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ABSTRACT

Indexing is often used to speed up searching of large amounts of data, however since 
this data is usually quite large, they are not able to fit into internal memory. However 
in external memory, operations on data are much slower than if the data was stored in 
internal memory. As such, it is of interest to us to reduce the amount of data that is 
needed to be retrieved from external memory. This leads us to the use of compression 
to allow the same amount of data to be represented in less space. Here we investigate 
the viability of a simple compressed index data structure scheme experimentally and 
mathematically.

1 INTRODUCTION

Due to the nature of large data collections, it is often the case that they cannot fit into internal 
memory and must be stored in external memory such as hard disks. This causes all operations 
on the data to be much slower due to the inherently slow nature of external memory. Thus, it 
is of interest to do compression on such data collections, either to reduce the collection to a 
size that can be stored within internal memory or to reduce the amount of raw data that has to 
be read from external  memory while still  maintaining a quick access/search time through 
indexing.

2 COMPRESSED INDEXING STRUCTURES

2.1 Ferragina & Venturini's Storage Scheme

In the compression scheme proposed by Ferragina & Venturini (2007), the basic idea is to 
create a 2 level look-up table into the compressed file in order to allow constant time access 
to the part of the file as required. The compression scheme's lookup tables is shown in figure 
2.

Figure 1. Data Representation of Ferragina & Venturini's  Storage Scheme
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The encoding scheme employed here is  to build  a frequency  table of the words that 
appear in the file. Each word is a sequence of bits of a certain length to be determined. Using 
this frequency table, the scheme will encode the most frequently appearing words as the bit 
sequence 0, 1, 00, 01, 10 and so on. This will have to be stored as a frequency table in the file 
as well.

Further, we will need to store the length of the encoded bit and this is done on the 2nd 

level size blocks table, as represented by the size block in Diagram 1. A group of such blocks 
will be grouped together and a 1st level super block will point to the first block of the group's 
2nd level size block tables.

2.2 Sadakane & Grossi's Scheme

In  Sadakane  & Grossi  (2006),  they have  proposed  a  way to  further  compress  succinct  data 
structures  while  still  maintaining  the  same  time  complexity  for  the  set  of  primitive  operations 
supported by the original data structures, this means that any operation that requires  t time in the 
original data structure will require at most O(t) time in the new compressed data structure proposed 
in this paper.

The basic idea is to store some data that would allow us to access the individual words or 
symbols of the LZ78 Compression Scheme in O(1) time. Given the original data structure S, 
we can generate a compressed string Z using the LZ78 Scheme which is optimal in space. By 
storing two additional sets of arrays, a method has been found which allows for constant time 
decoding of any words in the compressed string Z. 

3 IMPLEMENTATION

3.1 Implementation Details

In our implementation, we group each O(log n) location/data blocks into a single cluster that 
is referenced by a superblock. A large constant value in this case would increase the size of 
the location blocks while reducing the number of superblocks, while a small constant value 
will achieve the opposite effect. We will try to determine experimentally a suitable constant 
value for this.

3.2 Modified Implementation

In our modification, we have replaced the Probabilistic Table Encoding by Hoffman codings. 
This ensures optimal symbol-by-symbol encoding that performs much better than the original 
algorithm in terms of space complexity at the expense of increasing the time complexity to 
access a single symbol. In effect, we have replaced the location and data blocks in the original 
structure and replaced them with data blocks containing Hoffman codes.

4 EXPERIMENTAL RESULTS

4.1 Testing Methodology

In order to test this data structure, we use sample files from 3 distinctly different file types. 
These 3 file types are text data files, bitmap image files, wav sound files. These file types are 
in their raw and uncompressed form.

4.2 Comparison
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Cluster Size Hoffman Probabilistic Ratio

Bitmap File 1 13,019kb 18,072kb 0.7204

Text File 1 15,745kb 22,064kb 0.7136

Wav File 1 3,414kb 4,879kb 0.6998

Table 1. Comparison of Hoffman vs Probabilistic

If we compare the space taken up by both structures in Table 4, we can see that the 
Hoffman  Code  version  outperforms  the  original  version  significantly  in  terms  of  space 
occupied  all  the  time,  ranging from 21-37% better.  This  shows the  shortcomings  of  the 
original probabilistic algorithm.

4.3 Compression Ratio

Original 

File

Probabilistic Hoffman .zip .rar Remarks

Bitmap 

File
12,657kb 16,103kb 11,050kb 3,760kb 2,253kb

Windows  Default 
Wallpaper (2400x1600)

Text 

File
16,882kb 19,710kb 13,391kb 3,732kb 27kb

Repetitive Text of Size 5kb

Wav 

File
3,405kb 4,302kb 2,835kb 1,592kb 1,300kb

Sound  Clip  of  Random 
Noises

Table 2. Comparison of Compressed File Sizes using different compression 
techniques(Excluding the superblocks for our data structures)

By observing the  vast  difference in  the  compression  ratio  between our  entropy encoding 
techniques and the commercially used variable-length encoding, it is obvious that entropy 
encoding is very limited in its ability to compress any data significantly. As such, it would 
seem that Sadakane & Grossi's Scheme that makes use of the LZ78 Compression which is a 
variable-length encoding technique would perform much better.

5 ASYMPTOTIC ANALYSIS

5.1 Ferragina & Venturini's Storage Scheme

To store this compression scheme, the total space required would be 

O( |∑|b logn + n/(blogn) log |V| + n/b loglog2n + |V| )                           (1)  

bits.  Where ∑ is the set of alphabets, b=floor(1/2 log  |∑|n) is the word/block size, n is the 
length  of  the  string,  V is  the  encoded string,  S  is  the  original  string  and C is  the  final 
compressed  structure.  The  access  time  to  a  single  word  is  O(e)  and  access  time  to  l  
consecutive words is O(le) where e is the longest encoding string for a single symbol.
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To further break down the space complexity, we require  O( |∑|b  logn) bits to store the 
lookup  table,  O(n/(blogn)  log  |V|)  to  store  the  superblocks,  O(n/b  loglog2n)  to  store  the 
location blocks and O(|V|) bits to store the compressed string.

We  attempt  to  determine  mathematically  the  compression  ratio  required  to  yield  a 
compressed index that is smaller than the original file. In order to simplify the calculation, we 
fix  the alphabet size ∑ = {0,1} and we ignore the superblock structure which is  actually 
superfluous if we are only interested in the compress and uncompress operations. This gives 
us the space complexity of 

O( 2b logn + n/b loglog2n + |V| ) = O(|C|)                                     (2)  

bits to represent the data structure.

First, we allow r to represent the compression ratio, thus |V| = rn, since we are interested 
in the threshold at which the compressed index C is smaller than the original string, we have 
to satisfy 

|C| < n.                                                               (3)  

We have 

2b logn + n/b loglog2n + rn < n,                                            (4)  

by substituting b=floor(1/2 log |∑|n), we have 

√n + 2nloglog2n/logn + rn < n                                             (5)  

which can be simplified to 

1 - 1/√n -  2loglog2n/logn > r.                                             (6)  

File Size 1  Kilobyte 

(213)

1  Megabyte 

(223)

1  Gigabyte 

(233)

1  Terabyte 

(243)

1  Petabyte 

(253)

Required Ratio -0.1497 0.2123 0.3886 0.4952 0.5677

Table 3. Minimum Compression Ratio required for different file sizes. Negative denotes 
impossible to achieve smaller compression value.

Compression Ratio 0.5 0.6 0.7 0.8 0.9

Approximate File Size Required 244 bits 259 bits 286 bits 2144 bits 2336 bits

Table 4. Approximate File Size required for smaller compressed file given the compression 
ratio.

From our experimental results, we can see that the compression ratio ranges from 0.59 to 
0.68 for the 3 files that we tested. Based on the mathematical calculations, it turns out that in 
order  for  the  compressed  file  in  this  case  to  be  smaller  than  the  original  file  with  a 
compression ratio of 0.5, we would require a file size of approximately 244 bits and if we have 
a compression ratio of 0.6, we require a file size of approximately 259 bits.

This shows that this scheme is largely impractical due to the low compression ratio that is 
required for any space savings to be achieved from using this structure.
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5.2 Modified Ferragina & Venturini's Storage Scheme

By modifying the original scheme, we achieve a space complexity of  

O( |∑|b logn + n/bc log |V| + |V| )                                           (7)  

bits. However the access time to access a single word in the data structure is increased to O(e 
logn), where e is the longest Hoffman code used to represent a word. To access l consecutive 
words, the access time would be O(l(e + logn)).

As before, we ignore the bits required to store the superblocks and concentrate only on 
the lookup tables and the encoded bits. This gives us a space complexity of 

|∑|b logn + |V|                                                           (8)  

bits to store our structure, we allow |V| = rn where r is the compression ratio. As before, we 
would like to have 

|C| < n;                                                               (9)  

We have 

2b logn + rn < n,                                                     (10)  

by substituting b=floor(1/2 log |∑|n), we have 

√n + rn < n                                                          (11)  

which can be simplified to 

1 - 1/√n > r.                                                         (12)  

File Size 24 bits 28 bits 212 bits 216 bits 220 bits

Required Ratio 0.7500 0.9375 0.9844 0.9961 0.9990

Table 5. Minimum Compression Ratio required for different file sizes.

As we can see, the required compression ratio is actually quite high in contrast to the previous 
scheme. If we consider that the experimental results yielded compression ratios ranging from 
0.793 to 0.873, we can see that this scheme is quite practical

5.3 Sadakane & Grossi's Scheme

The space complexity of this scheme is 

O( n(log|∑| + loglog|∑|n + k)/log|∑| n + |V| ),                               (13)  

where ∑ is the set of alphabets, n is the length of the string and V is the encoded string. 

When |∑| = 2 and k = O( loglogn), the data structure will have size

O( nloglogn/logn +|V|)                                                (14)  

bits.

6 CONCLUSION

It is readily apparent that the data structure proposed by  Ferragina & Venturini (2006) is not 
practical in the real world due to the large file size required before the compression ratio is 
reasonably achievable to compress the file smaller than its original size, we require a file size 

5



NUROP – Experimental Study of Indexing Data-Structures in External Memory

of 2144 bits to compress a file with at most 0.8004 compression ratio. However if we replace 
the encoding method with Hoffman Codings, the required file size before the compression 
ratio becomes practical is quite small, approximately 27 bits would only require a compression 
ratio of 0.9116.
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