
CMSC 433 Project 2: Coffee Shop Simulation

Due March 7
th

(Friday), 11:59:59pm

Overview
In this project, you will write a simulation for a coffee shop. The simulation has five parameters: the number of

customers (diners) that wish to enter the coffee shop; the number of tables in the coffee shop (note: there can only be as

many customers inside the coffee shop as there are tables at any one time - other customers must wait for a free table

before going into the coffee shop and placing their order); the number of cooks in the kitchen that fill orders; the capacity

of machines in the kitchen used for producing food; and a flag as to whether everyone has the same order or not.

Customers in the coffee shop place their orders (a list of food items) when they enter. Available cooks then handle these

orders. Each cook handles one order at a time. A cook handles an order by using machines to cook the food items. There

will be one machine for each kind of food item. Each machine produces food items in parallel (for different orders, or

even the same order) up to their stated capacity.

Our particular coffee shop will only have three food items, each made by a single machine: a burger, made by machine

Grill, which takes 500 ms to make; fries, made by machine Fryer, which take 350ms to make; and a coffee, made by

machine CoffeeMaker2000, which takes 100 ms to make.

General Requirements
Much of the design of the simulation will be up to you. We do, of course, have some specific requirements.

First, you must not use concurrent collections (any class from the java.util.concurrent package) in any part

of your simulation.

Second, you must use the following classes and the methods specified for them (most of which is what you'll be

writing). All of these are available in the skeleton code. You may implement any other methods you need for

these classes. You can also implement additional private classes or new helper public classes as needed (just

make sure they are in the same folder/package as the rest of the project files).

• Simulation.java - main() method is the simulation entry point for manual testing. Automated testing will

call the runSimulation method directly, so make sure your program works when that is done (the current

version of the main method shows you an example of how we'll call it).

• Food.java* - food items - don't change this!

• FoodType.java* - contains the three food types we have defined above

• Customer.java - runs in a thread to implement a coffee shop patron

• Cook.java - runs in a thread; makes orders provided by customers

• Machine.java - cooks particular food items

• SimulationEvent.java* - instances represent "interesting" events that occur during the simulation - don't

change this, just use the events in the way described later in this description.

• Validate.java - defines method to validate the results of the simulation - this is something you can work

on to help you test your own code. We recommend you define the validator to test your code.

* The starred classes are provided for you, and must not be changed; the remaining classes can be changed

within the bounds given below.

Particulars
• Simulation

o main(String args[]) : This class is the entry point of the simulation, which is initiated by the main

method.

While the simulation runs, it will generate events, which are instances of the class SimulationEvent.

Each event should be printed immediately, via its toString() method, and logged for later validation

by the Validate.validateSimulation method. We've given you an events list to use to hold these

events.

When the simulation starts, it will generate a SimulationEvent via a call

to SimulationEvent.startSimulation(). The simulation consists of the given number of customers,

cooks, and tables. It also involves exactly three machines, each with the given capacity. One machine

makes burgers, one makes fries, and one makes coffees. The machine name is "Grill" for the burger

machine, "Fryer" for the machine that makes fries, and "CoffeeMaker2000" for the machine that

makes coffee. For this project, there will be two scenarios for orders; (1) if the randomOrders is set to

false, then each Customer places the same order: one burger, two fries, one coffee but (2) if the

randomOrders is set to true, then each customer will place an order with a random number of

burgers, fries, and coffee where each random number will be between 0 and 3. These items will be in

a list sent into the Customer constructor. Once all Customers have completed, the simulation

terminates, shutting down the machines, and calling interrupt on each of the cooks telling them they

can go home (so each of the Runnable Cook objects will be running in a thread and you can call

interrupt() on that thread - you should set up the try/catch block in the Cook's run method so that it

will catch the InterruptedException and invoke

Simulation.logEvent(SimulationEvent.cookEnding(this)) as a result). The last thing the simulation

itself will do is generate the event SimulationEvent.endSimulation().

• Food

This class is provided for you. It represents a food item. You will create only three food items for your

simulation (hamburger, fries, and coffee, as described above) but your classes should treat food items

generically; i.e., you should be able to easily change just the Simulation class if you want the simulation to

have Customers order different food items or different amounts, without changing any other class.

• Customer implements Runnable (needs to run as its own thread)

o constructor Customer(String name, List<Food> order) : takes the name of the customer and the

food list it wishes to order; the format of the name is described below. You may extend this

constructor with other parameters if you would find it useful. Each customer's order must be given a

unique order number, which is used in generating relevant simulation events; it is easiest to generate

this number in the constructor. All customer names should be of the form "Customer "+num where

num is between 0 and the number of customers minus one.

o run() : attempts to enter the coffee shop, places an order, waits for their order, eats the order, leaves.

Customers will generate the following events:

Before entering the coffee shop: SimulationEvent.customerStarting()

After entering the coffee shop: SimulationEvent.customerEnteredCoffeeShop()

After placing order (but before it has been filled): SimulationEvent.customerPlacedOrder()

After receiving order: SimulationEvent.customerReceivedOrder()

Just before about to leave the coffee shop: SimulationEvent.customerLeavingCoffeeShop()

• Cook implements Runnable (needs to run as its own thread)

o constructor Cook(String name) : the name is the name of the cook (described below). You may

extend this constructor with other parameters if you wish. All cook names should be of the form

"Cook "+num where num is between 0 and the number of cooks minus one.

o run() : waits for orders from the coffee shop, processes the order by submitting each food item to an

appropriate machine. Once all machines have produced the desired food, the order is complete, and

the Customer is notified. The cook can then go to process the next order. If during its execution the

cook is interrupted (i.e., some other thread calls the interrupt() method on it, which could raise

InterruptedException if the cook is blocking), then it terminates. Note that if the cook needs more

than one item from a machine for an order, the cook can place all of those requests to the machine

one after the other without waiting for the previous request to be filled. This means that a machine

could (for example) be making two orders of fries at the same time for the same order. Cooks will

generate the following events:

At startup: SimulationEvent.cookStarting()

Upon starting an order: SimulationEvent.cookReceivedOrder()

Upon submitted request to food machine: SimulationEvent.cookStartedFood()

Upon receiving a completed food item: SimulationEvent.cookFinishedFood()

Upon completing an order: SimulationEvent.cookCompletedOrder()

Just before terminating: SimulationEvent.cookEnding()

• Machine

o constructor Machine(String name, Food food, int capacity) : the name of the machine, the Food it

makes, and the capacity (how many Food items may be in process at once). The names of the

machines are specified in the description of the Simulation class, above.

o makeFood() : This method is called by a Cook in order to make the Machine's food item. You can

extend this method however you like, e.g., you can have it take extra parameters or return something

other than void. It should block if the machine is currently at full capacity. If not, the method should

return, so the Cook making the call can proceed. You will need to implement some means to notify

the calling Cook when the food item is finished. Machines will generate the following events:

At startup: SimulationEvent.machineStarting()

When beginning to make a food item: SimulationEvent.machineCookingFood()

When done making a food item: SimulationEvent.machineDoneFood()

When shut down, at the end of the simulation: SimulationEvent.machineEnding()

Hint: you will need some way for your Machine to cook food items in parallel, up to the capacity, but ensure that each

item takes the required time. You might do this by having a Machine use threads internally to perform the "work" of

cooking the Food. This approach will require some way of communicating a request by a Cook to make Food to an

internal thread, and a way to communicate back to that Cook that the Food is done. In this simulation, the only thing

that will actually be done during the "cooking" time is waiting the proper amount of time.

Getting Started
First, familiarize yourself with the above requirements in general. Next, download the skeleton code. After

getting the source code, review the requirements while looking at the skeleton code. You will be writing helper

methods, etc. so the skeleton files are just a starting point.

Testing
We have allowed a fair amount of freedom in the design of your classes for this project. Because of this freedom,
and the nature of the submit server, constructing generic unit-level tests poses a problem. In particular, we've
allowed you to modify the constructors of many objects (such as Machine and Customer), and unit tests would not
work on modified objects since the pre-written tests wouldn't know things like what to pass into the constructor.
Therefore, you might have to take on a fair bit more responsibility for your own tests as you work on this project.
We've set up some preliminary public tests that will give you a sense of whether you are on the right track, but
once the project deadline has passed and we're ready to do full grading, we will test your code with our own
validators to check a variety of simulation characteristics. The post-due-date testing will include performing
multiple test runs on the public scenarios as well as other scenarios to check that none of them fail (where with the
way the submit server works, if a public test passes on some run, it will count for public test points).

In order to test your code with our own validator, we have asked you to place all simulation code into a
method Simulation.runSimulation() which returns a List of SimulationEvent objects which we can then pass
directly to things like the Validate.validateSimulation() method.

Submission
Every file you submit should have your name and UID. To enforce academic integrity, Code will be checked for

similarity to other submissions. Each student should make his or her own individual submission. Use Eclipse to

submit your project or submit a .zip file containing your project files to the Submit Server.

