}_{\text{4}^{\text{-}}\text{ (aq)}} + 2~\text{H}^{\text{+}}_{\text{ (aq)}} \Rightarrow \text{Cl}_{\text{2 (aq)}} + \text{ClO}_{\text{3}^{\text{-}}\text{ (aq)}} + \text{H}_{\text{2}}\text{O}_{\text{(I)}}$$

Slide 33

7-ish – IF in basic solution rather than acid, add $\mathrm{OH^-}$ to both sides to eliminate the $\mathrm{H^+}$

$$2 \; \text{Cl}_{\; (aq)} + \text{ClO}_{4 \; (aq)} + 2 \; \text{H}_{\; (aq)} \xrightarrow{} \; \text{Cl}_{2 \; (aq)} + \text{ClO}_{3 \; (aq)} + \text{H}_{2} \text{O}_{(l)}$$

2 CI
$$_{(aq)}$$
 + CIO $_4$ $_{(aq)}$ + 2 H $^+$ $_{(aq)}$ + 2 OH $^ \rightarrow$ CI $_2$ $_{(aq)}$ + CIO $_3$ $_{(aq)}$ + H $_2$ O $_{(i)}$ + 2 OH $^-$

Why 2 OH-? Because I need to neutralize 2 H+ which gives me...2 $\rm H_2O!!$

$$2 \text{ Cl'}_{(aq)} + \text{ClO}_{4}^{-}_{(aq)} + 2 \text{ H}_{2}\text{O}_{(l)} \rightarrow \text{Cl}_{2}_{(aq)} + \text{ClO}_{3}^{-}_{(aq)} + \text{H}_{2}\text{O}_{(l)} + 2 \text{ OH}^{-}_{-}$$

Slide 34	7-ish – IF in basic solution rather than acid, add OH¹ to both sides to eliminate the H⁴ Cleaning up a little bit: 2 Cl⁻ (aa) + ClO₄⁻ (aa) + 2 H₂O(n) → Cl₂ (aa) + ClO₃⁻ (aa) + H₂O(n) + 2 OH¹ 2 Cl⁻ (aa) + ClO₄⁻ (aa) + H₂O(n) → Cl₂ (aa) + ClO₃⁻ (aa) + 2OH¹	
Slide 35	One more example: Balance the following equation in basic solution: $I^{-}_{(aq)} + NO_{2^{-}(aq)} \Rightarrow I_{2(s)} + NO_{(g)}$	
Slide 36	1 − Separate into ½ reactions $I_{(aq)}^{-} + NO_{2(aq)}^{-} \rightarrow I_{2(s)} + NO_{(g)}$ What's changing oxidation state?	

I - oxidation state is -1

 $NO_2^- - N \text{ is } +3$ NO - N is +2

1₂ - oxidation state is 0 (all elementals are 0)

		_		_	_
S	4	А	\sim	-2	7
\)	ш	u	C	.)	• /

1 – Separate into ½ reactions

 $I^{-}_{(aq)}$ + $NO_{2}^{-}_{(aq)}$ \rightarrow $I_{2(s)}$ + $NO_{(g)}$

Break the full reaction into 2 half-reactions:

Oxidation: $I^{-}_{(aq)} \rightarrow I_{2(s)}$

Reduction: $NO_{2^{-}(aq)} \rightarrow NO_{(g)}$

Slide 38

2 – Balance each $\frac{1}{2}$ reaction, ignoring O and H

Oxidation: $I^{-}_{(aq)} \rightarrow I_{2(s)}$

Reduction: $NO_2^-_{(aq)} \rightarrow NO_{(g)}$

Just want same number of atoms on each side.

Oxidation: 2 $I_{(aq)} \rightarrow I_{2(s)}$

Reduction: $NO_2^-_{(aq)} \rightarrow NO_{(g)}$

Slide 39

3 – Balance the oxygen by adding water

Oxidation: 2 $I_{(aq)} \rightarrow I_{2(s)}$

Reduction: $NO_{2^{-}(aq)} \rightarrow NO_{(g)}$

Oxidation: 2 $I_{(aq)} \rightarrow I_{2(s)}$

Reduction: $NO_{2^{-}(aq)} \rightarrow NO_{(g)} + H_{2}O_{(l)}$

•		 	
•		 	
	_		

Slide	40

4 – Balance the hydrogen by adding H⁺

Oxidation: 2 $I^{-}_{(aq)} \rightarrow I_{2(s)}$

Reduction: $NO_{2^{-}(aq)} \rightarrow NO_{(g)} + H_{2}O_{(I)}$

Ox: $2 I_{(aq)} \rightarrow I_{2(s)}$

Red: $NO_2^-_{(aq)}$ + 2 $H^+_{(aq)}$ \rightarrow $NO_{(g)}$ + $H_2O_{(I)}$

Slide 41

5 – Balance the charges by adding electrons

Ox: 2 $I_{(aq)} \rightarrow I_{2(s)}$

Red: $NO_{2^{-}(aq)} + 2 H^{+}_{(aq)} \rightarrow NO_{(g)} + H_{2}O_{(I)}$

Ox: $2 I^{-}_{(aq)} \rightarrow I_{2(s)} + 2 e^{-}$

Red: $NO_2^-_{(aq)}$ + 2 $H^+_{(aq)}$ + 1 $e^ \rightarrow$ $NO_{(g)}$ + $H_2O_{(I)}$

Slide 42

6 – Combine the half-reaction, eliminating any electrons

 $\begin{array}{l} \operatorname{Ox:} 2 \upharpoonright_{(aq)} \to I_{2 \ (s)} + 2 \ e^{\cdot} \\ 2 \ \text{electrons} \\ \operatorname{Red:} \operatorname{NO}_{2 \ (aq)} + 2 \ H^{+}_{2} (aq) + 1 \ e^{\cdot} \to \operatorname{NO}_{(g)} + \operatorname{H}_{2} O_{(J)} \\ 1 \ \text{electrons} \end{array}$

Ox + 2*Red

Ox: $2 I_{(aq)}^{-} \rightarrow I_{2(s)}^{+} + 2 e^{-}$

Red: $2* (NO_2^-_{(aq)} + 2 H^+_{(aq)} + 1 e^- \rightarrow NO_{(g)} + H_2O_{(l)})$

Slide 43	,
----------	---

6 – Combine the half-reaction, eliminating any electrons

Ox:
$$2 I_{(aq)}^{-} \rightarrow I_{2(s)} + 2 e^{-}$$

Red:
$$2*(NO_2^-_{(aq)} + 2 H^+_{(aq)} + 1 e^- \rightarrow NO_{(g)} + H_2O_{(l)})$$

Ox:
$$2 I^{-}_{(aq)} \rightarrow I_{2(s)} + 2 e^{-}$$

Red: 2 NO
$$_2^-$$
(aq) + 4 H $^+$ (aq) + 2 e $^ \rightarrow$ 2 NO $_{(g)}$ + 2 H $_2$ O

Slide 44

6 – Combine the half-reaction, eliminating any electrons

Ox: 2
$$I^{-}_{(aq)} \rightarrow I_{2(s)} + 2 e^{-}$$

Red: 2 NO
$$_{2}^{-}$$
(aq) + 4 H⁺(aq) + 2 e⁻ \Rightarrow 2 NO (g) + 2 H₂O

Slide 45

7-ish – IF in basic solution rather than acid, add $\mathrm{OH^-}$ to both sides to eliminate the $\mathrm{H^+}$

2
$$I^{-}_{(aq)}$$
 + 2 $NO_{2^{-}(aq)}$ + 4 $H^{+}_{(aq)}$ \rightarrow $I_{2(s)}$ + 2 $NO_{(g)}$ + 2 $H_{2}O_{(I)}$

2 $I^{-}_{(aq)}$ + 2 $NO_{2^{-}(aq)}$ + 4 $H^{+}_{(aq)}$ + 4 OH^{-} \rightarrow $I_{2 (s)}$ + 2 $NO_{(g)}$ + 2 $I_{2}O_{(i)}$ + 4 OH^{-}

Why 4 OH-? Because I need to neutralize 4 $\mbox{H}^{\scriptscriptstyle +}$ which gives me...4 $\mbox{H}_2\mbox{O}!!$

$$2 I_{(aq)}^{-} + 2 NO_{2(aq)}^{-} + 4 H_{2}O \rightarrow I_{2(s)} + 2 NO_{(g)} + 2 H_{2}O_{(j)} + 4 OH^{-}$$

S	li.	de	,	4	6
	LT.	w	_		v

7-ish – IF in basic solution rather than acid, add	
OH- to both sides to eliminate the H+	

Cleaning up a little bit:

Cleaning up a little bit:
$$2 \text{ Ir}_{(aq)} + 2 \text{ NO}_{2^{-}(aq)} + 4 \text{ H}_{2} \not 0 \xrightarrow{2} \text{ I}_{2 (s)} + 2 \text{ NO}_{(g)} + 2 \\ \text{H}_{2} O_{(j)} + 4 \overleftarrow{\text{OH}} -$$

2
$$I_{(aq)}^{-}$$
 + 2 NO_{2}^{-} (aq) + 2 $H_{2}O \Rightarrow I_{2(s)}$ + 2 $NO_{(g)}$ + 4 OH^{-}
