Tensor Product of Matrices

T.V.H. Prathamesh

February 22, 2016

Abstract

In this work, the Kronecker tensor product of matrices and the proofs of some of its properties are formalized. Properties which have been formalized include associativity of the tensor product and the mixed-product property. This formalization of tensor product of matrices relies on the formalization of matrices by Christian Sternagel and Rene Thiemann under the title 'Executable Matrix Operations on Matrices of Arbitrary Dimensions'.

Contents

1 Tensor Product of Matrices 1
1.1 Defining the Tensor Product 1
1.2 Associativity and Distributive properties 12

We define Tensor Product of Matrics and prove properties such as associativity and mixed product property(distributivity) of the tensor product.

1 Tensor Product of Matrices

theory Matrix-Tensor
imports ../Matrix/Utility ../Matrix/Matrix-Arith
begin

1.1 Defining the Tensor Product

We define a multiplicative locale here - mult, where the multiplication satisfies commutativity, associativity and contains a left and right identity

```
locale mult \(=\)
    fixes \(i d::^{\prime} a\)
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \quad(\) infixl \(* 60)\)
    assumes comm: fa \(b=f b \quad a\)
    assumes assoc: \((f(f a b) c)=(f a(f b c))\)
    assumes left-id: \(f\) id \(x=x\)
    assumes right-id:f \(x\) id \(=x\)
```


context mult
 begin

times a v ，gives us the product of the vector v with multiplied pointwise with a
primrec times：：＇$a \Rightarrow$＇a vec $\Rightarrow{ }^{\prime}$ a vec
where
times $n[]=[] \mid$
times $n(y \# y s)=(f n y) \#(t i m e s ~ n y s)$
lemma times－scalar－id：times id $v=v$〈proof〉
lemma times－vector－id：times $v[i d]=[v]$
〈proof〉
lemma preserving－length：length（imes $n y)=($ length $y)$
$\langle p r o o f\rangle$
vec＿vec＿Tensor is the tensor product of two vectors．It is illustrated by the following relation

```
vec_vec_Tensor ( }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots\mp@subsup{v}{n}{})(\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots\mp@subsup{w}{m}{})=(\mp@subsup{v}{1}{}\cdot\mp@subsup{w}{1}{},\ldots,\mp@subsup{v}{1}{}\cdot\mp@subsup{w}{m}{},\ldots,\mp@subsup{v}{n}{}\cdot\mp@subsup{w}{1}{},\ldots,\mp@subsup{v}{n}{}
wm
primrec vec-vec-Tensor:: 'a vec => 'a vec => 'a vec
where
vec-vec-Tensor [] ys = []|
vec-vec-Tensor (x#xs) ys =(times x ys)@(vec-vec-Tensor xs ys)
lemma vec-vec-Tensor-left-id: vec-vec-Tensor [id] v =v
    \langleproof\rangle
lemma vec-vec-Tensor-right-id: vec-vec-Tensor v [id] =v
    \langleproof\rangle
```

theorem vec-vec-Tensor-length :
$($ length $($ vec-vec-Tensor $x y))=($ length $x) *($ length $y)$
$\langle p r o o f\rangle$
theorem vec-length: assumes vec $m x$ and vec $n y$
shows vec $(m * n)$ (vec-vec-Tensor $x y$)
$\langle p r o o f\rangle$
vec＿mat＿Tensor is the tensor product of two vectors．It is illusstrated by the following relation
vec_mat_Tensor $\left(v_{1}, v_{2}, \ldots v_{n}\right)\left(C_{1}, C_{2}, \ldots C_{m}\right)=\left(v_{1} \cdot C_{1}, \ldots, v_{n} \cdot C_{1}, \ldots, v_{1} \cdot C_{m}, \ldots, v_{n}\right.$.
C_{m})

```
primrec vec-mat-Tensor::'a vec \(\Rightarrow{ }^{\prime}\) a mat \(\Rightarrow^{\prime}\) a mat
where
vec-mat-Tensor xs [] = []|
```



```
lemma vec-mat-Tensor-vector-id: vec-mat-Tensor \([i d] \quad v=v\)
    \(\langle\) proof \(\rangle\)
lemma vec-mat-Tensor-matrix-id: vec-mat-Tensor \(v[[i d]]=[v]\)
    \(\langle p r o o f\rangle\)
theorem vec-mat-Tensor-length:
    length(vec-mat-Tensor xs ys) \(=\) length ys
    \(\langle p r o o f\rangle\)
theorem length-matrix:
    assumes mat \(n r n c(y \# y s)\) and length \(v=k\)
    and (vec-mat-Tensor \(v(y \# y s)=x \# x s)\)
shows (vec \((n r * k) x)\)
\(\langle p r o o f\rangle\)
lemma matrix-set-list:
    assumes mat nr nc M
        and length \(v=k\)
        and \(x \in\) set \(M\)
shows \(\exists y s . \exists z s .(y s @ x \# z s=M)\)
〈proof〉
primrec reduct :: 'a mat \(\Rightarrow{ }^{\prime}\) 'a mat
where
reduct [] = []
\(\mid\) reduct \((x \# x s)=x s\)
lemma length-reduct:
assumes \(m \neq[]\)
shows length \((\) reduct \(m)+1=(\) length \(m)\)
\(\langle p r o o f\rangle\)
lemma mat-empty-column-length: assumes mat nr nc \(M\) and \(M=[]\) shows \(n c=0\)
\(\langle p r o o f\rangle\)
lemma vec-uniqueness:
assumes vec \(m v\)
and vec \(n v\)
shows \(m=n\)
\(\langle p r o o f\rangle\)
```

```
lemma mat-uniqueness:
assumes mat nr1 nc M
and mat nr2 nc M and z=hd M and M\not=[]
shows (\forallx\in(set M).(nr1 = nr2))
<proof\rangle
```

lemma mat-empty-row-length: assumes mat nr nc M and $M=[]$
shows mat 0 nc M
$\langle p r o o f\rangle$
abbreviation null-matrix::'a list list
where
null-matrix $\equiv[$ Nil $]$
lemma null-mat:null-matrix $=$ [[]]
$\langle p r o o f\rangle$
lemma zero-matrix: mat 00 [] \langle proof \rangle
row＿length gives the length of the first row of a matrix．For a＇valid＇matrix， it is equal to the number of rows
definition row－length：：＇a mat \Rightarrow nat
where
row－length $x s \equiv$ if $(x s=[])$ then 0 else（length $(h d x s))$
lemma row－length－Nil：
row－length［］＝0
$\langle p r o o f\rangle$
lemma row－length－Null：
row－length $[[]]=0$
〈proof〉
lemma row－length－vect－mat：
row－length（vec－mat－Tensor $v m)=$ length $v *($ row－length $m)$
$\langle p r o o f\rangle$
Tensor is the tensor product of matrices
primrec Tensor：：＇a mat $\Rightarrow{ }^{\prime} a$ mat $\Rightarrow{ }^{\prime}$ a mat（infixl $\otimes 63$ ）
where
Tensor［］xs＝［］｜
Tensor $(x \# x s) y s=(v e c-m a t-T e n s o r x y s) @($ Tensor $x s$ ys $)$
lemma Tensor－null：$x s \otimes[]=[]$
〈proof〉
Tensor commutes with left and right identity
lemma Tensor－left－id：$\quad[[i d]] \otimes x s=x s$

```
<proof>
```

```
lemma Tensor-right-id: \(\quad x s \otimes[[i d]]=x s\)
〈proof〉
```

row_length of tensor product of matrices is the product of their respective row lengths
lemma row-length-mat:
$($ row-length $(m 1 \otimes m 2))=($ row-length $m 1) *($ row-length $m 2)$
$\langle p r o o f\rangle$

```
lemma hd-set:assumes }x\in\operatorname{set}(a#M)\mathrm{ shows (x=a)}\vee(x\in(set M)
```

$\langle p r o o f\rangle$
for every valid matrix can also be written in the following form

```
theorem matrix-row-length:
    assumes mat nr nc M
    shows mat (row-length M) (length M) M
<proof\rangle
lemma reduct-matrix:
    assumes mat (row-length (a#M)) (length (a#M)) (a#M)
    shows mat (row-length M) (length M) M
\langleproof\rangle
```

theorem well-defined-vec-mat-Tensor:
(mat (row-length M) (length M) M) \Longrightarrow
(mat
$(($ row-length $M) *($ length $v))$
(length M)
(vec-mat-Tensor $v M)$)
$\langle p r o o f\rangle$

The following theorem gives length of tensor product of two matrices
lemma length-Tensor: $($ length $(M 1 \otimes M 2))=($ length $M 1) *($ length M2)
$\langle p r o o f\rangle$
lemma append-reduct-matrix:
(mat (row-length (M1@M2)) (length (M1@M2)) (M1@M2))
$\Longrightarrow($ mat (row-length M2) (length M2) M2)
$\langle p r o o f\rangle$
The following theorem proves that tensor product of two valid matrices is a valid matrix

```
theorem well-defined-Tensor:
    (mat (row-length M1) (length M1) M1)
^(mat (row-length M2) (length M2) M2)
\Longrightarrow ( m a t ~ ( ( r o w - l e n g t h ~ M 1 ) * ( r o w - l e n g t h ~ M 2 ) ) ~ ( ( l e n g t h ~ M 1 ) * ( l e n g t h ~ M 2 ) ) ~ ( M 1 \otimes M 2 ) ) ~
<proof\rangle
theorem effective-well-defined-Tensor:
assumes (mat (row-length M1) (length M1) M1)
    and (mat (row-length M2) (length M2) M2)
shows mat
            ((row-length M1)*(row-length M2))
            ((length M1)*(length M2))
                (M1\otimesM2)
<proof\rangle
definition natmod::nat }=>\mathrm{ nat }=>\mathrm{ nat (infixl nmod 50)
where
    natmod x y = nat ((int x) mod (int y))
theorem times-elements:
    \foralli.((i<(length v)) \longrightarrow(times a v)!i=f a (v!i))
    <proof\rangle
lemma simpl-times-elements:
    assumes (i<length xs)
    shows ((i<(length v)) \longrightarrow(times a v)!i=f a (v!i))
    <proof>
lemma append-simpl: i<(length xs )}\longrightarrow(xs@ys)!i=(xs!i
    <proof\rangle
lemma append-simpl2: i \geq(length xs) \longrightarrow(xs@ys)!i=(ys!(i- (length xs )))
    \langleproof\rangle
lemma append-simpl3:
assumes i> (length y)
shows (i<((length (z#zs))*(length y)))
    \longrightarrow ( i - ( l e n g t h ~ y ) ) < ~ ( l e n g t h ~ z s ) * ( l e n g t h ~ y ) ~
<proof\rangle
lemma append-simpl4:
(i > (length y))
    \longrightarrow ( ( i < ( ( l e n g t h ~ ( z \# z s ) ) * ( l e n g t h ~ y ) ) ) )
        \longrightarrow ( ( i - ( l e n g t h ~ y ) ) < ~ ( l e n g t h ~ z s ~ ) * ( l e n g t h ~ y ) )
    \langleproof\rangle
lemma vec-vec-Tensor-simpl:
```

```
    i<(length y)\longrightarrow(vec-vec-Tensor (z#zs) y)!i=(times z y)!i
<proof\rangle
lemma vec-vec-Tensor-simpl2:
```

```
\((i \geq(\) length \(y))\)
```

$(i \geq($ length $y))$
$\longrightarrow(($ vec-vec-Tensor $(z \# z s) y)!i=($ vec-vec-Tensor zs $y)!(i-($ length $y)))$
$\longrightarrow(($ vec-vec-Tensor $(z \# z s) y)!i=($ vec-vec-Tensor zs $y)!(i-($ length $y)))$
$\langle p r o o f\rangle$
$\langle p r o o f\rangle$
lemma division-product:
assumes (b::int)>0
and }a\geq
shows (a div b)=((a-b) div b)+1
<proof>
lemma int-nat-div:
(int a) div (int b) = int ((a::nat) div b)
\langleproof\rangle
lemma int-nat-eq:
assumes int (a::nat) = int b
shows a=b
<proof\rangle
lemma nat-div:
assumes (b::nat) > 0
and a>b
shows (a div b) = ((a-b) div b) + 1
<proof>
lemma mod-eq:
(m::int) mod n = (m+(-1)*n) mod n
<proof>
lemma nat-mod-eq: (int (m::nat)) mod (int n)= int (m mod n)
<proof\rangle
lemma nat-mod:
assumes (m::nat) > n
shows (m::nat) mod n = (m-n) mod n
\langleproof\rangle
lemma logic:
assumes A\longrightarrowB
and }\negA\longrightarrow
shows }
\langleproof\rangle

```
theorem vec-vec-Tensor-elements:
```

assumes $(y \neq[])$
shows
$\forall i .((i<(($ length $x) *($ length $y)))$
$\longrightarrow(($ vec-vec-Tensor $x y)!i)$
$=f(x!(i \operatorname{div}($ length $y)))(y!(i \bmod ($ length $y))))$
$\langle p r o o f\rangle$

```
a few more results that will be used later on
lemma nat-int: nat \((\) int \(x+\) int \(y)=x+y\)
〈proof〉
lemma int-nat-equiv: \((x>0) \longrightarrow(\) nat \(((\) int \(x)+-1)+1)=x\)
\(\langle p r o o f\rangle\)
lemma list-int-nat: \((k>0) \longrightarrow((x \# x s)!k=x s!(\) nat \(((\) int \(k)+-1)))\)
\(\langle p r o o f\rangle\)
```

lemma row-length-eq:
(mat (row-length $(a \# b \# N))($ length $(a \# b \# N))(a \# b \# N))$
$($ row-length $(a \# b \# N)=($ row-length $(b \# N)))$
$\langle p r o o f\rangle$

```

The following theorem tells us the relationship between entries of vec_mat_Tensor v M and entries of v and M respectivety
theorem vec-mat-Tensor-elements:
```

\foralli.\forallj.
(((i<((length v)*(row-length M)))
\wedge(j < (length M)))
^(mat (row-length M) (length M) M)
\longrightarrow ((v e c - m a t - T e n s o r ~ v ~ M) ! ~ j ! i)
=f(v!(i div (row-length M)))(M!j!(i mod (row-length M))))
<proof\rangle

```

The following theorem tells us about the relationship between entries of tensor products of two matrices and the entries of matrices
theorem matrix-Tensor-elements:
fixes M1 M2
shows
\(\forall i . \forall j \cdot(((i<((\) row-length \(M 1) *(\) row-length M2 \()))\)
\(\wedge(j<(\) length M1 \() *(\) length M2 \()))\)
\(\wedge(\) mat (row-length M1) (length M1) M1)
\(\wedge(\) mat (row-length M2) (length M2) M2)
\(\longrightarrow((M 1 \otimes M 2)!j!i)=\)
\(f\)
(M1!(jdiv (length M2))!(idiv (row-length M2)))
we restate the theorem in two different forms for convenience of reuse
```

theorem effective-matrix-tensor-elements:
(((i<((row-length M1)*(row-length M2)))
\wedge(j<(length M1)*(length M2)))
^(mat (row-length M1) (length M1) M1)
^(mat (row-length M2) (length M2) M2)
\Longrightarrow ((M 1 \otimes M 2) ! j ! i)
=f(M1!(j div (length M2))!(i div (row-length M2)))
(M2!(j mod length M2)!(i mod (row-length M2))))
<proof\rangle

```
theorem effective-matrix-tensor-elements2:
assumes \(i<(\) row-length M1) \(*(\) row-length M2)
and \(j<\) (length M1) \(*\) (length M2)
and mat (row-length M1) (length M1) M1
and mat (row-length M2) (length M2) M2
shows \((M 1 \otimes M 2)!j!i=\)
    (M1!(j div (length M2))!(idiv (row-length M2)))
    * (M2!(j mod length M2)!(i mod (row-length M2)))
〈proof〉
the following lemmas are useful in proving associativity of tensor products
lemma div－left－ineq：
assumes \((x::\) nat \()<y * z\)
shows \((x \operatorname{div} z)<y\)
〈proof〉
lemma div－right－ineq：
assumes \((x::\) nat \()<y * z\)
shows \((x\) div \(y)<z\)
〈proof〉
In the following theorem，we obtain columns of vec＿mat＿Tensor of a vector v and a matrix M in terms of the vector v and columns of the matrix M
```

lemma col-vec-mat-Tensor-prelim:
\forallj.(j< (length M)
\longrightarrow
col (vec-mat-Tensor v M) j=vec-vec-Tensor v (col M j))
<proof>
lemma col-vec-mat-Tensor:fixes j Mv
assumes j < (length M)
shows col (vec-mat-Tensor v M) j=vec-vec-Tensorv(col M j)
<proof>

```
lemma col-formula:
```

fixes M1 and M2
shows $\forall j .((j<($ length $M 1) *($ length M2 $))$
$\wedge($ mat (row-length M1) (length M1) M1)
\wedge (mat (row-length M2) (length M2) M2)
$\longrightarrow \operatorname{col}(M 1 \otimes M 2) j$
$=$ vec-vec-Tensor
(col M1 (j div length M2))
(col M2 (j mod length M2)))
$\langle p r o o f\rangle$
lemma row-Cons:row $(v \# M) i=(v!i) \#($ row $M i)$
〈proof〉
lemma row-append:row $(A @ B) i=($ row $A i) @($ row $B i)$
$\langle p r o o f\rangle$
lemma row-empty:row [] $i=[]$
$\langle p r o o f\rangle$
lemma vec-vec-Tensor-right-empty:vec-vec-Tensor $x[]=[]$
$\langle p r o o f\rangle$
lemma vec-mat-Tensor $v([] \#[])=[[]]$
$\langle p r o o f\rangle$
lemma $i<0 \longrightarrow[[]!i]=[]$
〈proof〉
lemma row-vec-mat-Tensor-prelim:
$\forall i$.
$((i<($ length $v) *($ row-length $M)) \wedge($ mat $n r($ length $M) M)$
\longrightarrow row (vec-mat-Tensor $v M) i$
$=$ times $(v!(i$ div row-length $M))($ row $M(i \bmod$ row-length $M)))$
$\langle p r o o f\rangle$
The following lemma gives us a formula for the row of a tensor of two matrices
lemma row－formula：
fixes M1 and M2
shows $\forall i .((i<($ row－length M1 $) *($ row－length M2 $))$
$\wedge($ mat（row－length M1）（length M1）M1）
$\wedge($ mat（row－length M2）（length M2）M2）
\longrightarrow row（M1 \＆M2）i
$=$ vec－vec－Tensor
（row M1（i div row－length M2））
（row M2（i mod row－length M2）））
$\langle p r o o f\rangle$
lemma effective－row－formula：

```
```

fixes M1 and M2
assumes $i<($ row-length M1) $*($ row-length M2)
and (mat (row-length M1) (length M1) M1)
and (mat (row-length M2) (length M2) M2)
shows row (M1 \& M2) i
$=$ vec-vec-Tensor
(row M1 (i div row-length M2))
(row M2 (i mod row-length M2))
$\langle p r o o f\rangle$
lemma alt-effective-matrix-tensor-elements:
$(((i<(($ row-length M2) $) *($ row-length M3 $)))$
$\wedge(j<($ length M2 $) *($ length M3 $)))$
$\wedge($ mat (row-length M2) (length M2) M2)
$\wedge($ mat (row-length M3) (length M3) M3)
$\Longrightarrow(($ M2 $\otimes M 3)!j!i)=f($ M2! $(j$ div (length M3 $))!(i d i v($ row-length M3 $)))$
(M3!(j mod length M3)!(i mod (row-length M3))))
〈proof〉
lemma trans-impl:($\forall i j .(P i j \longrightarrow Q i j)) \wedge(\forall i j .(Q i j \longrightarrow R i j))$
$\Longrightarrow(\forall i j .(P i j \longrightarrow R i j))$
\langle proof \rangle
lemma $((x:: n a t) \operatorname{div} y) \operatorname{div} z=(x \operatorname{div}(y * z))$
〈proof〉
lemma $(\neg((a:: n a t)<b)) \Longrightarrow(a \geq b)$
〈proof〉
lemma not-null: $x s \neq[] \Longrightarrow \exists y$ ys. $x s=y \# y s$
$\langle p r o o f\rangle$
lemma $(y:: n a t) \neq 0 \Longrightarrow(x \bmod y)<y$
\langle proof〉

```
lemma mod-prop1:((a::nat) mod \((b * c)) \bmod c=(a \bmod c)\)
    〈proof〉
lemma mod－div－relation：\(((a:: n a t) \bmod (b * c))\) div \(c=(a \operatorname{div} c) \bmod b\) \(\langle p r o o f\rangle\)

The following lemma proves that the tensor product of matrices is associative
```

lemma associativity:
fixes M1 M2 M3
shows
(mat (row-length M1) (length M1) M1)
^(mat (row-length M2) (length M2) M2)

```
```

 ^(mat (row-length M3) (length M3) M3)
 M1\otimes(M2 \otimesM3)=(M1\otimesM2)\otimesM3 (is ? }x>?l=?r
 <proof\rangle
end
lemma \(a::nat)b.(times a b)=($$
\begin{array}{ll}{\mathrm{ times }}&{b}\\{a}\end{array}
$$)
<proof\rangle

```

\subsection*{1.2 Associativity and Distributive properties}
locale plus-mult \(=\)
mult +
fixes \(z e r::^{\prime} a\)
fixes \(g:: ' a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a(\) infixl +60\()\)
fixes inver: : ' \(a \Rightarrow\) ' \(a\)
assumes plus-comm: \(g a \quad b=g b a\)
assumes plus-assoc: \(\left(\begin{array}{l}g(g a b) c)=\left(\begin{array}{ll}g a(g b c)\end{array}\right), ~(g)\end{array}\right.\)
assumes plus-left-id: \(g\) zer \(x=x\)
assumes plus-right-id:g \(x\) zer \(=x\)
assumes plus-left-distributivity: \(f a\left(\begin{array}{ll}g & b \\ \text { a }\end{array}\right)=g\left(\begin{array}{ll}f & a b)(f a c)\end{array}\right.\)
assumes plus-right-distributivity: \(f\left(\begin{array}{ll}g & a b\end{array}\right) c=g(f a c)(f b c)\)
assumes plus-left-inverse: \((g x(\) inver \(x))=z e r\)
assumes plus-right-inverse: \((g\) (inver \(x) x)=\) zer
context plus-mult
begin
lemma fixes M1 M2 M3
shows (mat (row-length M1) (length M1) M1)
\[
\begin{aligned}
& \wedge(\text { mat (row-length M2 })(\text { length M2) M2 }) \\
& \wedge \\
& \xlongequal{\wedge} \text { mat (row-length M3) (length M3) M3) } \\
& \langle\text { proof }\rangle
\end{aligned}
\]
matrix_mult refers to multiplication of matrices in the locale plus_mult
abbreviation matrix-mult::'a mat \(\Rightarrow{ }^{\prime}\) 'a mat \(\Rightarrow\) 'a mat (infixl \(\circ 65\) )
where
matrix-mult M1 M2 \(\equiv(\) mat-multI zer g \(f(\) row-length M1) M1 M2)
definition scalar-product :: ' \(a\) vec \(\Rightarrow{ }^{\prime} a\) vec \(\Rightarrow{ }^{\prime} a\) where
scalar-product \(v w=\) scalar-prodI zer \(g f v w\)
lemma \(m a\) :
assumes wf1: mat nr n m1
and wf2: mat \(n\) nc m2
and \(i: i<n r\)
\[
\text { and } j: j<n c
\]
```

shows mat-multI zer g f nr m1 m2 ! j!i
= scalar-prodI zer g f (row m1 i) (col m2 j)
<proof\rangle
lemma matrix-index:
assumes wf1: mat (row-length m1) n m1
and wf2: mat n nc m2
and i:i< (row-length m1)
and j:j<nc
shows matrix-mult m1 m2 ! j!i
= scalar-product (row m1 i) (col m2 j)
<proof\rangle

```
lemma unique-row-col:
assumes mat nr1 nc1 \(M\) and mat nr2 nc2 \(M\) and \(M \neq[]\)
shows \(n r 1=n r 2\) and \(n c 1=n c 2\)
\(\langle p r o o f\rangle\)
lemma matrix-mult-index:
assumes \(m 1 \neq[]\)
    and wf1: mat nr \(n\) m1
    and wf2: mat n nc m2
    and \(i: i<n r\)
    and \(j: j<n c\)
shows matrix-mult m1 m2 ! \(j!i=\) scalar-product (row m1 i) (col m2 \(j\) )
\(\langle p r o o f\rangle\)
the following definition checks if the given four matrices are such that the compositions in the mixed-product property which will be proved, hold true. It further checks that the matrices are non empty and valid
```

definition matrix-match::'a mat $\Rightarrow{ }^{\prime}$ a mat \Rightarrow^{\prime} a mat $\Rightarrow{ }^{\prime}$ a mat \Rightarrow bool
where
matrix-match A1 A2 B1 B2 三
(mat (row-length A1) (length A1) A1)
$\wedge($ mat (row-length A2) (length A2) A2)
$\wedge($ mat (row-length B1) (length B1) B1)
$\wedge($ mat (row-length B2) (length B2) B2)
$\wedge($ length $A 1=$ row-length A2)
\wedge (length B1 = row-length B2)
$\wedge(A 1 \neq[]) \wedge(A 2 \neq[]) \wedge(B 1 \neq[]) \wedge(B 2 \neq[])$

```
lemma non-empty-mat-mult:
    assumes wf1:mat nr \(n A\)
    and wf2:mat \(n\) nc \(B\)
        and \(A \neq[]\) and \(B \neq[]\)
shows \(A \circ B \neq[]\)
```

\langleproof\rangle

```
lemma tensor-compose-distribution1:
assumes wf1:mat (row-length A1) (length A1) A1
    and wf2:mat (row-length A2) (length A2) A2
    and wf3:mat (row-length B1) (length B1) B1
    and wf4:mat (row-length B2) (length B2) B2
    and match \(A A:\) length \(A 1=\) row-length \(A 2\)
    and matchBB:length \(B 1=\) row-length \(B 2\)
    and non-Nil: \((A 1 \neq[]) \wedge(A 2 \neq[]) \wedge(B 1 \neq[]) \wedge(B 2 \neq[])\)
shows mat ((row-length A1)*(row-length B1))
            ((length A2)*(length B2))
                \(((A 1 \circ A 2) \otimes(B 1 \circ B 2))\)
\(\langle p r o o f\rangle\)
lemma effective-tensor-compose-distribution1:
matrix-match A1 A2 B1 B2 \(\Longrightarrow\) mat \(((\) row-length A1 \() *(\) row-length B1) \()\)
    ((length A2) \(*(\) length B2) \()\)
                                    \(((A 1 \circ A 2) \otimes(B 1 \circ B 2))\)
\(\langle p r o o f\rangle\)
lemma tensor-compose-distribution2:
assumes wf1:mat (row-length A1) (length A1) A1
    and wf2:mat (row-length A2) (length A2) A2
    and wf3:mat (row-length B1) (length B1) B1
    and \(w f_{4}\) :mat (row-length B2) (length B2) B2
    and match \(A A:\) length \(A 1=\) row-length \(A 2\)
    and matchBB:length \(B 1=\) row-length B2
    and non-Nil: \((A 1 \neq[]) \wedge(A 2 \neq[]) \wedge(B 1 \neq[]) \wedge(B 2 \neq[])\)
shows mat \(((\) row-length A1 \() *(\) row-length B1 \())\)
            ((length A2) \(*(\) length B2) \()\)
                \(((A 1 \otimes B 1) \circ(A 2 \otimes B 2))\)
\(\langle p r o o f\rangle\)
theorem tensor-non-empty: assumes \(A \neq[]\) and \(B \neq[]\)
shows \(A \otimes B \neq[]\)
\(\langle p r o o f\rangle\)
```

theorem non-empty-distribution:
assumes mat nr1 n1 A1
and mat n1 nc1 A2
and mat nr2 n2 B1
and mat n2 nc2 B2
and $A 1 \neq[]$ and $B 1 \neq[]$ and $A 2 \neq[]$ and $B 2 \neq[]$
shows $((A 1 \circ A 2) \otimes(B 1 \circ B 2)) \neq[$
$\langle p r o o f\rangle$

```
lemma effective-tensor-compose-distribution2:matrix-match A1 A2 B1 B2 \(\Longrightarrow\)
```

mat ((row-length A1)*(row-length B1))
((length A2)*(length B2))
((A1\otimesB1) ○(A2 \otimesB2))
<proof\rangle
theorem effective-matrix-Tensor-elements:
fixes M1 M2 i j
assumes i<((row-length M1)*(row-length M2))
and j< (length M1)*(length M2)
and mat (row-length M1) (length M1) M1
and mat (row-length M2) (length M2) M2
shows
((M1 \otimes M2)!j!i) = f (M1!(j div (length M2))!(i div (row-length M2))}
(M2!(j mod length M2)!(i mod (row-length M2)))
<proof\rangle
theorem effective-matrix-Tensor-elements2:
fixes M1 M2
assumes mat (row-length M1) (length M1) M1
and mat (row-length M2) (length M2) M2
shows
(\foralli<((row-length M1)*(row-length M2)).
\forallj< ((length M1)*(length M2))
.((M1\otimesM2)!j!i)=f(M1!(j div (length M2))!(i div (row-length M2)))
(M2!(j mod length M2)!(i mod (row-length M2))))
\langleproof\rangle
definition matrix-compose-cond::'a mat }=>\mp@subsup{}{}{\prime}\mathrm{ 'a mat }\mp@subsup{|}{}{\prime}\mathrm{ 'a mat }=>\mp@subsup{}{}{\prime}a\mathrm{ mat }=>\mathrm{ nat }
nat }=>\mathrm{ bool
where
matrix-compose-cond A1 A2 B1 B2 i j \equiv
(mat (row-length A1) (length A1) A1)
^(mat (row-length A2) (length A2) A2)
^(mat (row-length B1) (length B1) B1)
^(mat (row-length B2) (length B2) B2)
^(length A1 = row-length A2)
^(length B1 = row-length B2)
\wedge(A1 = [])^(A2 \not=[])^(B1 \not=[])^(B2 \not=[])
\wedge(i<(row-length A1)*(row-length B1))^(j< (length A2))(length B2))

```
theorem elements-matrix-distribution-1:
assumes wf1:mat (row-length A1) (length A1) A1
and wf2:mat (row-length A2) (length A2) A2
and wf3:mat (row-length B1) (length B1) B1
and wf4:mat (row-length B2) (length B2) B2
and match \(A\) A:length \(A 1=\) row-length \(A 2\)
```

 and matchBB:length B1 = row-length B2
 and non-Nil:}(A1\not=[])\wedge(A2 \not=[])\wedge(B1\not=[])\wedge(B2 \not=[]
 and i<(row-length A1)*(row-length B1) and j< (length A2)*(length B2)
 shows
((matrix-mult A1 A2)\otimes(matrix-mult B1 B2))!j!i
= f(scalar-product (row A1 (i div (row-length B1)))
(col A2 (j div (length B2))))
(scalar-product (row B1 (i mod (row-length B1)))
(col B2 (j mod (length B2))))
<proof\rangle
lemma effective-elements-matrix-distribution1:
matrix-compose-cond A1 A2 B1 B2 ij \Longrightarrow
((matrix-mult A1 A2) \otimes(matrix-mult B1 B2))!j!i
= f (scalar-product (row A1 (i div (row-length B1))) (col A2 (j div (length
B2))))
(scalar-product (row B1 (i mod (row-length B1))) (col B2 (j mod (length
B2))))
<proof>
lemma matrix-match-condn-1:
matrix-match A1 A2 B1 B2
\wedge((i<(row-length A1)*(row-length B1))
^(j<(length A2)*(length B2)))
\Longrightarrow ((matrix-mult A1 AZ) \otimes (matrix-mult B1 B2))!j!i
= f
(scalar-product
(row A1 (i div (row-length B1)))
(col A2 (j div (length B2))))
(scalar-product
(row B1 (i mod (row-length B1)))
(col B2 (j mod (length B2))))
<proof\rangle
lemma effective-matrix-match-condn-1:
assumes (matrix-match A1 A2 B1 B2)
shows \foralli j.((i<(row-length A1)*(row-length B1))
\wedge(j<(length A2)*(length B2))
\longrightarrow((A1\circ A2)\otimes(B1\circB2))!j!i
= f
(scalar-product
(row A1 (i div (row-length B1)))
(col A2 (j div (length B2))))
(scalar-product
(row B1 (i mod (row-length B1)))
(col B2 (j mod (length B2)))))
<proof>

```
theorem elements-matrix-distribution2:
```

fixes A1 A2 B1 B2 ij
assumes wf1:mat (row-length A1) (length A1) A1
and wf2:mat (row-length A2) (length A2) A2
and wf3:mat (row-length B1) (length B1) B1
and wf4:mat (row-length B2) (length B2) B2
and matchAA:length A1 = row-length A2
and matchBB:length B1 = row-length B2
and non-Nil:}(A1\not=[])\wedge(A2\not=[])\wedge(B1\not=[])\wedge(B2\not=[]
and i:i<(row-length A1)*(row-length B1) and j:j< (length A2)*(length
B2)
shows
((A1 \otimes B1)०(A2 \otimes B2))! j!i
= scalar-product
(vec-vec-Tensor
(row A1 (i div row-length B1))
(row B1 (i mod row-length B1)))
(vec-vec-Tensor
(col A2 (j div length B2))
(col B2 (j mod length B2)))
\langleproof\rangle
lemma matrix-match-condn-2:
matrix-match A1 A2 B1 B2
\wedge((i<(row-length A1)*(row-length B1))
\wedge(j<(length A2)*(length B2)))
\Longrightarrow((A1\otimesB1)\circ(A2 \otimes B2))!j!i
= scalar-product
(vec-vec-Tensor
(row A1 (i div row-length B1))
(row B1 (i mod row-length B1)))
(vec-vec-Tensor
(col A2 (j div length B2))
(col B2 (j mod length B2)))
<proof\rangle
lemma effective-matrix-match-condn-2:
assumes (matrix-match A1 A2 B1 B2)
shows }\forallij.((i<(\mathrm{ row-length A1)*(row-length B1))
\wedge(j<(length A2)*(length B2))
\longrightarrow ((A 1 \otimes B 1) \circ (A 2 ~ \otimes B 2)) ! j ! i
= scalar-product
(vec-vec-Tensor
(row A1 (i div row-length B1))
(row B1 (i mod row-length B1)))
(vec-vec-Tensor
(col A2 (j div length B2))
(col B2 (j mod length B2))))
<proof>

```
```

lemma zip-Nil:zip [] [] = []
$\langle p r o o f\rangle$
lemma zer-left-mult:f zer $x=$ zer
$\langle p r o o f\rangle$
lemma zip-Cons:(length $v=$ length $w) \Longrightarrow z i p(a \# v)(b \# w)=(a, b) \#(z i p v w)$
〈proof〉
lemma scalar-product-times:
$\forall w 1$ w2. $($ length $w 1=$ length $w 2) \wedge($ length $w 1=n) \longrightarrow$
($f(x * y)$ (scalar-product w1 w2))
$=($ scalar-product
(times x w1)
(times y w2))
$\langle p r o o f\rangle$
lemma effective-scalar-product-times:
assumes (length w1 = length w2)
shows $(f(x * y)$ (scalar-product w1 w2))
$=($ scalar-product (times x w1 $)($ times y w2 $))$
$\langle p r o o f\rangle$
lemma zip-append:(length zs = length ws $) \wedge($ length $x s=$ length $y s)$
$\Longrightarrow(z i p(x s @ z s)(y s @ w s))=(z i p x s y s) @(z i p z s w s)$
$\langle p r o o f\rangle$
lemma scalar-product-append:
$\forall x s$ ys zs ws.(length $z s=$ length $w s)$
$\wedge($ length $x s=$ length $y s)$
$\wedge($ length $x s=n) \longrightarrow$
(scalar-product (xs@zs) (ys@ws))
$=($ scalar-product xs ys)
$+($ scalar-product zs ws)
$\langle p r o o f\rangle$
lemma effective-scalar-product-append:
assumes length $z s=$ length $w s$ and (length $x s=$ length ys)
shows $($ scalar-product $(x s @ z s)(y s @ w s))=($ scalar-product xs ys $)+($ scalar-product
zs ws)
$\langle p r o o f\rangle$
lemma scalar-product-distributivity:
$\forall v 1$ v2 w1 w2.((length $v 1=$ length v2) $)($ length $v 1=n) \wedge($ length $w 1=$ length w2 $)$

```
    \(\longrightarrow\) (scalar-product v1 v2)*(scalar-product w1 w2)
    \(=\) scalar-product (vec-vec-Tensor v1 w1) (vec-vec-Tensor v2 w2))
\(\langle p r o o f\rangle\)
lemma effective-scalar-product-distributivity:
assumes length v1 = length v2 and length \(w 1=\) length \(w 2\)
shows (scalar-product v1 v2)*(scalar-product w1 w2)
\(=\) scalar-product (vec-vec-Tensor v1 w1) (vec-vec-Tensor v2 w2)
\(\langle p r o o f\rangle\)
lemma row-length-constant:assumes mat nr nc \(A\) and \(j<l e n g t h ~ A\) shows length \((A!j)=(\) row-length \(A)\)
\(\langle p r o o f\rangle\)
```

theorem row-col-match:
fixes A1 A2 B1 B2 $i j$
assumes wf1:mat (row-length A1) (length A1) A1
and wf2:mat (row-length A2) (length A2) A2
and wf3:mat (row-length B1) (length B1) B1
and wf4:mat (row-length B2) (length B2) B2
and match $A A:$ length $A 1=$ row-length $A 2$
and match $B B$:length $B 1=$ row-length $B 2$
and non-Nil: $(A 1 \neq[]) \wedge(A 2 \neq[]) \wedge(B 1 \neq[]) \wedge(B 2 \neq[])$
and $i: i<($ row-length $A 1) *($ row-length B1) and $j: j<($ length A2 $) *($ length B2)
shows length (row A1 (i div (row-length B1)))
$=$ length $(\operatorname{col}$ A2 $(j$ div (length B2 $)))$
and length (row B1 (i mod (row-length B1)))
$=$ length $(\operatorname{col}$ B2 $(j \bmod ($ length B2 $)))$
$\langle p r o o f\rangle$

```
lemma effective-row-col-match: assumes matrix-match A1 A2 B1 B2
    shows \(\forall i j\). \(((i<(\) row-length \(A 1) *(\) row-length \(B 1)) \wedge(j<(\) length A2 \() *(\) length B2 \()))\)
    \(\longrightarrow\) length \((\) row \(A 1\) (idiv \((\) row-length B1) \())=\) length (col A2 ( \(j\) div (length
B2)))
    \(\forall i j .((i<(\) row-length \(A 1) *(\) row-length \(B 1)) \wedge(j<(\) length A2 \() *(\) length B2 \()))\)
        \(\longrightarrow\) length (row B1 (i mod (row-length B1))) = length (col B2 (j mod
(length B2)))
    〈proof〉
theorem prelim-element-match:
    matrix-match A1 A2 B1 B2 \(\Longrightarrow(\forall i j .((i<(\) row-length \(A 1) *(\) row-length B1 \())\)
                \(\wedge(j<(\) length A2 \() *(\) length B2 \()))\)
    \(\longrightarrow\)
```

 (((A1\circA2)) \otimes(B1\circ B2))!j!i
 =((A1\otimesB1)\circ(A2 \otimesB2))!j!i))
 <proof\rangle
theorem element-match:
matrix-match A1 A2 B1 B2 \Longrightarrow(\foralli<((row-length A1)*(row-length B1)).
\forallj<((length A2)*(length B2)).
(((A1\circA2)\otimes(B1 ○ B2))!j!i
=((A1\otimesB1)\circ(A2 \otimesB2))!j!i))
\langleproof\rangle
lemma application: fixes m1 m2
shows \forallm1 m2.(mat nr nc m1)
\wedge(mat nr nc m2)
\wedge(\forallj<nc.\foralli<nr.m1!j!i=m2!j!i)
\longrightarrow (m 1 = m 2)
<proof>
theorem tensor-compose-condn:
assumes wf1:mat nr nc ((A1\circA2)\otimes(B1\circB2))
and wf2:mat nr nc ((A1 \otimes B1)\circ(A2 \otimes B2))
and wf3:\forallj<nc.\foralli<nr.(((A1\circA2)\otimes(B1\circB2))!j!i
= ((A1\otimesB1)\circ(A2 \otimesB2))!j!i)
shows ((A1\circA2) \otimes (B1\circB2))
=((A1\otimesB1)\circ(A2 \otimesB2)}
\langleproof\rangle
The following theorem gives us the distributivity relation of tensor product with matrix multiplication
theorem distributivity:
assumes matrix-match A1 A2 B1 B2
shows $((A 1 \circ A 2) \otimes(B 1 \circ B 2))=((A 1 \otimes B 1) \circ(A 2 \otimes B 2))$
$\langle p r o o f\rangle$
end
end

```
```

