
A Hierarchical Graph Model for Probing Multimedia Applications

Baochun Li

Department of Electrical and Computer Engineering

University of Toronto

bli@eecg.toronto.edu

Abstract

In order to achieve the best application-level Quality-of-Service

(QoS), complex multimedia applications need to be dynamically

tuned and reconfigured to adapt to unpredictable open environ-

ments offered by general-purpose systems. We believe that the

objective of such adaptations should be to maintain a stable QoS

with respect to a set of critical application QoS parameters.

However, we have observed that only a limited set of parameters

may be used as “tuning knobs” to affect the application behavior.

In this paper, we present a hierarchical graph model to discover

the relationships between the sets of tunable and critical QoS

parameters. Based on such a model, we propose a polynomial-

complexity QoS probing algorithm to quantitatively capture the

run-time relationships between the two sets of parameters. Our

probing algorithm is integrated into our broader framework, Agi-

los, which uses a configurable visual tracking application to ver-

ify the effectiveness of adaptations.

1 Introduction

In a best-effort open environment where general-purpose sys-

tems are used, complex multimedia applications may not be able

to receive guaranteed Quality-of-Service (QoS). In such situa-

tions, they need to be dynamically tuned and reconfigured to

adapt to the fluctuating environment, triggered by variations in

resource availability. We claim that the objective of such adap-

tations is to maintain stability or optimality with regards to a set

of critical QoS parameters within the application, since the QoS

of these critical parameters will represent the overall quality and

user satisfaction delivered by the application. On the other hand,

any application has a set of tunable QoS parameters to serve as

tuning knobs to tune and reconfigure the application’s behavior.

For example, in a distributed visual tracking application where

multiple tracking algorithms are used to track the location of

moving objects in a streamed live video, the tracking precision

is the critical QoS parameter, where frame rate, image compres-

sion ratio, number of simultaneous trackers may all be tunable

QoS parameters.

The introduction of critical QoS parameters as adaptation ob-

jectives leads to the problem of bridging the “gap” between two

categories of parameters: critical and tunable QoS parameters.

Critical parameters represent adaptation goals, and tunable pa-

rameters are the only “knobs” we may use. In order to reconfig-

ure the set of tunable parameters with the goal of optimizing the

quality of critical parameters, we need to discover the functional

relationships between them. In this paper, we focus on this prob-

lem and present a hierarchical graph model to represent the de-

pendencies between critical and tunable parameters, and present

a QoS probing algorithm to quantitatively capture the run-time

relationships between critical and tunable parameters. We have

shown that with certain optimizations, the computational com-

plexity of such an algorithm may be reduced from exponential

to polynomial.

Previous work has focused on QoS-aware monitoring and

probing mechanisms at the application level [1, 2, 3]. Al-Shaer

et al. [2] has presented HiFi, an active monitoring architecture

for monitoring distributed multimedia systems. Abdelzaher [1]

has presented an on-line least squares estimator for estimating

system parameters in QoS-aware web servers with a linear exe-

cution model. Chang et al. [3] has provided a sandbox imple-

mentation to tune resource availability when measuring appli-

cation behavior. In comparison, our work do not assume prior

knowledge of a particular execution model in an application,

and focuses on discovering the relationships between parame-

ters based on probing results, rather than the particular probing

mechanisms. Finally, this work presents a polynomial-time al-

gorithm to probe multiple critical parameters, which is an exten-

sion and major improvement over our own previous work [5].

The remainder of this paper is organized as follows. Section

2 presents formal definitions of different parameter categories.

Section 3 describes our graph-based model to characterize re-

lationships between different categories of application parame-

ters, presents a QoS probing algorithm, and analyzes its compu-

tational complexity. Section 4 presents a brief case study with

the visual tracking application, when integrating the probing al-

gorithm into our broader control framework, Agilos. Section 5

concludes the paper.

2 Parameter Categorization

We consider a scheme of categorizing application QoS param-

eters. For this purpose, we focus on a single application com-

ponent. We assume that this component accepts input with a

QoS level
�✂✁☎✄

and generates output with QoS level
�✝✆✟✞✡✠

, both

of which are vectors of application QoS parameter values. In

order to process input and generate output, a specific amount

of resources ☛ is required, which is a vector of resource types.

Figure 1 illustrates such characterization in terms of QoS param-

eters and resources.

Formally, we define the vectors
� ✁☞✄

,
� ✆✟✞✡✠

and ☛ as follows:

☛✍✌✏✎ ✑✓✒✕✔✖✑✘✗✙✔✛✚✛✚✛✚✜✔✟✑✘✢✤✣☞✥� ✁☎✄ ✌✏✎ ✦ ✁☞✄✒ ✔✧✦ ✁☎✄✗ ✔✕✚✛✚✜✚✛✔✧✦ ✁☎✄✄ ✣ ✥� ✆✟✞✡✠ ✌✏✎ ✦ ✆✟✞✙✠✒ ✔✧✦ ✆✟✞✡✠✗ ✔✛✚✜✚✛✚✛✔★✦ ✆✟✞✡✠✩ ✣ ✥ (1)



Application
Component

Q
in

Q
out

R

resources

output QoS

parameters
input QoS

parameters

Figure 1: The Application and its Parameters

where ✑ ✒ ✔✟✑ ✗ ✔✛✚✕✚✛✚✛✔ ✑ ✢ are the required resource types and

measured with their respective units. In the tracking application,� ✌ ✁
, and ✑✄✂✆☎ ✞ is measured with CPU load percentage, while

✑ ✄✞✝ ✠ is measured with bytes per second.

We assume the vector of all application QoS parameters ✟ ✌
✎ ✟ ✁☞✄ ✥ ✔✠✟ ✆✟✞✙✠ ✥ ✣ ✥ . We further classify the parameters in the vec-

tor ✟ into three distinct categories:

✡
Critical QoS parameters. We assume all critical pa-

rameters, which are elements in the vector
�☞☛✠✌✜✆✟✞✡✠

, be-

long to the set of output QoS parameters. Let
�☞☛✍✌ ✆✟✞✙✠ ✌

✎ ✦ ✆✟✞✡✠✁✏✎ ✔✧✦ ✆ ✞✡✠✁✒✑ ✔✕✚✛✚✛✚✛✔ ✦ ✆✟✞✙✠✁✏✓ ✣ ✥ , while ✔✖✕✘✗ ✒✕✔✙✗ ✗✙✔✛✚✛✚✛✚✛✔✚✗✜✛✢✕✤✣ . The

objective of adaptation is focused on these critical QoS pa-

rameters.

✡
Tunable QoS parameters. Without loss of generality1, we

assume that all input QoS parameters are tunable.

✡
Non-critical QoS parameters. It follows that any param-

eters in the vector
� ✆✟✞✡✠

that do not belong to the category

of critical QoS parameters are non-critical.

For simplicity of notations, we redefine
�✂✁☎✄

and
�☞☛✠✌ ✆ ✞✡✠

as

follows, removing extra superscripts and renumbering the sub-

scripts:

� ✁☎✄ ✌✏✎ ✦ ✒✕✔✧✦ ✗✡✔✜✚✛✚✛✚✛✔★✦ ✄ ✣ ✥� ☛✠✌ ✆✟✞✡✠ ✌✏✎ ✦ ✂✚✥✒ ✔ ✦ ✂✚✥✗ ✔✜✚✛✚✛✚✛✔✧✦ ✂✚✥✛ ✣☞✥ (2)

Since all tunable QoS parameters are input parameters and all

critical QoS parameters belong to the set of output QoS param-

eters, it is natural that when the tunable parameters are actively

controlled, the critical parameters will consequently change. In

this case, the critical parameters are claimed to be dependent on

the tunable parameters. In addition, in most applications critical

parameters are also dependent on a certain subset of resource

types, since when resource availability changes, they effectively

change the observed values of critical parameters.

In order to characterize the complete set of parameters that

critical parameters depend on, we define a new vector ✦ ✁☎✄ to

include the relevant resource types:

✦ ✁☞✄ ✌ ✎ � ✁☞✄ ✥ ✔✖☛ ✥ ✣ ✥ ✌✏✎ ✦ ✒ ✔★✦ ✗ ✔✛✚✜✚✛✚✛✔✧✦ ✄ ✔✟✑ ✒ ✔✖✑ ✗ ✔✛✚✜✚✛✚✕✔✖✑ ✢ ✣ ✥
(3)

For coherent notations, we redefine ✦ ✄★✧ ✁ = ✑ ✁ , ✔✩✕✪✗✫✕ � ,

so that:

✦ ✁☞✄ ✌✏✎ ✦ ✒ ✔ ✦ ✗ ✔✛✚✛✚✛✚✜✔✧✦ ✄ ✔✧✦ ✄★✧ ✒ ✔✕✚✛✚✜✚✛✔✧✦ ✄✬✧ ✢ ✣ ✥ (4)

1If an input QoS parameter is not tunable, we may view it as an output param-

eter instead.

3 Probing Application QoS Parameters

In this section, we present a QoS probing algorithm that bridges

the gap between the set of critical and dependent parameters by

capturing the dependency relationship between
�☞☛✠✌ ✆✟✞✡✠

and ✦ ✁☞✄ .

3.1 A Bipartite Graph Model

The brute-force way of designing a QoS probing algorithm is

to discover the relationship between any particular critical pa-

rameter and all its dependent parameters. For this purpose, we

need to construct a Directed Bipartite Graph, with all elements

in
�✭☛✠✌✜✆✟✞✡✠

forming one partition of the graph, and all elements

in ✦ ✁☎✄ forming the opposite partition. If node ✦ ✂✚✥✁ depends on

✦✯✮ , ✔✰✕✱✗✲✕✴✳ ✔✵✔✶✕✸✷✩✕✱✹✫✺ � , there exists a directed edge from

node ✦ ✂✻✥✁ to node ✦ ✮ in the directed bipartite graph.

p
1

1

p
n

p
n+1

p
n+m

p
cr

l
p

cr

(R
1
) (R

m
)

Figure 2: The Bipartite Graph Model for Application QoS Pa-

rameters

The objective of a QoS probing algorithm is to tune the pa-

rameters in ✦ ✁☎✄ and observe the values of critical parameters.

As an initial step, we assume that each critical parameter in�☞☛✠✌✟✆✟✞✙✠
depends on all the parameters in ✦ ✁☎✄ . Figure 2 shows

an example. Obviously, the subgraph consisting of one critical

parameter and all parameters in ✦ ✁☞✄ is a two-level tree, with the

selected critical parameter as root and all the parameters in ✦ ✁☎✄
as leaves.

The critical step in the QoS probing algorithm is to discover

the relationship between dependent nodes. For this purpose, we

assume that for ✼✽✗ ✔✚✼✿✾ , there exists ❀ ✦ ✁✜❁ ✢ ✁☎✄ and ❀✖✦ ✁✜❁ ✢❃❂❅❄ such

that ❀ ✦ ✁✜❁ ✢ ✁☎✄ ✕ ✦ ✁✙❆ ✾✠❇❈✕✤❀✖✦ ✁✻❁ ✢❉❂✵❄ , any value beyond this range

is either not possible or not meaningful. For example, the frame

rate may vary in the range of ✎❊✔✙✔✍❋✬● ✣ (in frames per second).

Hence, the dependency between each critical parameter and their

dependent parameters can be characterized by ❍ ✁ , defined as:

✦ ✂✚✥✁ ✌✤❍ ✁✍❆ ✦ ✒ ✔✧✦ ✗ ✔✜✚✛✚✛✚✕✔✧✦ ✄✬✧ ✢ ❇ (5)

❀ ✦ ✩ ❁ ✢ ✁☞✄ ✕ ✦ ✩ ❆ ✾✠❇❉✕■❀✖✦ ✩ ❁ ✢❃❂❅❄
✣✝✌❏✔✙✔ ✁ ✔✛✚✕✚✛✚✜✔✙✹✩✺ � , ✗ ✌❏✔ ✔ ✁ ✔✕✚✛✚✛✚✜✔✠✳

With the Bipartite Graph Model, the probing algorithm for

computing the dependency relationship between each critical pa-

rameter ✦ ✂✻✥✁ and the parameters in ✦ ✁☎✄ is straightforward. For

each critical parameter ✦ ✂✻✥✁ , It consists of ✹☞✺ � for loops, each

one of them iterating through the range of ✹✢✺ � leaf parameters.

Theorem 1. the computational complexity of the probing al-

gorithm based on a Bipartite Graph Model is ❑ ❆ ✳✜▲✞▼ ✢❉❂❅❄❖◆ ✄✬✧ ✢◗P ❇ ,
where ▼✓✢❉❂✵❄ ✌ max ❀❘▼ ☎ ✎ ✔✠▼ ☎ ✑ ✔✛✚✛✚✕✚✜✔✠▼ ☎❅❙✞❚❱❯ ❁ , and ▼ ☎✵❲ ✌❆ ❀✖✦✯✮ ❁ ✢❉❂✵❄✶❳❨❀✖✦❩✮ ❁ ✢ ✁☞✄ ❇✙❬★❀✖✦❩✮ ❁ ✁☎✄ ✂✻✥ ✝ ✢ ✝ ✄✙✠ .

Proof. Omitted for space limitations.

2



This shows that when the number of tunable parameters and

resource types increases, computation increases exponentially.

In order to carry out QoS probing on-line, we need a more effi-

cient algorithm.

3.2 A Hierarchical Graph Model

Typically, one critical parameter only depends on a limited num-

ber of tunable QoS parameters and resources. Furthermore, we

have observed that if two critical parameters depend on a com-

mon set of parameters in ✦ ✁☎✄
, they may have similar depen-

dency relationships with such a common set. If this similarity

of relationships can be captured and then shared by both critical

parameters, computational complexity may be reduced dramati-

cally.

We introduce a set of intermediate QoS parameters that crit-

ical parameters depend on. These intermediate QoS parameters

may be either non-critical QoS parameters in the output QoS, or

other internal parameters within the application component. In

addition, they depend on the parameters in ✦ ✁☎✄
. To maximize

the dependency relationship sharing among critical parameters,

intermediate nodes are organized hierarchically. Figure 3 shows

an instance of the possible dependency relationships.

p
1

p
1 p

2

p
3

p
1

p
1

p
2

p
2

p
3

p
4

p
5

p
6

crcr

1

2

1 1

Figure 3: Hierarchical Graph Model for Application QoS Pa-

rameters

The hierarchy in Figure 3 presents the following properties:

✡
The subgraph composed of a critical parameter node ✦ ✂✚✥✁❆ ✔■✕ ✗ ✕ ✳ ❇ and all downstream nodes is essentially a

multi-level directed tree, with root as ✦ ✂✚✥✁ and a subset of

parameters in ✦ ✁☞✄
as leaves. We refer to such a tree as

Tree ❆ ✦ ✂✚✥✁ ❇ , and the hierarchical graph is
� ❀ Tree ❆ ✦ ✂✻✥✁ ❇ ❁ .

✡
Two critical parameters share dependency on some param-

eters by sharing a subtree. For example, in Figure 3, the

subtree with source at ✦ ✒✒ is shared by both critical parame-

ters ✦ ✂✻✥✒ and ✦ ✂✚✥✗ .

✡
All nodes other than leaves have at least outdegree

✁
. Oth-

erwise, redundant nodes may be removed as shown in Fig-

ure 4.

p
z

p
y

p
w

p
x

p
z

p
x

p
w

p
i

cr p
i

cr

p
z

p
y

p
w

p
x

(a) (b)

p
y

p
w

p
x

Figure 4: Redundant node removal

✡ The notation ✦ ✮ ✁ denotes that the node is at level ✷ , and is

the ✗ ✠✂✁ node at this level. We calculate the level of a node

by counting from bottom, with leaves (parameters in ✦ ✁☎✄
)

at level ● , that is, ✦ ✁ ✌ ✦
✄✁ ✔✚✗ ✌❏✔ ✔ ✁ ✔✕✚✛✚✛✚✛✔✚✹ ✺ � .

Assume the parent node ✦ ✮ ✁ depends on ✣ child nodes ✦ ✮ ✎✁✏✎ , ✦ ✮ ✑✁ ✑ ,

..., ✦ ✮✆☎✁ ☎ . The dependency can thus be characterized by a function

❍ ☎ ❲ ✝✟✞ ☎ ❲ ✎✝ ✎ ✞ ☎ ❲ ✑✝ ✑ ✞ ✠ ✠ ✠ ✞ ☎ ❲ ☎✝ ☎ , defined as:

✦ ✮ ✁ ✌✤❍ ☎ ❲ ✝ ✞ ☎ ❲ ✎✝ ✎ ✞ ☎ ❲ ✑✝ ✑ ✞ ✠ ✠ ✠ ✞ ☎ ❲ ☎✝ ☎ ❆ ✦
✮ ✎✁✏✎ ✔✧✦ ✮ ✑✁ ✑ ✔✛✚✕✚✜✚✛✔✧✦ ✮✆☎✁ ☎ ❇ (6)

❀✖✦ ✮✆✡✁ ✡ ❁ ✢ ✁☞✄ ✕ ✦ ✮✆✡✁ ✡ ❆ ✾✠❇❃✕■❀✖✦ ✮✆✡✁ ✡ ❁ ✢❉❂❅❄
☛ ✌❏✔ ✔ ✁ ✔✕✚✛✚✛✚✛✔✙✣

A hierarchical QoS probing algorithm is shown in Figure

5. For each critical parameter, we calculate all dependency

functions between one non-leaf node and its dependent child

nodes. The calculation is performed from bottom to top of

the hierarchical graph. The idea in this algorithm is that, if

a child node ✦ ✮ ✩ is not a leaf, it must depend on some other

lower level nodes, and the dependency between them should

have already been calculated and saved in the log. The cal-

culated value set for this node should be within the range

✎ ❀ ✦ ✮ ✩ ❁ ✢ ✁☎✄ ✔ ❀✖✦ ✮ ✩ ❁ ✢❃❂❅❄ ✣ , and each value is rounded to the nearest

discrete value ❀ ✦ ✮ ✩★❁ ✢ ✁☞✄ ✺ ☛ ▲ ❀✖✦ ✮ ✩✬❁✡✁☎✄ ✂✻✥ ✝ ✢ ✝ ✄ ✠ ✔✠●✱✕ ☛ ✕ ▼ ☎ ❲ ☎ ,

where ▼ ☎ ❲ ☎ ✌ ❆ ❀ ✦ ✮ ✩ ❁ ✢❉❂❅❄ ❳ ❀✖✦ ✮ ✩ ❁ ✢ ✁☎✄ ❇✙❬★❀ ✦ ✮ ✩ ❁ ✁☞✄ ✂✚✥ ✝ ✢ ✝ ✄ ✠ . The

sample values for this child node will be retrieved from the log.

for each critical parameter ✦ ✂✚✥✁ and its associated Tree ❆ ✦ ✂✻✥✁ ❇
for level ✷ = 1, ✷✖✕ depth(Tree ❆ ✦ ✂✻✥✁ ❇ ), ✷ ++

for each node ✦ ✮ ✩ , whose children are ✦ ✮ ✎✩ ✎ , ✦ ✮ ✑✩ ✑ , . . . , ✦ ✮✆☞✩ ☞✌✎✍ ✌ outdegree ❆ ✦ ✮ ✩ ❇
list := ❀ ✦ ✮ ✩ ❁ // observing list

for each child ✦ ✮✑✏✩ ✏ , ✔✶✕✓✒✪✕ ✌

if ✦ ✮ ✏✩ ✏ is a leaf and is not a resource then

✦ ✮✑✏✩ ✏ iterates from ❀✖✦ ✮✑✏✩ ✏ ❁ ✢ ✁☎✄ to ❀✖✦ ✮✑✏✩ ✏ ❁ ✢❉❂❅❄ ,

step ❀ ✦ ✮✑✏✩ ✏ ❁ ✁☞✄ ✂✚✥ ✝ ✢ ✝ ✄✙✠
else if ✦ ✮ ✏✩ ✏ is a resource parameter then

if ✦ ✮ ✩✕✔ list then

list := list - ❀ ✦ ✮ ✩ ❁
list := list + ❀✖✦ ✮ ✏✩ ✏ ❁
✦ ✮ ✩ iterates from ❀✖✦ ✮ ✩★❁ ✢ ✁☎✄ to ❀✖✦ ✮ ✩✬❁ ✢❉❂✵❄ ,

step ❀✖✦ ✮ ✩★❁✡✁☎✄ ✂✻✥ ✝ ✢ ✝ ✄✙✠
else

list := list + ❀✖✦ ✮ ✏✩ ✏ ❁
else // non-leaf node

search log and find the sorted value set for ✦ ✮✑✏✩ ✏
✦ ✮✑✏✩ ✏ iterates elements in the found value set

log observed values for parameters in list

Figure 5: The Hierarchical QoS Probing Algorithm

Note that if a resource parameter is one of the dependent

nodes, we control the values of the parent node instead and ob-

serve the changes of the resource parameter. The variable list

keeps track of the parameters to be observed. This is because

resource usage is usually hard to control precisely.

3



According to the algorithm, it is obvious that if a node in

Tree ❆ ✦ ✂✻✥✁ ❇ and a node in Tree ❆ ✦ ✂✻✥✮ ❇ share a subtree, the calcu-

lation for the subtree may be done only once for both trees

and the dependency function can thus be shared by both nodes.

For example, in Figure 3, the subtree rooted at ✦ ✒✒ exists in

both Tree ❆ ✦ ✂✻✥✒ ❇ and Tree ❆ ✦ ✂✻✥✗ ❇ . After the dependency function

❍ ☎ ✎✎ ✞ ☎ ✎ ✞ ☎ ✑ is determined, it will be shared by parent nodes ✦ ✗ ✒ in

Tree ❆ ✦ ✂✻✥✒ ❇ and ✦ ✂✻✥✗ in Tree ❆ ✦ ✂✚✥✗ ❇ .
3.3 Complexity Analysis

The computation in the algorithm is sequentially performed for

each Tree ❆ ✦ ✂✻✥✁ ❇ , ✗✘✌ ✔ ✔ ✁ ✔✕✚✛✚✛✚✛✔✍✳ . Therefore, we first consider a

single tree Tree ❆ ✦ ✂✻✥✁ ❇ . It is obvious that the complexity depends

on the number of non-leaf nodes in the tree. We first demonstrate

that the number of non-leaf nodes is bounded by the number of

leaves in Tree ❆ ✦ ✂✻✥✁ ❇ .
Let

� ❆✂✁ ❇ and ✄ ❆✂✁ ❇ denote the number of non-leaf nodes

and number of leaves in a Tree ✁ , respectively. Let ☎ ❆✂✁ ❇ denote

the depth of the tree ✁ .

Lemma 1: Given a directed tree ✁ . If outdegree for each

non-leaf node is no less than
✁
, then

� ❆✂✁ ❇✝✆✞✄ ❆✂✁ ❇ .
Proof. Proved by induction. Omitted for space limitations.

For each node ✦ ✮ ✩ in Tree ❆ ✦ ✂✚✥✁ ❇ , we assume that its outdegree

is
✌ ❆ ✦ ✮ ✩ ❇ . Let

✌ ✁✢❉❂✵❄ ✌ max ❀ ✌ ❆ ✦ ✮ ✩ ❇ ❁ , the maximum outdegree

of the nodes in Tree ❆ ✦ ✂✻✥✁ ❇ . Let
✌ ✢❉❂✵❄ ✌ max ❀ ✌ ✁✢❃❂❅❄ ❁ , ✔ ✕❏✗✰✕

✳ , the maximum outdegree of the nodes in
� ❀ Tree ❆ ✦ ✂✻✥✁ ❇ ❁ . In

addition, let ▼ ✢❉❂❅❄ = max ❀ ▼ ☎ ❲ ☎ ❁ .
Theorem 2: The computational complexity of the hierarchi-

cal QoS probing algorithm is bounded by ❑ ❆ ✳❉▲ ❆ ✹ ✺ � ❇✄▲❆ ▼ ✢❉❂❅❄ ❇✠✟ ❯✝✡☞☛ ❇ . ✳ is the number of critical parameters, ✹ is the

number of tunable parameters and � is the number of resource

parameters.

Proof. For Tree ❆ ✦ ✂✻✥✁ ❇ in the hierarchical graph
� ❀ Tree ❆ ✦ ✂✚✥✁ ❇ ❁ ,

we count the number of non-leaf nodes in this tree. According to

Lemma 1, the number of non-leaf nodes is less than the number

of leaves, which is ✹ ✺ � . Therefore, the total time of profil-

ing one critical parameter is less than ❆ ✹ ✺ � ❇ ▲ ❆ ▼ ✢❉❂❅❄ ❇✠✟ ❯✝✡☞☛ .

For ✳ critical parameters, the upper bound is ❑ ❆ ✳ ▲ ❆ ✹ ✺ � ❇✲▲❆ ▼ ✢❉❂❅❄❩❇✠✟ ❯✝✡☞☛ ❇ . This is obviously polynomial. QED.

Tracking precision

Object velocity Tracking frequency

Frame rate Weighted quantity

of trackers

Image properties

Compression

ratio

Image size

Codec type Codec parameters Size in

pixels

Color

depth

Number of

trackers

Property

of one tracker

Size of

region

Tracker

type

Bandwidth

Figure 6: Hierarchical Graph for Distributed Tracking

4 Case Study: Distributed Visual Tracking

In our experiments, the QoS probing algorithm presented in this

paper has been integrated into our broader QoS control frame-

work, the Agilos architecture [4]. Figure 6 shows the hierarchi-

cal graph for the tracking application. Discovered by the prob-

ing algorithm, Figure 7 shows the dependency relationships be-

tween the critical parameter, tracking precision, and the inter-

mediate QoS parameters object velocity and tracking frequency.

We have shown in [4] that the Agilos architecture is able to con-

trol the adaptation behavior in the tracking application, so that

the tracking precision remains stable at all times, even with the

presence of bandwidth and CPU fluctuations due to a best-effort

execution environment. The QoS probing algorithm plays an

important role in this framework.

Tracking Frequency

1

max

0

0

(times/sec)

10 15

Tracking

2

Precision (pixels, smaller values shows better precision)

Object Velocity (pixels/sec)

Figure 7: QoS Probing Results: An Example

5 Conclusion

In this paper, we first define application QoS as the quality of a

set of critical parameters. Based on such assumptions, we have

presented a polynomial-time QoS probing algorithm for probing

multimedia applications, and discovering functional relation-

ships between critical and tunable parameters. This algorithm

has been integrated into the broader Agilos framework for con-

trolling applications to adapt to best-effort open environments.

A visual tracking application is deployed under the control of

Agilos, and the critical parameter, tracking precision, remains

stable at all times by trading off other non-critical parameters.

References

[1] T. Abdelzaher. An Automated Profiling Subsystem for QoS-

Aware Services. In Proceedings of Second IEEE Real-Time

Technology and Applications Symposium, 2000.

[2] E. Al-Shaer, H. Abdel-Wahab, and K. Maly. HiFi: A New

Monitoring Architecture for Distributed Systems Manage-

ment. In Proceedings of IEEE ICDCS 99, pages 171–178,

May 1999.

[3] F. Chang and V. Karamcheti. Automatic Configuration and

Run-time Adaptation of Distributed Applications. In Pro-

ceedings of HPDC-9, pages 11–20, August 2000.

[4] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo.

Adaptive Middleware Architecture for a Distributed Omni-

Directional Visual Tracking System. In Proceedings of the

SPIE Multimedia Computing and Networking 2000, pages

101–112, January 2000.

[5] B. Li and K. Nahrstedt. QualProbes: Middleware QoS

Profiling Services for Configuring Adaptive Applications.

In Proceedings of Middleware 2000, pages 256–272, April

2000.

4


