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Abstract—The extremely widespread adoption of Online Social
Networks (OSNs) raises many questions on privacy and access
control. Regardless of the particular centralized or de-centralized
nature of the OSN, the achievable security and privacy degree
strongly depends on the graph-theoretical properties of the social
graph representing the real friendship relations between the
users. In this paper, we analyze the relationship between the social
network graph topology and the achievable privacy. We observe
three metrics, namely degree distribution, clustering coefficient
and mixing time, and show that they give fundamental insights
on the privacy degree of the OSN. We propose how to exploit
these insight for the design of future privacy-friendly OSN.

I. INTRODUCTION

Online Social Networks (OSNs) can be seen as means to

share and discover content generated by users and intended to

be consumed by friends. Their extremely widespread adoption

raises many questions about access and diclosure policies;

news about privacy issues such as companies checking out

job candidates1, hackers blackmailing Social Network Services

(SNS) providers2, insurances cutting benefits to customers3 are

extremely frequent in the media, nowadays.

Unfortunately, privacy protection solutions offered by any

existing OSN applications are revealed to be unsatisfactory no

matter their robustness. Decentralized OSNs (e.g. [1], [2], [3])

attempt to remedy to this problem by avoiding the adoption

of any omniscient entity that can directly manage and misuse

the user data and propose an infrastructure for user data

management and storage that is distributed (often based on

a peer-to-peer architecture). Such solutions still present some

weaknesses in terms of privacy.

In this paper, we show that the privacy degree of an

OSN application, be it centralized or de-centralized, strongly

depends on the topological properties of the Social Graph

which represents friendships (trust relationships) between ac-

tual OSN users. Social graph analysis has already proved its

importance for studies such as sociology [4], [5] and network

performance[6].

In this paper a similar analysis is driven with respect to

the impact of social network topology on privacy. We show

that there exists a strong relationship between a set of metrics

1http://www.firedfornow.com/job-loss-and-the-economy/can-facebook-hurt-
your-job-prospects/

2http://eu.techcrunch.com/2009/10/21/hacker-arrested-for-blackmailing-
studivz-and-other-social-networks/

3http://www.cbc.ca/canada/montreal/story/2009/11/19/quebec-facebook-
sick-leave-benefits.html

and privacy properties. More specifically, three graph metrics,

namely the node degree, the clustering coefficient and the

mixing time, give fundamental insights on the privacy degree

of the resulting OSN.

In Section II, we discuss critical privacy and security

requirements for online social networks; in Section III, we

draw a link between these properties and several metrics of the

social network graph and we analyze these metrics in various

large-scale social network dumps, giving several hints for any

design of future privacy-friendly OSNs. Finally, we give an

overview of the related work in section IV.

II. PROBLEM STATEMENT

Due to the huge amount of sensitive data that can easily be

gathered, stored, replicated and correlated4 [7], [8], [9], privacy

protection becomes one of the main objectives for services

provided by an OSN platform [10], [11].

Privacy is a relatively new concept, being shaped by the

capability of new technologies to share information. Con-

ceived as ‘the right to be left alone’[12] during the period

of newspapers and photographs growth, privacy now refers to

the ability of an individual to control and selectively disclose

information about him, and its importance is so relevant to

have been reported in the Universal Declaration of Human

Rights (art.12):

“No one shall be subjected to arbitrary inter-

ference with his privacy, family, home or correspon-

dence, nor to attacks upon his honor and reputation.

Everyone has the right to the protection of the law

against such interference or attacks.”

The privacy problem can first be analyzed with respect to

whom users are protected from. Indeed, as in current solutions,

users can choose the privacy degree they would like to achieve

with respect to some categorized users. Their friends have

more privileges in terms of access control than their co-

workers for example. In this case, the main attack considered

here against privacy is the disclosure of sensitive data. Users

do not want to reveal their confidential information to other

unknown (or even known) users. Recently, researchers also

considered that the OSN provider can be a potential threat

since it has control over all users’ data; taking an approach

that is radically different from the one of commercial OSN

applications, researchers recently proposed to design the OSN

4http://www.sophos.com/pressoffice/news/articles/2007/08/facebook.html



application based on a peer-to-peer architecture [13] in order

to avoid centralized control over users’ data. In such networks,

since the data storage application is distributed, the disclosure

probability may become more important. Furthermore some

solutions such as [13] leverages social links to construct the

OSN: users’ friends store their data in order to ensure data

availability. Therefore, data confidentiality and access control

are one of the main privacy goals that OSN solutions, be cen-

tralized or decentralized, have to be taken into consideration

starting from their very design. An additional aspect that also

needs to be considered is taking a step ahead from access

control. Indeed, even with a very strong and specific access

control policy where the user that uploads or “posts” a content

can prevent unauthorized access, he unfortunately looses the

control on it after its very first publication. This issue defined

as usage control [14] can have a serious impact on users’

privacy as well.

Moreover, in addition to basic data confidentiality, a curious

adversary should not be able to gather any information on

the history of actions performed by arbitrary users in the

system. This calls for the property of untraceability[15], and is

a mandatory requirement for privacy preserving OSNs. There-

fore, usage control, data confidentiality and untraceability are

the main properties that OSN solutions should ensure.

Furthermore, recently Sybil attacks have been considered to

be another type of serious threats against users’ privacy5,6. The

purpose of Sybil attacks is to generate a very large number of

fake identities (profiles) and try to establish friendships with

legitimate users in order to gather sensitive information from

them or distribute spam messages7 or malware8. Sybil attacks

can also have severe impact on decentralized solutions since

malicious nodes can perform many types of Denial of Service

attacks such as Eclipse [16] or other kinds of attacks on the

underlying routing protocol against a selected victim.

Finally, another aspect that can be considered as a major

privacy problem is identity and friendship privacy. Indeed,

such information became very valuable for centralized OSN

solutions. Furthermore, some new decentralized solutions also

leverage the social links to construct the network itself. There-

fore, the network itself can inherently reveal information on

users’ friends.

In the next section, we analyze the main problems described

above with respect to the underlying social graphs: indeed,

the impact of malicious attacks can be evaluated based on the

underlying social graph’s characteristics. Furthermore, since

some of the privacy preserving solutions leverage the social

links among users, such architectures can be a potential threat

against privacy. Social graph analysis can inherently be a

useful tool to prevent such problems.

5http://www.nature.com/news/2009/090423/full/news.2009.398.html
6http://www.sophos.com/pressoffice/news/articles/2009/12/facebook.html
7http://www.pcworld.com/businesscenter/article/191847/facebook users

targeted in massive spam run.html
8http://content.usatoday.com/communities/technologylive/post/2009/12/

koobface-compels-facebook-victims-to-help-spread-worm-/1

III. IMPACT OF SOCIAL GRAPH TOPOLOGY ON PRIVACY

A. Social graph topology

An Online Social Network can be represented as an undi-

rected social graph G (V,E) comprising a set V of users and

a set E of edges representing social ties, such as friendship,

kinship, trust and the like. Graph theory was very useful for

many interesting fields such as networking and sociology:

graphs are used to represent communication networks or social

networks and the analysis of some of their basic properties

can help on evaluating and improving the performance of

networking solutions.

In this paper, three different characteristics are analyzed,

namely, the node degree, the clustering coefficient, and the

mixing time. The impact of the evolution of these parameters

is also evaluated based on existing social graphs: in September

2005, Facebook published anonymous social graphs of 5 uni-

versities in the United States9: California Institute of Technol-

ogy (Caltech), Princeton University (Princeton), Georgetown

University (Georgetown), University of North Carolina (UNC),

Oklahoma University (Oklahoma). Each graph is represented

by an adjacency matrix A whose non diagonal elements aij

are set to one if user νi ∈ V is a friend of user νj ∈ V , or

zero otherwise. As each adjacency matrix is symmetric, the

represented social graph is undirected.

B. Node degree

In graph theory, the degree of a vertex, denoted by deg(ν)
is defined as the number of edges incident to the vertex. Since

in a social graph G (V,E), a vertex represents a user and the

edges represent friendship links, a user’s degree defines the

number of friends a user has. This degree shows a straight-

forward relationship with privacy since when ν establishes a

relationship with a new friend, with the increase of the degree,

the probability of connecting to a misbehaving user increases.

Different studies have shown that participants clearly repre-

sent a weak link for security in OSNs and are vulnerable to a

series of social engineering attacks [7], [8], [9], often caused

by a lack of awareness regarding the consequence of simple

actions like accepting contact requests.

Assume pmal denotes the probability a new friend η of

ν is a malicious user, and assume the events of befriending

a malicious user are independent. The number of malicious

friends Fmal (ν) of ν then follows a binomial distribution:

Fmal (ν) ∼ B (pmal, deg (ν))

In particular, the probability pν of having at least one

misbehaving friend is:

pν = 1 − p
deg(ν)
mal (1)

Once a malicious η gets access to ν’s sensitive data, η can

disclose them out of band, or inside the social network itself.

In this latter case, the disclosure targets, among all η’s friends,

the common friends between η and ν, and can turn out to

severely damage ν.

9http://people.maths.ox.ac.uk/ porterm/data/facebook5.zip



Therefore, the outdegree of a node is directly related with

usage control. The more a node has friends, the larger the

probability of having a malicious friend which can disclose

sensitive personal data. Furthermore, if the correct execution

of OSN applications such as in [2] depends on the structure of

the social graph, the probability of discovering nodes’ friends

increases with the malicious behavior as well.

Figure 1 shows the distribution of the node degree for the

five Facebook datasets. In this figure, the degree of the Caltech

social network is much lower than the degree of the other

four social networks. This is probably due to the fact that

the Caltech dataset is significantly smaller than the others,

and, as a consequence, the opportunities to add friends are

lower. If we assume pmal as constant for all the graphs, by

applying eq.1, we observe that the probability of having at

least a misbehaving contact is lower in the Caltech network.

In Caltech, in fact, when pmal is set to 0.01, pν is on average

as high as 0.35, while in the other networks this value ranges

from 0.59 to 0.64.
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Fig. 1. Log-log plot of the degree complementary cumulative distribution
of real-life social networks, from [17].

C. Clustering Coefficient

In an undirected graph, the clustering coefficient c (ν) of

a node ν having deg (ν) edges is defined as the number

of existing links between these nodes, denoted as edeg(ν),

divided by the number of possible links that could exist

(
deg(ν)(deg(ν)−1)

2 ). We therefore have:

c (ν) =
2edeg(ν)

deg (ν) (deg (ν) − 1)
(2)

The clustering coefficient of the overall graph, denoted as

C (G), is the average clustering coefficient of all its nodes,

hence:

C (G) =

∑
ν∈V c (ν)

‖V ‖
(3)

Knowing or estimating the clustering coefficient of a graph

can give an idea on the impact of a malicious node whenever

it has information on nodes friendship and can further disclose

it. Once a malicious node, η, is added in the contact list of ν, η

can access ν’s sensitive data, and disclose it indiscriminately

using the social network facilities like wall posting, picture

publishing and the like. In particular, if η sets up a profile

corresponding to a real identity ν strongly trusts, η could

access a portion of data outside the visibility of the other

friends of ν. In this case, the disclosure of ν’s sensitive data

to the common contacts between ν and η can strongly be

dangerous.

We can then evaluate in a first approximation the average

ratio Qν of ν’s friends that can obtain sensitive information

disclosed by a malicious η as

Qν = pνc (ν) (4)

Therefore, similarly to the outdegree, the clustering coef-

ficient has a direct effect on usage control. The tighter the

friendset, the broader the disclosure of sensitive data to the

user’s contacts.

Figure 2 shows the distribution of the clustering coeffi-

cient for the different social networks that were previously

introduced. Similarly to the previous analysis, the clustering

coefficient of the Caltech social network strongly differs from

those of other networks, as it is almost twice in size. This is

probably again due to the small size of the Caltech dataset. A

smaller community is in fact more likely to be tightly knit.

We then observe that in the case a friend misbehaves, the

victim in Caltech exposes his sensitive data to a ratio of friends

two times higher compared with the one of a victim in the

other networks. Nevertheless, due to the lower pν , the average

ratio Qν does not strongly vary in the different networks,

ranging from 0.11 to 0.14.
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Fig. 2. Average clustering coefficient of real-life social networks with respect
to node degree, from [17].

D. Mixing time

Random walks [18] in a graph have an important property:

when the random walk approximates its steady state distri-

bution after a sufficient number of hops, the startpoint and



endpoint of the walk are uncorrelated. This number of hops

is called mixing time, and the smaller it is, the faster the

abovementioned property is met.

We will introduce the mixing time starting from the steady

state distribution.

The steady state distribution for a node θ represents the

probability this random walk reaches θ after a sufficient

number of hops, and does not depend on the node where this

random walk originated from:

ssd (θ) =
deg (θ)

2‖E‖
(5)

The mixing time [18] τx (ǫ) is then computed as:

τx (ǫ) = min {h : ∆x (h) ≤ ǫ} (6)

where ∆x (h) is the variation distance between the random

walk distribution Rh (x) after h hops, and the steady state

distribution ssd (x):

∆x (h) = ‖Rh − ssd‖ =
1

2

∑

x∈V

‖Rh (x) − ssd (x) ‖ (7)

For the whole network, the mixing time is:

τ (ǫ) = max
x∈V

τx (ǫ) (8)

When a network is fast mixing, τ (ǫ) is O (log‖V ‖).

In social networks, mixing time is varying widely: in [19]

authors found that mixing time is much higher in social

networks where links represent face-to-face interactions. Re-

cently, further measurements [20] confirmed this concept.

Two solutions in the literature have already been proposed

to exploit the topology properties of the social network itself

to increase users’ privacy and security and both of them rely

on random walks through the social network graph. The two

applications are using social links: the first one, Safebook

[2], to forward data, analogously to what is done through a

mix network [21], but with the advantage of exploiting trust

between actors; the second one, Sybilguard [22], to defend

against Sybil attacks. In both cases, a small mixing time is

required to increase the security and privacy performance.

Therefore, the mixing time of a social network graph is

directly related with both profile integrity and communication

untraceability. Figure 3 plots the mixing time τ (ǫ) of each

of the five Facebook social graphs for different values of

a predefined maximum variation distance ǫ. As the Caltech

network presents a faster mixing time, solutions like Safebook

or Sybilguard would perform better if applied on this social

network rather than in the Georgetown one, whose mixing

time is always roughly five times higher.

E. Summary

Table I summarizes the main topological properties of the

examined social network dumps, where the probability pmal of

befriending a misbehaving user is set to 0.01. In this scenario,

even if the average pν is high (ranging from 0.35 to 0.64), the
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Fig. 3. Mixing time of real-life social networks.

UNC network ensures the best privacy protection (in terms

of anonymity and usage control) with respect to the other

networks because it shows the lowest average value for Qν .

In terms of communication untraceability and profile integrity,

the Caltech network provides the best protection due to the

faster mixing time.

‖V ‖ deg (ν) C (G) pν Qν τ (0.1)
Caltech 769 43.32 0.41 0.35 0.14 11
Princeton 6596 88.93 0.24 0.59 0.14 34
Georgetown 9414 90.43 0.22 0.60 0.13 53
UNC 18163 84.44 0.20 0.57 0.11 17
Oklahoma 17425 102.44 0.22 0.64 0.14 22

TABLE I
MAIN CHARACTERISTICS OF FIVE SOCIAL GRAPHS FROM FACEBOOK (pν

COMPUTED ASSUMING pmal=0.01).

IV. RELATED WORK

Many of the properties of online social network graphs

have been studied by both sociologists and computer scientists

[4], [5]. Recent studies [6] confirmed that social network

graphs are scale-free [23], i.e. their degree follows a power-

law distribution: the probability that a node has degree k

is proportional to k−γ and high-degree nodes tend to be

connected to other high-degree nodes. Another study shows

that social networks also exhibit small-world [24] behavior:

the maximum shortest path between any pair of nodes in

the network is on the order of the logarithm of the number

of nodes in the network. Furthermore, social networks are

nowadays used as a powerful tool to disseminate information.

The study of topological properties helps researchers to design

and implement new dissemination or lookup protocols [25].

Moreover, topological properties of social graphs have also

been studied in the context of trust/security. For example, in

[26], friend-of-friend relationships among users are exploited

to accept email from authorized senders. Authors in [27]

observe a severe impact of worm propagation in mobile phone



networks with the help of a simulator modelling the network

determined by the cell phone address books. Sybilguard [22]

limits the influence of sybil attacks by bounding the number

and size of sybil groups, detected by the high number of

connections between sybils compared to the low number of

connections between sybil and genuine nodes.

Compared with these solutions, to the best of our knowl-

edge, our work can be considered as the first one that specif-

ically analyses the privacy problem together with the social

network topology. We believe that the undertaken study would

help scientists on the design of new privacy preserving online

social networks.

V. CONCLUSION AND FUTURE WORK

This paper investigates the strong relationship between the

topological properties of the social network graph and the

achievable users’ privacy in centralized or decentralized OSN.

We observe that metrics such as the degree and the clustering

coefficient of nodes severely affect users’ privacy with respect

to identity/friendship privacy and usage control, while the

mixing time of random walks in the social network graph

plays an essential role in preserving the users’ communication

untraceability.

An analysis on real social network dumps reveals the prob-

ability of befriending at least a misbehaving contact is not

negligible. In this case, the number of nodes the stolen

sensitive data can reach depends on the number of common

friends between the victim and the attacker.

Privacy preserving OSN architectures should address this

problem by discouraging the indiscriminate action of adding

friends. Moreover, when providing communication obfusca-

tion and identifiers integrity through random walk on the social

network graph, the OSN should guarantee the fast mixing

property to the network. This can be done by ensuring the

small wolrd property of the social network graph, and en-

couraging “long links” connecting different clusters together,

otherwise most of the random walk would be confined to the

originating cluster.

As a future work, we intend to study the impact of additional

graph properties, such as the assortativity and the betweenness,

on user privacy.
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