Name ______ Date _____ Pd_____

THERMODYNAMICS POP QUIZ: Exit Ticket

(1) A copper wire (specific heat: $385 J/Kq \cdot °C$) has a mass of 0.0165 kilograms. An electric current runs through the wire for a short time and its temperature rises from 21°C to 39°C. What min. quantity of **heat** energy is converted by the current?

THERMODYNAMICS POP QUIZ: Exit Ticket

(1) A copper wire (specific heat: $385 J/Kq \cdot C$) has a mass of 0.0165 kilograms. An electric current runs through the wire for a short time and its temperature rises from 21°C to 39°C. What min. quantity of heat energy is converted by the current?

(2) Convert the following Temperatures:

°C	K	°F
0 °C		
		212 °F
	450 K	
		98.6 °F

(3) Explain Entropy: _____

(4) Explain the Law of Conservation of Heat Energy

(1st law of Thermodynamics):

(5) A negative ΔT indicates a _____ of heat. A positive ΔT indicates a of heat.

(2) Convert the following Temperatures:

°C	Κ	°F
0 °C		
		212 °F
	450 K	
		98.6 °F

(3) Explain Entropy:

(4) Explain the Law of Conservation of Heat Energy (1st law of Thermodynamics):

(5) A negative ΔT indicates a _____ of heat. A positive ΔT indicates a of heat.