

����

��������������������������������				����

Project Goals

• Know how to use namespaces.

• Understand how to validate XML using DTD.

• Understand how to use attribute lists.

• Know how to use cascading style sheets (CSS) to format an XML document.

• Understand how to create and use extensible style language transformations (XSLT) for transforming an
XML document.

• Know how to reference elements for performing transformations using the XML tree.

• Learn how to access and display attributes using XSLT.

• Know how to loop through XML elements.

• Know how to use a series of XML templates to transform an XML document.

• How to use XSLT if and choose statements.

• Understand when and how to use XML expressions.

• Understand output methods.

• Know how to use xsl:text.

• Learn how to transform XML data into a file structure for appending to a database.

• Know how to validate an XML document using a schema.

Reading Assignment

• Tutorial 2, Working with Namespaces

• Tutorial 4, Working with Schemas

• Tutorial 5, Covering cascading style sheets

• Tutorial 6, working with XSLT (Extensible Style Language Transformations)

• Tutorial 7, Creating a Computational Style Sheet

• Appendix B, XSLT Elements and Attributes (reference)

• Appendix E, XML Schema Reference

Project Submission

• Zip up the files (project3.xml, project3.xsd, project3x1.xsl, project3x2.xsl) in the project3 folder

• Submit the project3.zip file using the Blackboard submission link

REQUIREMENT #1

1) Open your project2.xml document and save a copy as project3.xml

2) Modify your project3.xml to make any corrections indicated by your instructor in your project 2 feedback

3) Replace any entity references with the actual values.

4) Create a project3.xsd schema for the project3.xml document by converting the internal DTD
a) Use Venetian Blind or Flat Catalog style

b) Establish minimum and maximum occurrences

i) Ensure there are at least 4 exchange elements

ii) Ensure there 2 or more language spoken elements

iii) Ensure there are exactly 5 country choice elements

iv) Use the minimum and maximum occurrences specified in the internal DTD to determine all other

element restrictions

c) Include validation for the following:

i) Refer to the internal DTD to determine all parent/child element relationships to begin

ii) Validate the exchange type attribute can only have a value of: S (student) or T (teacher)

iii) Validate all name, mother name, and father name child elements have alphabetic contents

iv) Validate that the name, mother name, and father name each contains last name, first name, and

optionally middle initial

v) Validate that the address contains street, apartment optionally, city, state or providence, zip or postal

code, and country

vi) Validate that the school address contains street, apartment optionally, city, state or providence, zip or

postal code, and country

vii) Validate either the state or province element is received. Contents of either must be alphabetic.

viii) Validate either the zip or postal code element is received. Contents of zip must be 5 digits or 5+4 digits.

Contents of postal code must not be longer than 12 characters

ix) Validate the gender can only have a value of: M (male) or F (female)

x) Validate the Language spoken must have a fluency attribute containing a 1, 2, 3 or 4

xi) Validate the country choice must have a preference attribute containing a 1, 2, 3 or 4

xii) Validate any date element is given in month, day, year format and is a valid month (1-12), day (1-31),

and year

xiii) Validate the age has a minimum value of 13

xiv) Validate the country is alphabetic

xv) Validate the school name is alphabetic

xvi) Validate the essay is no greater than 1,000 characters

xvii) Validate the phone number has a format of numeric and symbols: (999) 999-9999
xviii) Validate the exchange Number is an ID
xix) Validate the Fee Paid Currency attribute should be one of a list of enumerated currency types. To keep

the project a reasonable size, you do not have to include all possible currency types, but you should
include at least five currency types, including the ones used in your XML document

d) Remove the internal DTD from the project3.xml
a) Connect the project3.xml document to the newly created project3.xsd
e) Use Exchanger XML to validate the schema. If you are not using Exchanger XML editor, you must verify the

document passes your schema validation by using one of the following validators:

http://www.xmlvalidation.com/
http://www.w3schools.com/xml/xml_validator.asp

b) Correct any errors and revalidate

REQUIREMENT #2

1) Create the following logic for the project3x1.xsl document:

a) Create an XSLT style sheet to format a summary list of exchange people. It should contain the following:
b) The listing should select and display only the country that is the first choice of the student or teacher.
c) You must use a table format. The heading and column headings should be in two rows, with a black

background color and yellow font.
d) The top heading line should be: Exchange Information.
e) The second line should be column headings, and should include: Exchange Type, Name (last, first, middle),

and Country Choice.
f) The exchange type attribute of an "S" should be converted into the text "Student" and an attribute of "T"

should be converted into the text "Teacher". This should be in the first column.
g) The full name should be in the second column, with lastname, firstname and middle initial separated by a

comma.
h) The Country should be in the third column
i) Double space after the list of exchange people and add the text (spanning the first two table cells) "The

number people applying for an exchange is: " followed by a count of the number of exchange people in the
third table cell.

j) Using the table format in point H, add a new row counting the number of teachers, and another row counting
the number of students. These rows should be in a different color.

k) Any CSS should be internal to the XSLT (this is due to the project 3 tester)

REQUIREMENT #3

1) Create the following logic for the project3x2.xsl document:
a) Transform the XML document into a text file (not an XML file) that have the correct length and formats

specified below
�� Do not include School Address, Languages Spoken, or Country Choices. These would be included as on

different database tables
�

Element Length

ID Number (the ID attribute for Exchange) Remove the initial letter and pad the number to 8 digits

Last Name 20

First Name 15

Middle Initial 1 (Truncate if longer than 1 character, store a space if there is no middle initial)

Street 25

Apartment 12

City 35

State 15

Zip 10

Country 30

Telephone 10 All digits, without any formatting characters (remove all parenthesis)

Email Address 30

Application Date 8 (MMDDYYYY format), month and day should be padded on the left with a zero if

they contain one digit

Available Date 8 (MMDDYYYY format), month and day should be padded on the left with a zero if

they contain one digit

Date of Birth 8 (MMDDYYYY format), month and day should be padded on the left with a zero if

they contain one digit

This should contain zeros for teachers

Birth Country 30

Age 2 (This should contain two zeros for teachers)

Gender 1 (M or F - upper case letters)

School Name 35

Year In School 9 (This should contain spaces for teachers)

Emergency Telephone 10 All digits, without any formatting characters, such as parenthesis

Fee Paid 8 digits padded on the left with zeros

Currency 3 character standard currency code. Refer to the list of codes.

Mother Name 30 (This should contain spaces for teachers)

Father Name 30 (This should contain spaces for teachers)

project3x2.xsl extra credit:

• Create a named template that will pad a received field value with spaces up to a maximum indicated length

• Call the named template sending parameters for the field value and the maximum field length

�

� �

�

�� �����		�
���
�����������������
�������������
���

a) Project 3 Tester http://itins4.matcmadison.edu/IT/152121advweb/phpExample/validateFiles.php

�� Use the Project 3 Test�������	����
������
������
�� ��
�!��
���"�#�
�$�������"��$����""�"�!�
%��!����

�����������"�����������!�������
�!��
&�

�� ��
�#�!���������������$�����$����"������������"�#�	���
����	���������
�!��
�

� ���������	�
	�	��	��������	���� ���
��"�#�	���
����	��������		�"&��'��������
��(���
�����

�������������#�
�$�������		��������)*+��	�������,����
�������
�����
����"��������������

����"���&�

� ���	��������	����	������	���� ���
���
�����������		�"&������-�	�%���"���	������������ 	�����&�

'����(����"���	��������./*+������#�
�$�������		��������)*+��	�������,����
�������
�����
����"�

�������������

����"���&�

� ���	�����	�������-�	�%���"���	������������ 	�����&�'����(����"���	�������� 	������������#�
�$�

������		��������)*+��	�������,����
�������
�����
����"��������������

����"���&�

�

���

�

