
ARC MINIMIZATION IN FINITE STATE DECODING GRAPHS WITH CROSS-WORD

ACOUSTIC CONTEXT

G. Zweig, G. Saon

IBM T.J. Watson Research Center
P.O. Box Yorktown Height, NY 10958, USA

F. Yvon
�

ENST and CNRS URA 820
46 rue Barrault, F-75013 Paris

ABSTRACT

Recent approaches to large vocabulary decoding with finite state

graphs have focused on the use of state minimization algorithms

to produce relatively compact graphs. This paper extends the finite

state approach by developing complementary arc-minimization tech-

niques. The use of these techniques in concert with state minimiza-

tion allows us to statically compile decoding graphs in which the

acoustic models utilize a full word of cross-word context. This

is in significant contrast to typical systems which use only a sin-

gle phone. We show that the particular arc-minimization problem

that arises is in fact an NP-complete combinatorial optimization

problem, and describe the reduction from 3-SAT. We present ex-

perimental results that illustrate the moderate sizes and runtimes

of graphs for the Switchboard task.

1. INTRODUCTION

In the past, there has been a significant division between the de-

coding processes used for highly constrained, small vocabulary

speech recognition tasks, and those used for large vocabulary un-

constrained tasks. In the small vocabulary arena, and in domains

where a relatively compact grammar is appropriate, it is common

to pre-compile a static state-graph. Given such a graph, a simple

and efficient implementation of the Viterbi algorithm can be used

for subsequent decoding [1]. For large vocabulary tasks with n-

gram language models, however, it has traditionally been common

to avoid a static search space, and to instead dynamically expand

the language model as needed [2, 3, 4]. While the latter approach

has the advantage of never touching potentially large portions of

the search space, it has the important disadvantage that dynamic

expansion is significantly more complex, and incurs a run-time

overhead of its own.

Remarkably, over the course of the past several years, algo-

rithmic and computational advances have made it possible to han-

dle large vocabulary recognition in essentially the same way as

grammar-based tasks. In a recent series of papers [5, 6], it has

been shown that it is in fact possible to statically compile a state

graph that encodes the constraints of both a state-of-the-art lan-

guage model, and cross-word acoustic context. One of the main

algorithmic methods that is used in the process is that of state-

minimization of the resulting weighted FSM.

While this previous work [5, 6] has established Viterbi decod-

ing on statically compiled graphs to be an effective method for

large vocabulary decoding, it has focused on the minimization of

states alone, and can therefore result in graphs that are sub-optimal✁
This work was performed while F. Yvon was visiting the IBM T.J.

Watson Research Center

from the point of view of storage and runtime - both of which are

proportional to the number of edges in a graph. In particular, when

one attempts to move beyond triphone cross-word acoustic con-

text, the number of edges can become quite large.

In this paper, we significantly enhance the technology of static

graph compilation by presenting methods for not only minimizing

the number of states in the decoding graph, but the number of arcs

as well. The motivation for this is the use of cross-word acous-

tic context that extends an entire word to the left or right of the

current word. In this case, there are potentially as many acoustic

variants for a particular word as there are words in the vocabulary.

In practice, the number of variants is much smaller, but even here

a straightforward implementation results in a prohibitively large

graph. More critically, even the application of state-based mini-

mization techniques leaves a tremendous number of unnecessary

arcs in the graphs.

Since there are well-known algorithms for state minimization,

it is reasonable to ask if similar procedures exist for arc minimiza-

tion. However, through a reduction from the known NP-complete

optimization problem of Clique Bipartitioning [7], we demonstrate

that in fact the problem we are faced with is NP-complete. In this

respect it is similar to state minimization - which in the worst case

requires exponential time in the determinization step - but it differs

in the sense that we do not know of previous algorithms that work

well in average cases.

The remainder of this paper is organized as follows. In Section

2.1, we present the basic structure of the decoding graphs and pro-

ceed in Section 2.2 to illustrate the problem of arc minimization

in the simplest case of a unigram language model with left-context

acoustic models. In Section 2.3, we cast the problem formally,

show that it is NP-complete, and present two simple heuristics

for generating compact graphs. In Section 3 we apply these tech-

niques, and present results on graph size, runtime, and word-error

rate with bigram and trigram language models on Switchboard.

2. MAKING LARGE GRAPHS SMALL

2.1. Word-Internal Graphs

We begin our discussion of graph structures by considering the

basic graph structure induced by a ✂ -gram language model with

backoff smoothing. At first, we do not consider any cross-word

acoustic context. When LM probabilities are smoothed according

to a back-off scheme [8], this automaton can be efficiently fac-

tored [9] as follows. Each history
✄

appearing in the LM corre-

sponds to a history state ☎✝✆ in the FSM; each word ✞ such that✟✡✠ ✞☞☛ ✄✍✌ occurs in the LM corresponds to a transition weighted

with
✟✡✠ ✞✎☛ ✄✍✌ , labeled with ✞ , between ☎✏✆ and ☎ ✆✒✑ , where

✄✔✓

h=

h=

h=

h=

h’= "blue"

h’= "ran amok"

n−gram history states

ngram prob

Backoff factor

"The dog ran"

"dog ran"

"ran"

""

"quickly"

"home"

"fast"

Successor words

"amok"

"blue"

"hazy"unigram state

Fig. 1. A graph with word internal context only. Arcs emanating

from the right-hand side loop back to states on the left.

is the history having the longest common suffix with ✕✗✖ . This ba-

sic structure is complemented to account for the back-off model:

each history state ✘✝✙ also has an outgoing spontaneous transition

to ✘ ✙ , where ✕ is a truncated history. This transition is weighted

with the back-off coefficient of history ✕ . The case where ✕ is

empty is handled via one additional unigram state, which has an

outgoing transition for every word in the vocabulary ✚ , weighted

with the corresponding unigram probability.

Replacing word labels with the acoustic states induced by their

pronunciation yields the final decoding graph (see on on Figure 1).

Such graphs can be further processed with general algorithms for

weighted FSMs, such as the removal of epsilon transitions, deter-

minization, and minimization [6]. Our own graph construction al-

gorithm simply factors out in a tree identical sequences of emitting

states which occur in variants of the same word .

2.2. Left-Context Graphs

We now consider the case when the acoustic realization of a given

word is triggered by the previous word occurrence, as is the case

with cross-word contextual models. For this purpose, we now as-

sume that each word ✖✜✛ has ✢✣✛ acoustic variants ✤✦✥✛★✧✩✧✩✧ ✤✍✪✬✫✛ , and that

each variant ✤✮✭✛ can only occur if the previous word belongs to

the set ✯✱✰✳✲✗✴✶✵✬✤✷✭✛✹✸ . We denote the total number of acoustic variants

by ✺ . As for transitions out of history states, this new situation

is straightforwardly taken care of, by making the outgoing tran-

sitions of ✘✝✙ comply with the pronunciation constraints induced

by the last word of history ✕ . However, for the unigram state,

the simple factorization described above fails: upon reaching this

state, the identity of the previous word is lost, making it no longer

possible to apply the contextual constraint.

An obvious solution to this, in which there is a distinct unigram-

history state for each word, is illustrated in Figure 2. This kind

of brute-force solution is straightforward, and can accommodate

any context-sensitivity pattern. In general, however, it is possible

to significantly improve on it by carefully grouping words on the

basis of the left context variants they induce, as illustrated on Fig-

ure 3. This second example uses a four words vocabulary, where

each word, except the last, has a single left-context variant. The

last word has four variants. The graph on the left indicates which

11

12

21

22

2

1

3

w

w

p

p

p
p

w

Fig. 2. State-minimal graph representing left-word acoustic con-

text constraints. There are three vocabulary words, each with two

context-sensitive variants.

1

2

3

4

11

2

3

41

1

1

4

4

4

2

3

4

w

w

w

w

p

p

p

p

p

p

Factored graphUnfactored graph

p

Fig. 3. Factoring left contexts. The backwards loops from vari-

ants to words have been omitted for clarity. The biclique amongst

✖ ✥✒✻ ✖✽✼ ✻ ✖✜✾ ✻ ✖✜✿ ✻ ✤ ✥❀✥✒✻ ✤✍✼ ✥✒✻ ✤✍✾ ✥ is factored out on the right.

variants are licensed by which words, in a brute-force fashion. It

uses 16 arcs, and is minimal with respect to state minimization.

The graph on the right models the same dependencies by intro-

ducing an extra state, and in return reduces the number of arcs to

11. Graphs of this form - having ❁ words where the first ❁❃❂❅❄
have a single variant, and the last has a unique variant for each of

the ❁ words - will in general require ❁ ✼ arcs if constructed in the

straightforward way, but just ❆✳❁❇❂❈❄ arcs when factored.

2.3. Minimizing Left-Context Graphs

2.3.1. Problem Definition

Before presenting our graph minimization strategies, we introduce

some definitions. ✵❊❉●❋❍✵❏■❑❋▲✵▼✯ ✻❖◆ ✸ ✻❖P ✸ is a bipartite graph if

the vertices in ■ can be partitioned as ■✎❋◗✯❙❘ ◆ , and all edges

in P link a vertex in ✯ with a vertex in ◆ . We denote ❁✱✵❊❉ ✸ the

order of ❉ (= the total number of vertices). A biclique ❚❯❋❱✵❏■❳❲✷❋
✵▼✯❨❲ ✻❖◆ ❲ ✸ ✻❖P ❲ ✸ in ❉ is a complete partial subgraph of ❉ , meaning

that P ❲ includes every possible edge from ✯✱❲ to ◆ ❲ . An edge cover

of ❉ into biclique is provided by subsets P❩✥ ✧✩✧✩✧ P ✭ of P such that

(i) each P ✛ is a biclique and (ii) P ❋❭❬ P ✛ . When the P ✛ are

pairwise disjoint, then ❪❩❫✮❴✩❴✩❴❵❪❜❛ further defines a partition of ❪ .

We call the order of a cover (or partition) the sum of the orders of

all bicliques it contains.

Fig. 4. Simple bicliques: ❝✩❞✗❡ star and ❢❇❣✐❤ ❣

Turning back to our decoding graph, we can see that the un-

igram backoff portion of it defines such a bipartite graph with❥❱❦☞❧
(the vocabulary), ♠ ❦♦♥

(the acoustic variants), and ❪
containing one edge between the unigram state for word ♣✽q and

each left-context variant r ❛s which can follow ♣ q . t has a total of✉ ❧ ✉★✈❭✉ ♥ ✉
vertices, and

✉ ❧ ✉ ❣
arcs. To make the decoding

graph smaller, we are looking for ways to factor out dependencies

expressed in t by introducing new states so as to minimize the

number of arcs in the final graph. This amounts to finding a set of

bicliques ✇①q ❦③②❊❧ q⑤④ ♥ q⑦⑥ in t such that:

⑧✍⑨❶⑩ ❪ ④❵❷❹❸ st.
⑨❶⑩ ✇ q (1)q✣❺ ❛❻

q❼❺ ❫✍❽
② ✇①q⑦⑥ is minimal (2)

or, in other words, to finding the minimal order cover of edges in

t into bicliques. This is because each biclique ✇ q incurs an extra

state, for which there will be one incoming edge from each state in❥ q , and one outgoing edge for each state in ♠❾q (see Figure 3).

2.3.2. NP Completeness

In this section, we show that this minimization problem is, in fact,

NP-hard. The proof derives directly from a result of [7], which

proves than finding the minimum order partition into bicliques for

any given graph is NP-hard. This proof relies on a variation of a re-

duction of 3-SAT originally proposed in [10], and proceeds along

the following lines. They first exhibit a polynomial transformation

of any formula ❿ into a graph t ② ❿❩⑥ such that t ② ❿❩⑥ only contains

’simple’ bicliques: the only bicliques included in t ② ❿❩⑥ are either

❢ ❣✐❤ ❣ , the ➀➁❞✔➀ biclique, or stars (➂✳❞✷❝ bicliques) (see Figure 4).

[7] further shows that ❿ is satisfiable if and only if the edges

in t ② ❿❩⑥ can be partitioned into ❢ ❣✐❤ ❣ . Furthermore, any partition

of t ② ❿❩⑥ into bicliques is bound to have an order greater than the

total number of edges in t ② ❿❩⑥ , since each biclique type contains at

least as many vertices as edges. This lower bound is only achieved

in the case all the bicliques are of the kind ❢❇❣✐❤ ❣ , as stars have

indeed more vertices than arcs. Since the total number of edges in

the partition is fixed, [7] claim that if we could find in polynomial

time the minimum order partition, we could decide whether the

edges of t can be partitioned using only ❢ ❣✐❤ ❣ s, and thus answer

the satisfiability question. Extending their argument to covers is

fairly simple, as the minimum order cover of t ② ❿❩⑥ necessarily

contains fewer vertices than the minimal order partition (a partition

being a special case of a cover). Since the cover only involves ❢❇❣✐❤ ❣
and stars, we know that the total order of the cover will still be at

least equal to the number of edges it covers, which is greater than

Input: Sequential presentation of the sets
❥ ⑨➁➃✗➄ ② r ❛q ⑥ .

Output: Set of history sets ➅ and licensed variants ➆ .

Data Structures:

➅♦➇➉➈➋➊ ❫ ④❖➊➌❣➋④ ❴✩❴✩❴ ➊➎➍➐➏ . Each ➊✡q is a set of words.

➆❱➇➑➈ ♥ ❫ ④ ♥ ❣➋④ ❴✩❴✒❴ ♥ ➍✔➏ . Each
♥ q is a set of word variants.

1. ➅❇➒ q❼➍➁➓✒➔✮→❭➣ ➆✜➒ q↔➍✳➓✒➔✷→↕➣ ❸ → ❝
2. ➅ → ➈ ❧ ➏❍➆ →❭➣
3. Repeat until

✉ ➅ ✉✗➙ ➄❀➛✔➜✳⑨➁➝➋➛✗➞✹➟✣➠➡ Process ♣✜q :
–
⑧➉➢ ④❀➤✷④❵➊❳➥s ❛ → ➊ s➧➦ ❥ ⑨➁➃✗➄ ② r ❛q ⑥

–
⑧➉➢ ④❀➤✷④ ♥ ➥s ❛ → ♥ s➩➨ r ❛q➡ ➅ → ➅➌➫➡ ➆ → ➆ ➫➡ ❸ → ❸ ✈ ❝

4. ➅❇➒ q❼➍➁➓✒➔✮→ ➅❇➒ q❼➍➁➓✒➔ ➨ ➅
5. ➆✜➒ q❼➍➁➓✒➔✷→ ➆➭➒ q↔➍✳➓✩➔ ➨ ➆
6. if ❸ ❦ ✉ ❧ ✉

output ➅❇➒ q↔➍✳➓✩➔ and ➆✜➒ q❼➍➁➓✒➔ and end
7. else goto step 2.

Fig. 5. Cartesian intersection algorithm for computing history sets

and licensed acoustic variants.

the number of edges in t ② ❿❩⑥ ; furthermore, this bound can only

be attained by a partition, as covers can include duplicate edges.

We can conclude, by the same argument, that finding the minimal

order cover is also an NP-hard problem.

2.3.3. Two Algorithms for Arc Minimization

In this section, we present two heuristics that have proven to per-

form well. Both methods begin by identifying the acoustic vari-

ants r ❫q ❴✩❴✩❴ r ➔✬➯q of each word ♣ q . This can be done in a brute-force

fashion by enumerating all possible predecessor words of ♣✽q and

using a decision tree to identify the corresponding sequences of

context dependent states. Concurrently, for each word, we obtain

a partitioning of
❧

into the sets
❥ ⑨✳➃✗➄ ② r ❛q ⑥ that induce the different

variants. Since
✉❀➲ ❛ ❥ ⑨➁➃✗➄ ② r ❛q ⑥ ✉ ❦ ✉ ❧ ✉

, the space required just to

store all these sets is proportional to the square of the number of

vocabulary words. For vocabularies over about 10,000 words, this

is impractical, and so we have designed our algorithms to work in

an online fashion, examining each
❥ ⑨➁➃✗➄ ② r ❛q ⑥ as it is enumerated,

and then moving on.

The first algorithm is presented in Figure 5. It maintains a col-

lection of history sets, each with an associated set of acoustic vari-

ants. It proceeds word-by-word computing the Cartesian intersec-

tion between the current set of history sets and the sets
❥ ⑨➁➃✗➄ ② r ❛q ⑥

of word ♣✜q . Thus, the members of each history set are guaran-

teed to induce the same behavior with respect to all the words seen

so far. If run to completion (i.e. over all words ♣ ❫✮❴✩❴✩❴ ♣ ➍), one

gets sets of words that behave identically with respect to their suc-

cessors. However, this tends to result in overly small sets, and in

practice after a given number of sets (e.g. 100) has been generated,

it is better to store them, and “reset” the algorithm (Figure 5).

Our second heuristic relies on the following observation: a

word set ➳ , corresponding to the left context set of a pronuncia-

tion r ❛s , must group words having some similarity with respect to

their right acoustic environment. Frequently occurring, medium

sized context-sets have empirically proven to provide an advanta-

geous basis for decomposing the remaining lot of context sets. The

heuristic of Figure 6 exploits this observation.

Input: Sequential presentation of the sets ➵✱➸✳➺✗➻✶➼✬➽✮➾➚✹➪ .
Output: Set of history sets ➶ and licensed variants ➹ .

Data Structures:➘➷➴✮➬❩➮✗➱✩✃❐➱✏➱ ➸✒➻✐❒ ❮➉➼▼❰ÐÏ✩Ñ❀ÒÓÏ ➪ Ñ✒➼▼❰➌Ô➁Ñ❀ÒÖÕ ➪ ❒✩❒✶❒✒➼▼❰✡×✍Ñ❖ÒÖ× ➪❖Ø . Each ❰ ➚ is

a set of words, each Ò ➚ is a set of word variants.

1.
➘ÚÙ ❮➉➼❏Û❾Ï✒Ñ❖Ü ➪ Ñ✒➼❏Û✽Ô✳Ñ❖Ü ➪ ❒Ý❒Ý❒↔➼❏Û✜×✮Ñ❵Ü ➪❖Ø

2. for each word variant ➽✷➾➚ , if Þ❏➵✱➸✳➺✗➻✶➼✬➽✷➾➚ ➪ Þ✝ß❈àáÏ➘ÚÙâ➘❙ã ❮➉➼▼➵✱➸➁➺✗➻✩➼✬➽ ➾➚✳➪ Ñ❖Ü ➪❖Ø
3. For each word variant ➽✷➾➚ :ä

find ❮✐å✹ÏÖ❒✩❒✩❒▼å➋æ Ø st.
– ç①èÖ❰ è❀é✏ê ➵✱➸➁➺✗➻✩➼✬➽ ➾➚ ➪
– ë è Þ❏❰ è❀é Þ is maximumä

for each å ê åáÏì❒✩❒✩❒❊å ➾ Ñ❀Ò è
Ù Ò è ã ❮❖➽✍➾➚ Ø

4. for each ➼▼❰ ➚ Ñ❖Ò ➚ ➪➧í ➘ if Þ❏Ò ➚ Þ✝ßîà➁Ô➘ÚÙâ➘❙ï ➼▼❰ ➚ Ñ❵Ò ➚ ➪
5. if

➘
was changed during step 4 goto 3

6. output
➘

Fig. 6. Basis-set decomposition algorithm for computing history

sets and licensed acoustic variants.

3. EXPERIMENTS

3.1. System description

For these experiments, we have used a Switchboard system based

on a 18K vocabulary, with about 300K left context variants. Speech

features are derived from 24-dimensional MFCCs, further trans-

formed into a canonical space through the application of VTLN

and FMLLR, and then projected onto a discriminative 60-dimensional

space with HDA. Acoustic modeling uses cross-word context-dependent

HMMs: the context dependent states of any given phone are deter-

mined through the application of a decision-tree making its deci-

sion based on a 11-phone window. The acoustic model set includes

150K Gaussian models and about 3.7 K HMM states, estimation

was perfored using MMI training. Acoustic and language models

(bigram and trigram smoothed with Knesser-Ney Backoff) were

trained on a combination of Switchboard and Callhome data.

3.2. Results

The primary goal of our approach is to reduce the size of decoding

graphs to the point where it becomes feasible to employ an entire

word of cross-word acoustic context. In Table 1, we show that

this is indeed possible, with the factored left-context graphs be-

ing only about twice the size of a graph with purely word-internal

contexts, while providing us with a consistent WER reduction. As

a direct result of the compact size of our graphs, the decoding is

relatively fast, as illustrated in Table 2, along with correspond-

ing word-error rates obtained on Switchboard’00 evaluation set

(switchboard part). Runtimes cited are exclusive of the Gaussian

computation and were obtained on a 1.5 Ghz pentium IV PC.

4. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a new methodology for building

static decoding graphs for LVCSR systems which can accommo-

date acoustic models exhibiting patterns of long distance contex-

tual dependencies (up to one word on the left). In spite of the

NP-hardness of the arc minimization problem, we devised heuris-

tic approaches which provided us with reasonably small graphs.

2-gram 3-gram

K states # K arcs # K states # K arcs

Word Internal 376 1,654 877 2,311

Basis Set 713 4,152 1,503 5,288

Cartesian 1,125 11,570 2,545 15,967

Table 1. Graph sizes

2-gram 3-gram

WER xRT WER xRT

Word Internal 27.1 4.2 26.0 10.2

Left Context (BSD) 26.3 6.9 25.3 14.3

Table 2. Word Error and run times

Using this graph compilation technique, we were able to achieve

state-of-the-art recognition on a large vocabulary task. Although

not reported in this paper, the case were pronunciation variants

vary according to the word on the right can be handled analo-

gously. The extension to bi-directional (left and right) constraints

is underway.

5. REFERENCES

[1] A.J. Viterbi, “Error bounds for convolutional codes and an

asymptotically optimal decoding algorithm,” IEEE Transac-

tions on Information Theory, vol. 13, pp. 260–269, 1967.

[2] Frederik Jelinek, Lalit R. Bahl, and Robert L. Mercer, “De-

sign of a linguistic statistical decoder for the recognition of

continuous speech,” IEEE Trans. Inf. Thy., vol. 21, pp. 250–

256, 1975.

[3] Julian Odell, The use of context in large vocabulary speech

recognition, Ph.D. thesis, University of Cambridge, 1995.

[4] Hermann Ney and Stefan Ortmanns, “Dynamic program-

ming search for continuous speech recognition,” IEEE Sig-

nal Processing Magazine, pp. 64–83, 1999.

[5] Mehryar Mohri, Michael Riley, Don Hindle, Andrej Ljolje,

and Fernando Pereira, “Full expansion of context-dependent

networks in large vocabulary speech recognition,” in Pro-

ceedings of ICASSP ’98, Seattle, 1998.

[6] Mehryar Mohri, Michael Riley, and Fernando C. N. Pereira,

“Weighted finite-state transducers in speech recognition,” in

Proceedings of ASR2000, Paris, France, 2000.

[7] Tomás Feder and Rajeev Motwani, “Clique partitions, graph

compression and speeding-up algorithms,” in Proceedings of

the 23rd Annual ACM Symposium on Theory of Computing,

New Orleans, Louisiana, 1991, 1991, pp. 123–133.

[8] Slava M. Katz, “Estimation of probabilities from sparse data

for the language model component of a speech recognizer,”

IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 35, no. 3, pp. 400–401, 1987.

[9] Guiseppe Riccardi, Roberto Pierraccini, and Enrico Boc-

chieri, “Stochastic automata for language modeling,” Com-

puter, Speech and Language, vol. 10, no. 265–293, 1996.

[10] Ian Holyer, “The NP-completeness of some edge partition

problems,” Siam Journal of Computer Science, vol. 10, no.

4, pp. 713–717, 1981.

