
NUROP – Experimental Study of Indexing Data-Structures in External Memory

EEXPERIMENTALXPERIMENTAL S STUDYTUDY OFOF I INDEXINGNDEXING D DATAATA-S-STRUCTURESTRUCTURES ININ

EEXTERNALXTERNAL M MEMORYEMORY

TAN WEI KUN
1 AND DR KEN SUNG

2

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

ABSTRACT

Indexing is often used to speed up searching of large amounts of data, however since
this data is usually quite large, they are not able to fit into internal memory. However
in external memory, operations on data are much slower than if the data was stored in
internal memory. As such, it is of interest to us to reduce the amount of data that is
needed to be retrieved from external memory. This leads us to the use of compression
to allow the same amount of data to be represented in less space. Here we investigate
the viability of a simple compressed index data structure scheme experimentally and
mathematically.

1 INTRODUCTION

Due to the nature of large data collections, it is often the case that they cannot fit into internal
memory and must be stored in external memory such as hard disks. This causes all operations
on the data to be much slower due to the inherently slow nature of external memory. Thus, it
is of interest to do compression on such data collections, either to reduce the collection to a
size that can be stored within internal memory or to reduce the amount of raw data that has to
be read from external memory while still maintaining a quick access/search time through
indexing.

2 COMPRESSED INDEXING STRUCTURES

2.1 Ferragina & Venturini's Storage Scheme

In the compression scheme proposed by Ferragina & Venturini (2007), the basic idea is to
create a 2 level look-up table into the compressed file in order to allow constant time access
to the part of the file as required. The compression scheme's lookup tables is shown in figure
2.

Figure 1. Data Representation of Ferragina & Venturini's Storage Scheme

1 Student

2 Supervisor

1

NUROP – Experimental Study of Indexing Data-Structures in External Memory

The encoding scheme employed here is to build a frequency table of the words that
appear in the file. Each word is a sequence of bits of a certain length to be determined. Using
this frequency table, the scheme will encode the most frequently appearing words as the bit
sequence 0, 1, 00, 01, 10 and so on. This will have to be stored as a frequency table in the file
as well.

Further, we will need to store the length of the encoded bit and this is done on the 2nd

level size blocks table, as represented by the size block in Diagram 1. A group of such blocks
will be grouped together and a 1st level super block will point to the first block of the group's
2nd level size block tables.

2.2 Sadakane & Grossi's Scheme

In Sadakane & Grossi (2006), they have proposed a way to further compress succinct data
structures while still maintaining the same time complexity for the set of primitive operations
supported by the original data structures, this means that any operation that requires t time in the
original data structure will require at most O(t) time in the new compressed data structure proposed
in this paper.

The basic idea is to store some data that would allow us to access the individual words or
symbols of the LZ78 Compression Scheme in O(1) time. Given the original data structure S,
we can generate a compressed string Z using the LZ78 Scheme which is optimal in space. By
storing two additional sets of arrays, a method has been found which allows for constant time
decoding of any words in the compressed string Z.

3 IMPLEMENTATION

3.1 Implementation Details

In our implementation, we group each O(log n) location/data blocks into a single cluster that
is referenced by a superblock. A large constant value in this case would increase the size of
the location blocks while reducing the number of superblocks, while a small constant value
will achieve the opposite effect. We will try to determine experimentally a suitable constant
value for this.

3.2 Modified Implementation

In our modification, we have replaced the Probabilistic Table Encoding by Hoffman codings.
This ensures optimal symbol-by-symbol encoding that performs much better than the original
algorithm in terms of space complexity at the expense of increasing the time complexity to
access a single symbol. In effect, we have replaced the location and data blocks in the original
structure and replaced them with data blocks containing Hoffman codes.

4 EXPERIMENTAL RESULTS

4.1 Testing Methodology

In order to test this data structure, we use sample files from 3 distinctly different file types.
These 3 file types are text data files, bitmap image files, wav sound files. These file types are
in their raw and uncompressed form.

4.2 Comparison

2

NUROP – Experimental Study of Indexing Data-Structures in External Memory

Cluster Size Hoffman Probabilistic Ratio

Bitmap File 1 13,019kb 18,072kb 0.7204

Text File 1 15,745kb 22,064kb 0.7136

Wav File 1 3,414kb 4,879kb 0.6998

Table 1. Comparison of Hoffman vs Probabilistic

If we compare the space taken up by both structures in Table 4, we can see that the
Hoffman Code version outperforms the original version significantly in terms of space
occupied all the time, ranging from 21-37% better. This shows the shortcomings of the
original probabilistic algorithm.

4.3 Compression Ratio

Original

File

Probabilistic Hoffman .zip .rar Remarks

Bitmap

File
12,657kb 16,103kb 11,050kb 3,760kb 2,253kb

Windows Default
Wallpaper (2400x1600)

Text

File
16,882kb 19,710kb 13,391kb 3,732kb 27kb

Repetitive Text of Size 5kb

Wav

File
3,405kb 4,302kb 2,835kb 1,592kb 1,300kb

Sound Clip of Random
Noises

Table 2. Comparison of Compressed File Sizes using different compression
techniques(Excluding the superblocks for our data structures)

By observing the vast difference in the compression ratio between our entropy encoding
techniques and the commercially used variable-length encoding, it is obvious that entropy
encoding is very limited in its ability to compress any data significantly. As such, it would
seem that Sadakane & Grossi's Scheme that makes use of the LZ78 Compression which is a
variable-length encoding technique would perform much better.

5 ASYMPTOTIC ANALYSIS

5.1 Ferragina & Venturini's Storage Scheme

To store this compression scheme, the total space required would be

O(|∑|b logn + n/(blogn) log |V| + n/b loglog2n + |V|) (1)

bits. Where ∑ is the set of alphabets, b=floor(1/2 log |∑|n) is the word/block size, n is the
length of the string, V is the encoded string, S is the original string and C is the final
compressed structure. The access time to a single word is O(e) and access time to l
consecutive words is O(le) where e is the longest encoding string for a single symbol.

3

NUROP – Experimental Study of Indexing Data-Structures in External Memory

To further break down the space complexity, we require O(|∑|b logn) bits to store the
lookup table, O(n/(blogn) log |V|) to store the superblocks, O(n/b loglog2n) to store the
location blocks and O(|V|) bits to store the compressed string.

We attempt to determine mathematically the compression ratio required to yield a
compressed index that is smaller than the original file. In order to simplify the calculation, we
fix the alphabet size ∑ = {0,1} and we ignore the superblock structure which is actually
superfluous if we are only interested in the compress and uncompress operations. This gives
us the space complexity of

O(2b logn + n/b loglog2n + |V|) = O(|C|) (2)

bits to represent the data structure.

First, we allow r to represent the compression ratio, thus |V| = rn, since we are interested
in the threshold at which the compressed index C is smaller than the original string, we have
to satisfy

|C| < n. (3)

We have

2b logn + n/b loglog2n + rn < n, (4)

by substituting b=floor(1/2 log |∑|n), we have

√n + 2nloglog2n/logn + rn < n (5)

which can be simplified to

1 - 1/√n - 2loglog2n/logn > r. (6)

File Size 1 Kilobyte

(213)

1 Megabyte

(223)

1 Gigabyte

(233)

1 Terabyte

(243)

1 Petabyte

(253)

Required Ratio -0.1497 0.2123 0.3886 0.4952 0.5677

Table 3. Minimum Compression Ratio required for different file sizes. Negative denotes
impossible to achieve smaller compression value.

Compression Ratio 0.5 0.6 0.7 0.8 0.9

Approximate File Size Required 244 bits 259 bits 286 bits 2144 bits 2336 bits

Table 4. Approximate File Size required for smaller compressed file given the compression
ratio.

From our experimental results, we can see that the compression ratio ranges from 0.59 to
0.68 for the 3 files that we tested. Based on the mathematical calculations, it turns out that in
order for the compressed file in this case to be smaller than the original file with a
compression ratio of 0.5, we would require a file size of approximately 244 bits and if we have
a compression ratio of 0.6, we require a file size of approximately 259 bits.

This shows that this scheme is largely impractical due to the low compression ratio that is
required for any space savings to be achieved from using this structure.

4

NUROP – Experimental Study of Indexing Data-Structures in External Memory

5.2 Modified Ferragina & Venturini's Storage Scheme

By modifying the original scheme, we achieve a space complexity of

O(|∑|b logn + n/bc log |V| + |V|) (7)

bits. However the access time to access a single word in the data structure is increased to O(e
logn), where e is the longest Hoffman code used to represent a word. To access l consecutive
words, the access time would be O(l(e + logn)).

As before, we ignore the bits required to store the superblocks and concentrate only on
the lookup tables and the encoded bits. This gives us a space complexity of

|∑|b logn + |V| (8)

bits to store our structure, we allow |V| = rn where r is the compression ratio. As before, we
would like to have

|C| < n; (9)

We have

2b logn + rn < n, (10)

by substituting b=floor(1/2 log |∑|n), we have

√n + rn < n (11)

which can be simplified to

1 - 1/√n > r. (12)

File Size 24 bits 28 bits 212 bits 216 bits 220 bits

Required Ratio 0.7500 0.9375 0.9844 0.9961 0.9990

Table 5. Minimum Compression Ratio required for different file sizes.

As we can see, the required compression ratio is actually quite high in contrast to the previous
scheme. If we consider that the experimental results yielded compression ratios ranging from
0.793 to 0.873, we can see that this scheme is quite practical

5.3 Sadakane & Grossi's Scheme

The space complexity of this scheme is

O(n(log|∑| + loglog|∑|n + k)/log|∑| n + |V|), (13)

where ∑ is the set of alphabets, n is the length of the string and V is the encoded string.

When |∑| = 2 and k = O(loglogn), the data structure will have size

O(nloglogn/logn +|V|) (14)

bits.

6 CONCLUSION

It is readily apparent that the data structure proposed by Ferragina & Venturini (2006) is not
practical in the real world due to the large file size required before the compression ratio is
reasonably achievable to compress the file smaller than its original size, we require a file size

5

NUROP – Experimental Study of Indexing Data-Structures in External Memory

of 2144 bits to compress a file with at most 0.8004 compression ratio. However if we replace
the encoding method with Hoffman Codings, the required file size before the compression
ratio becomes practical is quite small, approximately 27 bits would only require a compression
ratio of 0.9116.

7 REFERENCE

[1] Richard Cole, Lee-Ad Gottlieb and Moshe Lewenstein (2004), “Dictionary Matching
and Indexing with Errors and Don't Cares.”, In Proc. Of Symposium on Theory of

Computing, 91-100

[2] C. Meek, J. M. Patel and S. Kasetty (2003), “OASIS: An online and accurate technique
for local-alignment searches on biological sequences”, In VLDB, 910-921

[3] David A. Huffman (1957),“A Method for the Construction of Minimum-Redundancy
Codes”, Proceedings of the I.R.E 40, 1098-1101

[4] J. Ziv and A. Lempel (1978), “Compression of individual sequences via variable-rate
coding”. IEEE Trans. Inform. Theory, IT-24(5):530–536

[5] Kunihiko Sadakane and Roberto Grossi (2006), “Squeezing succinct data structures
into entropy bounds”. In Procs ACM-SIAM SODA, 1230-1239

[6] M. Burrows and D. J. Wheeler (1994), “A Block-sorting Lossless Data Compression
Algorithm”, Technical Report 124, Digital Equipment Corporation

[7] Paolo Ferragina and Giovanni Manzini (2001), “An experimental study of an
opportunistic index”, ACM-SIAM symposium on Discrete algorithms, 269-278.

[8] Paolo Ferragina and Rossano Venturini (2007), “A simple storage scheme for strings
achieving entropy bounds”, Proceedings of the eighteenth annual ACM-SIAM

symposium on Discrete algorithms, 690-696.

[9] S. Kurtz (1999), “Reducing the space requirement of suffix trees”, Software – Practice

and Experience, 29(13): 1149-1171

[10] T. F. Smith and M. S. Waterman (1981), “Identification of common molecular
subsequences”, Journal of Molecular Biology, 147:195-197

[11] T.W. Lam, W.K. Sung, S.L. Tam, C.K. Wong, and S.M. Yiu (2005), “Compressed
Indexing and Local Alignment of DNA”, Bioinformatics, 1-7.

[12] Wing-Kai Hon, Tak-Wah Lam, Rahul Shah, Siu-Lung Tam, and Jeffrey Scott Vitter
(2007), “A Cache-Oblivious Index for Approximate String Matching”, Proceedings of

the 16th Annual Conference on Combinatorial Pattern Matching (CPM '07) , 40-51.

6

