The Unified Modeling Language v1.1 and Beyond:
The Techniques of Object-Oriented M odeling

An AmbySoft Inc. White Paper

Scott W. Ambler
Object-Oriented Consultant

AmbySoft Inc.

Material for this White Paper has been modified from the books

Building Object Applications That Work

and
Process Patterns
by Scott W. Ambler

http:/Mmww.ambysoft.com/uml AndBeyond.pdf

Finalized: February 11, 2000

Copyright 1998-2000 Scott W. Ambler

Table Of Contents

1. THE UNIFIED MODEL ING LANGUAGE AND BEYOND

2. UNDERSTANDING YOUR MODELING OPTIONS

3. HOW THE MODELING TECHNIQUESFIT TOGETHER
4. SUMMARY
5. REFERENCES
6. GLOSSARY

7. ABOUT THE AUTHOR

=

CRC MODELING.

DEFINING USE CASES USE-CASE SCENARIOS, AND USE-CASE DIAGRAMS
INTERFACE-FLOW DIAGRAMS

CLASSDIAGRAMS

ACTIVITY DIAGRAMS.

DATA DIAGRAMS

COoOUTWwWNE

SEQUENCE DIAGRAMS,

COMPONENT DIAGRAMS

DEPLOYMENT DIAGRAMS.

11

STATE DIAGRAMS.

12

COLLABORATION DIAGRAMS

13

14

17

17

19

22

List of Figures

Figure 1. Thelayout of aCRC card

Figure 2. Anexample of ause-case diagram.

Figure 3. Aninterface flow diagram for an order-entry system.

Figure4. A class diagram representing the Contact-Point analysis pattern,

Figure5. An activity diagram for using an automated gasoline/petrol pump
Figure 6. A datadiagram for a simple human resources database.

Figure 7. A sequence diagram for transferring funds from one account to another

Figure 8. A component diagram for the architectural business view of atelecommunications company........

Figure9. A deployment diagram for athree-tier client/server application.

Figure 10. A statechart diagram for abank account.

Figure 11. A collaboration diagram for asimple university.

Figure 12. The Detailed Modeling process pattern

Figure 13. The Deliverables Document Deliverables process pattern.

Copyright 1998-2000 Scott W. Ambler 1

1. The Unified Modeling Language and Beyond

Thiswhite paper describes the object-oriented (OO) modeling techniques employed on large-scale, mission-
critical applications. The modeling techniques described by the Unified Modeling Language (UML) v1.1
(Rational, 1997) are used as a basisfor OO modeling. Becauseit is my experience that they are not sufficient
(Ambler, 1998a) for completely modeling an OO application | have extended the UML with additional
industry-standard modeling techniques. Heresy? Read on and decide for yourself.

2. Understanding Your Modeling Options

In thiswhite paper | will briefly review the major modeling techniques and diagrams used on object-oriented
development projects. The goal of this white paper is to describe each modeling approach, provide an
example where appropriate, and indicate when the approach should be used. | am not going to go into
enough detail to teach you how to actually model with them, there are many good books written about OO
analysisand design, | instead direct you to the best sources for each modeling approach.

The modeling techniques that we will cover in this white paper include:
¢ Classresponsibility collaborator (CRC) modeling
e Use cases and use-case scenarios

¢ Use-casediagrams

« Interface flow diagrams

¢ Classdiagrams

¢ Processdiagrams

« Datadiagrams

¢ Sequencediagrams

¢ Component diagrams

« Deployment diagrams

« Statechart diagrams

* Collaboration diagrams

2.1 CRC Modeling
CRC (class responsihility collaborator) modeling (Beck & Cunningham, 1989; Wirfs-Brock, =~ CRC modeling

Wilkerson, and Wiener, 1990; Jacobson, Christerson, Jonsson, and Overgaard, 1992; isan analysis
Ambler, 2000a) provides asimple yet effective technique for working with your usersto techniquein
determine their needs. CRC modeling isa process in which agroup of business domain which users
experts (BDEs) analyze their own needs for asystem. CRC modeling sessionstypically form most of
start with brainstorming, atechnique in which people suggest whatever ideas they come the modeling
up with about the application. Brainstorming allows people to get loosened up, aswell as team.

to gain a better understanding of where the other BDEs are coming from. After the
brainstorming is finished the group produces a CRC model together, which describesthe
requirements for the system.

A CRC model isacaollection CRC cards, standard index cards (usually 5 x7) that have been divided into
three sectionsas shown in Figure 1. A classisany person, place, thing, event, concept, screen or report.
The responsibilities of aclass are the things that it knows and does, its attributes and methods. The
collaborators of aclass are the other classes that it works with to fulfill itsresponsibilities. CRC cardsare a
simple, easy to explain, low-tech approach to working with users to define the requirements for an
application.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 2

The Name of the Class

Responsibilities Collahorators

Figurel. Thelayout of a CRC card.

Experience shows that CRC modeling works best with front-line employees, whereas techniques such as use
cases, discussed in the next section, are more effective with upper management. CRC modeling originated as
atraining tool (Beck & Cunningham, 1989) to teach experienced devel opers OO concepts and is also used as
adesign brainstorming technique that leads directly to class diagramming (object modeling). Because CRC
models approach requirements definition from adifferent direction than do use cases they are often used to
validate the information gathered by use cases (and vice versa of course).

Blatant Advertising Purchase The Object Primer, 2™ Edition (late Spring of 2000)!
SIS The Object Primer is a straightforward, easy to understand introduction to

| The Object Primer object-oriented concepts, requirements, analysis, and design techniques
applying the techniques of the Unified Modeling Language (UML). The
Object Primer goes further to show you how to move from object modeling to
object-oriented programming, providing Java examples, and describes the
techniques of the Full Lifecycle Object-Oriented Testing (FLOOT)

methodol ogy to enable you to test all of your development artifacts. It also
puts this material in the context of the leading software processes, including
the enhanced lifecycle for the Unified Process, the process patterns of the
Object-Oriented Software Process (OOSP), and the best practices Extreme

Programming (XP). Visit http://www.ambysoft.com/theObjectPrimer.html for
more details.

2.2 Defining Use Cases, Use-Case Scenarios, and Use-Case Diagrams

A use case (Jacobson, Christerson, Jonsson, Overgaard, 1992; Ambler, 2000a) isa Use cases
description, typically written in structured English or point form, of a potential describethebasic
business situation that an application may or may not be able to handle. Y ou can also businesslogic of
say that a use case describes away in which areal-world actor aperson, an application.

organization, or external system interacts with the application. For example, the
following would be considered use-cases for auniversity information system:

¢ Enrol studentsin courses.

* Output seminar enrolment lists.

* Remove students from courses.

¢ Produce student transcripts.

A use-case scenario isaspecific example of ause-case. Potential use-case scenarios for Use-case
theuse case Enrol studentsin courses are: scenariosare

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 3

« A student wantsto enrol in acourse but they are missing a prerequisite. specific

¢ A studentswantsto enrol in acourse but the course is over-booked for the term. examples of

* A student wantsto enrol in acourse, they have the prerequisites and there is still use cases.
room left.

To put our use casesinto context, we will draw a use-case diagram (Rational, 1997; Jacobson, Christerson,
Jonsson, Overgaard, 1992; Ambler, 1998a), an example of which is shown inFigure 2. Use-case diagrams are
straightforward, showing the actors, the use cases they areinvolved with, and the systemiitself. Anactoris
any person, organization, or system that interacts with the application but is external toit. Actorsare shown
as stick figures, use cases are shown as ovals, and the system is shown as abox. The arrows indicate which
actor isinvolved in which use cases, and the direction of the arrow indicates flow of information (in the
UML, indicating the flow is optional, although | highly suggest it). In this example, studentsare enrollingin
courses viathe help of registrars. Professorsinput and read marks, and registrars authorize the sending out
of transcripts (report cards) to students. Note how for some use cases there is more than one actor
involved, and that sometimes the flow of information isin only one direction.

Input Marks

Professor

Student DistribL_Jte i
Transcripts

Registrar

Enrol in
Course

T

Figure2. An exampleof ause-case diagram.

2.3 Interface-Flow Diagrams
Toyour usersthe user interface isthe system. Itisassimpleasthat. Doesitnot Interfaceflow diagrams

make sense that you should have some sort of mechanism to help you design a show therelationships
user interface? Prototypes are one means of describing your user interface, between the user
although with prototypes you can often get bogged down in the details of how inter face components,
theinterface will actually work. Asaresult you often miss high-level screensand reports,
relationships and interactions between the interface objects (usually screens) of that make up your
your application. Interface-flow diagrams (Page-Jones, 1995; Ambler, 1998a) application.

allow you to model these high-level relationships.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 4
:Main
Menu
select select
customer icon order icon
:Customer ‘Order click ‘Product
Search Entry search Search
Screen Screen button Screen
I I
click click click
search search search
button button button
¥ ¥ ¥
:Customer
:Customer o :Product
List
select select select select
custtinﬁer/customer print product
Lislomer t‘m L :Order B ; L
Edit - Edit
Printout
Screen Screen
[
select
print
¥
Customer
Summary
Report

Figure3. An interfaceflow diagram for an order-entry system.

In Figure 3 we see an example of aninterface-flow diagram for an order-entry system. The boxes represent
interface objects (screens, reports, or forms) and the arrows represent the possible flow between screens.
The labels on the arrows represent the action that the user has to take to traverse from one interface object
to another. For example, when you are on the main menu screen you can go to either the customer search
screen or to the order-entry screen by clicking on the appropriate icons. Once you are on the order-entry
screen you can go to the product search screen or to the customer order list by clicking on the
corresponding buttons. Interface-flow diagrams allow you to easily gain ahigh-level overview of the
interface for your application.

Because interface-flow diagrams offer a high-level view of theinterface of a system you can quickly gain an
understanding of how the system is expected to work. It putsyou into a position where you can easily do
somereality checking. For example, does the screen flow make sense? | am not so sure. Why cannot | get
from the customer edit screen to the customer order list, whichisalist of all the orders that a customer has

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 5

ever made. Furthermore, why cannot | get the same sort of list from the point of view of aproduct? In some
casesit might beinteresting to find out which ordersinclude a certain product, especially when the product
is back-ordered or no longer available.

The boxes are often documented by the appropriate screen, report, or form designs as well as adescription
of their purpose. Although the UML doesn t directly include interface-flow diagramsin a pinch you can
substitute collaboration diagrams, discussed el sewhere in this paper, where the instances are screen
objects.

2.4 Class Diagrams

Class diagrams (Rational, 1997; Ambler, 1998a; Booch 1994; Rumbaugh, Blaha, Classdiagrams
Premerlani, Eddy, & Lorenson, 1991; Shlaer & Mellor 1992), formerly called object (object models)
models, show the classes of the system and their intrarel ationships (including arethe mainstay
inheritance, aggregation, and associations). Figured of OO modeling.

shows an example class diagram, using the UML notation, which models the Contact-Point analysis pattern
(Ambler, 1998a). Class diagrams are the mainstay of OO modeling and are used to show both what the
system will be ableto do (analysis) and how it will be built (design).

Business Entity 1.n Contact Point (Abstract o.n described by [Contact Point Type
1.n contacted through 1..1 |-description : String|
+sendTo()) O
+labelinfo() Listable

i

IShipping Address (Abstract Phone Number

-number : Large Intege
-countryCode : Intege

+call()
4 +sendTo()
+labellnfo()
Electronic Addresg Surface Address
-emailAddress : Strirlg -street : String
+sendTo() ~city : String
+labelinfo() -state : String
-country : String
-zip : Zip Code
+sendTo()
+labelinfo()

Figure4. A classdiagram representing the Contact-Point analysis pattern.

Class diagrams are typically drawn by ateam of people lead by an experienced OO modeler. Depending on
what is being modeled the team will be composed of subject matter experts who supply the business
knowledge captured by the model, and/or other devel opers who provide input into how the application
should be designed. Theinformation contained in aclass diagram directly maps to the source code that will
be written to implement the application and therefore a class diagram must always be drawn for an OO

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 6

application. Notice how the class Contact Point Type implements the Listableinterface (interfaces are Java
programming constructs).

Classes are documented with a description of what they do, methods are documented with a description of
their logic, and attributes are documented with a description of what they contain, their type, and an
indication of arange of valuesif applicable. Statechart diagrams, see below, are used to describe complex
classes. Relationships between classes are documented with a description of their purpose and an
indication of their cardinality (how many objects are involved in the relationship) and their optionality
(whether or not object must be involved in the relationship).

Blatant Advertising Purchase Building Object Applications That Work today!
Building Object Applications That Work is an intermediate-level book about
Building Object object-oriented development. It covers awide range of topics that few other
Applications that Work books dare to consider, including: architecting your applications so that

they re maintainable and extensible; OO analysis and design techniques; how
to design software for stand-alone, client/server, and distributed
environments; how to use both relational and object-oriented (OO) databases
to make your objects persistent; OO metrics, analysis and design patterns; OO
testing; OO user interface design; and amultitude of coding techniques to
make your code robust. Visit
http://www.ambysoft.com/buildingObj ectApplications.html for more details.

2.5 Activity Diagrams

Activity diagrams (Rational, 1997) are used to document the logic of asingle Activity diagrams

operation/method or the flow of logic of abusiness process. In many ways activity areused to model

diagrams are the object-oriented equivalent of flow charts and data-flow diagrams thelogic of a

(DFDs) from structured development (Gane & Sarson, 1978). business process
or method.

The activity diagram of Figure 5 shows the business logic for using a credit-card operated pump for filling
your car with gasoline/petrol. The rounded rectangles represent processes to perform, the diamonds
represent decision points, the arrows represent transitions between processes, the thick bars represent the
start and end of potentially parallel processes, thefilled circle represents the starting point of the activity,
and thefilled circle with aborder represents the ending point.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler

[tries other card]

Person::Pump Gas

[Card accepted]

Pump
Gas

Pump
Gas

Process

Credit Card Display

Advertisement

Payment

—

[gives up]

Figure5. An activity diagram for using an automated gasoline/petrol pump.

O

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 8

Activity diagrams are usually documented, if at all, with abrief description of the activity and an indication
of any actions taken during a process. In fact, processes can be described with more detailed activity
diagrams or with abrief description. In many ways activity diagrams are simply avariation of statechart
diagrams, described in section 2.10 below.

2.6 Data Diagrams

Relational databases are often used as the primary storage mechanism to RDBsare commonly used
make your objects persistent. Because relational databases do not tostoreobjects. Therefore
completely support OO concepts the physical design of your databaseis we need a diagram that
often different than the design of your class diagram. Data diagrams (Hay, describes how we will use
1996; Ambler, 1998a) are used to communicate the physical design of a them.

relational database.

Position Employee Task
PositionD ||| Worksat n qEmployeeNo[\[| Assignedto | /| TaskTD
Title 1l UN Name U I Description
SalaryRange galary

1 t

N4 artDate

[==]
Benefit
Flhiahl
f"rﬂ BenefitlD > Has
Description
Value
Rules

Figure6. A datadiagram for a simple human resour ces database.

In Figure 6 we see an example of adata diagram for the design of asimple human resources system. Inthe
diagram we have four data entities Position, Employee, Task, and Benefit which in many ways are
simply classes that have data but no functionality. The entities are connected by relationships.
Relationshipsin adatadiagram areidentical in concept to associationsin aclass diagram. Oneinteresting
thing to note isthe concept of akey: A key isone or more attributes that uniquely identify an entity. On
data diagrams keys are indicated by underlining the attribute(s) that define them.

The strength of data diagrams isthat data entities are conceptually the same as the tables of arelational
database and that attributes are the same as table columns, providing a one-to-one mapping. Although
often tempted to use data diagrams to drive the development of class diagrams, | tend to shy away from this
approach. Itismy experience that to successfully use relational technology for object-oriented applications
you should let your class diagram drive the design of your data diagram because the class diagram models
the full picture, dataand behavior, needed by your OO application. In other words create the class diagram
that isright for your application and then use it to derive the data base design for that application.

Data entities are described by a paragraph and their attributes, like those of classes, are documented with a
description of what they contain, their type, and an indication of arange of valuesif applicable.
Relationships between entities are documented with a description of their purpose and an indication of their
cardinality (how many objects are involved in the relationship) and their optionality (whether or not object
must be involved in the relationship).

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 9

2.7 Sequence Diagrams

A sequence diagram (Rational 1997; Jacobson, Christerson, Jonsson, Overgaard, Sequence
1992; Ambler, 19983) is often used to rigorously define the logic for a use-case diagramsare used
scenario. Because sequence diagrams|ook at the use case from a different direction torigorously
from which it was originally developed, it is common to use sequence diagrams to document and
validate your use cases. Figure 7 shows an example, using the UML notation, of a verify thelogic
sequence diagram. Sequence diagrams are adesign construct that are typically drawn contained within
by a group of developers, often the programmers responsible for implementing the use cases.

scenario, lead by the designer or architect for the project.

Transfer accountl withDrawal account2 i
Screen :Account :Transaction :Account ‘Transaction
Transfer to:

)

Withdraw

N

Ry

Amount
Transfer to
P
mount lJ
Amount I

Figure7. A sequencediagram for transferring funds from one account to another.

Traditional sequence diagrams show the types of objects" involved in the use case, the messages that they
send each other, and any return values associated with the messages. For large applicationsit is quite
common to show the components and use cases in addition to objects across the top of the diagram. The
basic ideais that a sequence diagram shows the flow of logic of ause casein avisua manner, allowing you
to both document and reality check your application design at the same time. The boxes on the vertical lines
are called method-invocation boxes and they represent the running of a method in that object.

Sequence diagrams are agreat way to review your work as they force you to walk through the logic to fulfill
ause-case scenario. Second, they document your design, at least from the point of view of use cases.
Third, by looking at what messages are being sent to an object/component/use case, and by looking at

* Objects (instances) in the UML are shown underlined to distinguish them from classes. In Figure 7 we
have named and unnamed objects: :Transfer Screen isan instance of the Transfer Screen class and both
accountl and account2 areinstancesof Account. We didn t name theinstance of Transfer Screen
because there is only one and we really do not care which one, whereas there are two instances of Account
for this example therefore they needed to be named. If we had cared about which instance of Transfer
Screen, perhapsit has to be screen 1701 for some reason (probably for testing), then we would have named
itaswell.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler

10

roughly how long it takes to run the invoked method, you quickly get an understanding of potential

bottlenecks, allowing you to rework your design to avoid them.

When documenting a sequence diagram it isimportant to maintain traceability to the appropriate methodsin
your class diagram(s). The methods should already have their internal logic described as well astheir return

values (if they do not, time to document them).

2.8 Component Diagrams

Component diagrams (Rational, 1997; Booch 1994) show the software components
that make up alarger peice of software, their interfaces, and their interrel ationships.
For the sake of our discussion, acomponent may be any large-grainitem such asa
common subsystem, an exectuable binary file, acommercial off-the-shelf (COTS)
system, an OO application, or awrapped legacy application that isused in the day-
to-day operations of your business. In many ways acomponent diagram issimply a
classdiagram at alarger, albeit |ess-detailed, scale.

Component
diagrams show
software
components, their
interfaces, and
their
interrelationships.

Figure 8 shows an example of acomponent diagram being used to model the architectural businessview of a
telecommunications company. The boxes represent components, in this case either applications or internal
subsystems, and the dotted lines represent dependencies between components. One of the main goals of
architectural modeling isto partition a system into cohesive components that have stable interfaces,
creating a core that need not change in reponse to subsystem-level changes (Mowbray, 1997). Component

diagrams areideal for this purpose.

Hardware
. Offerings .

Customer

IManagement F--=---- Billing F-----

Network
Management

Transaction
Rating

Figure8. A component diagram for the architectural business view of a telecommunications company.

Each component within the diagram will be documented either by a more detailed component diagram, ause-
case diagram, or by aclassdiagram. Inthe example presented in Figure 8 it islikely that you would want to
develop a set of detailed models for the component Customer Management becauseit is areasonably well-
defined subset. At the same time you would draw a more detailed component diagram for Network
Management becauseit is alarge and complex domain that needs to be broken down further.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler

Components can be implemented using awide range of technologies, include CORBA , Microsoft's COM+,

Java, and Enterprise JavaBeans (EJB).

Blatant Advertising Purchase The Elementsof Java Style today!

This book (Vermeulen et. al., 2000) presents a collection of strategiesfor
writing superior Java source code. This book presents awider range of
guidelines than what is presented here in this paper, and more importantly
presents excellent source code examples. It covers many topics that are not
covered in this paper, such as type safety issues, exception handling,
assertions, and concurrency issues such as synchronization. This paper was
combined with Rogue Wave sinternal coding standards and then together
were evolved to become The Elements of Java Style, so you should find the
book to be an excellent next step in your Javalearning process. Visit
http://www.ambysoft.com/elementslavaStyle.html for more details.

2.9 Deployment Diagrams

Deployment diagrams (Rational, 1997) show the configuration of run-time
processing components and the software that runs on them. Figure 9 showsan
example of adeployment diagram, using the UML notation, which models the
configuration of a customer service application that takes athree-tier client server
approach. Deployment diagrams are reasonably simple models that are used to
show how the hardware and software components will be configured and deployed
for an application.

Deployment
diagrams show the
run-time
configuration of
hardwareand
software
components.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 12
DEBEServerl: ATX DEServer2: MVS
<=<datahase=>
customerDB
N
" rd
.
5 s

:Sales And

Service

Client: Win95
:Customer
Service

Screens

Figure9. A deployment diagram for athree-tier client/server application.

Deployment diagrams reflect decisions that have been made by the technical architecture group. In Figure9
athree-tier client/server architecture has been chosen, as well as those within the detailed models devel oped
for the application. The message flow between componentsis often analyzed to determine which software
components should be deployed to which hardware devices. Theideaisthat you want to utilize the
hardware at your disposal in the best way possible to meet the requirements for your application.

For each component of a deployment diagram you will want to document the applicable technical issues,
such as the required transaction volume, the expected network traffic, and the required response time.
Furthermore, each component will be documented by a set of appropriate models. For example the
databases will be described with data models, the application server will be described with acomponent
diagram and/or class diagram, and the customer service screens would at least be documented by an
interface-flow diagram and a prototype.

2.10 State Diagrams
Objects have both behavior and state, in other words they do things and they know Statechart diagrams

things. Some objects do and know more things, or at least more complicated things, show thevarious
than other objects. Some objects are incredibly complex, so to better understand states, and the
them we often draw a statechart diagram (Rational, 1997; Ambler, 1998a; Booch transitions between
1994; Rumbaugh, Blaha, Premerlani, Eddy, & Lorenson, 1991; Shlaer & Mellor 1992) those states, of an
to describe how they work. object.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 13

Unlack
Qpen
l Unlack
h 4 l
Withdra = aQ
@ Close Artive Updating uery
Deposit »
Deposit
Unlock
Overdrawn 0] i Q F
uerying ue
Cuery | i
Unlock ‘
Account

",

Figure10. A statechart diagram for a bank account.

In Figure 10 we see the statechart diagram for abank account. The rectangles represent states which are
stagesin the behavior of an object. States are represented by the attribute values of an object. The arrows
represent transitions, progressions from one state to another that are represented by the invocation of a
method on an object/class. Transitions are often areflection of our businessrules. There are also two kinds
of psuedo states, an initial statein which an object isfirst created and afinal state that an object doesn t
leave onceit enter it. Initial states are shown as closed circles and final states shown as an open circle
enclosing asolid circle. In Figure 10 we see that when an account is active we see that we can withdraw
from it, deposit to it, query it, and closeit.

States are documented by a paragraph describing them and aindication of the range of values that
applicable attributes take in the state, for example when an account is overdrawn the balance is negative. It
isalso appropriate to document any actions that are taken when an object enters a state, for example when
an account becomes overdrawn a twenty-five dollar fineis charged to it. Transitions are documented with
anindication of the event that triggers them. Where statechart diagrams are used to document the internal
complexities of aclass, collaboration diagrams are used to document the external interactions between
objects.

2.11 Collaboration Diagrams

Unlike some notations (Coad & Y ourdon, 1991; Ambler, 2000a) that show both state Collaboration
and behavior on class diagrams, the UML separates out behavior into diagrams show the
collaboration diagrams (Retiona, 1997; Ambler, 1998a). The basic difference collaborations
between the two approachesis that UML class diagrams do not include messages, (messages), but not
which makes sense because messages tend to clutter your class diagram and make their order, between
them difficult to read. Because UML class diagrams do not show the message flow objects.

between classes a separate diagram, the collaboration

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 14

diagram, was created to do so. Collaboration diagrams show the message flow between objectsin an OO
application and imply the basic associations (rel ationships) between classes.

display info—
drop student = display info—>
:SI‘)Em]jaljllar enrol student — max seats .
t : ; - .
S:reerf <oinfo Seminar 0 s?;l;s Ouse
i «—omfo
_dlsplay create .
openT info— destroy |
@Mﬂ gi.n.fu display info-l
‘Course .
List Screen ‘Enrolment

ginfo display info.|

:Student

Figure11. A collaboration diagram for a smple university.

Figurell presents asimplified collaboration diagram for auniversity application. The rectangles represent
the various objects? that make up the application, and the lines between the classes represent the

rel ationshi ps/associations between them. Messages are shown as alabel followed by an arrow indicating
the flow of the message and return values are shown as |abels with arrow-circles beside them. In thefigure
there are instances of the Seminar and Enrolment classes, open and display info are both messages, and
seats isareturn value (presumably the result of sending the message max seats to Cour se).

Collaboration diagrams are usually drawn in parallel with class diagrams and sequence diagrams. Class
diagrams provide input into the basic rel ationships between objects, and sequence diagrams provide an
indication of the message flow between objects. The basic ideais that you identify the objects, the
associations between the objects, and the messages that are passed between the objects. Collaboration
diagrams are used to get abig picture outlook for the system, incorporating the message flow of many use
case scenarios. Although you can indicate the order of message flow on a Collaboration Diagram, by
numbering the messages, this typically is not done as sequence diagrams are much better at showing
message ordering.

3. How the Modeling Techniques Fit Together

Detailed modeling also called component modeling, application modeling, or subsystem modeling
concentrates on the modeling of one application or subsystem. Where the architectural models define the
components needed to support your organization, a detailed model definesthe inner workings of asingle
component.

2The UML also allows you to indicate the roles that objects take on, acommon occurrence in both
collaboration diagrams and sequence diagrams.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 15

User Interface Interface-Flow
Prototype Diagram
UA AD
‘—‘—v CRC
Model
| ‘ —
Use-Case UsCases oo /TN N0
Diagram
A UAf— Physical
DataModel
] 0
Activity LT y I
> Diagram = Class
AD| — Diagram
T ADP) I
J Sequence
Diagram
Deployment Component R g b g | U DAl
Diagram Diagram 2
AD AD|
Key:
v f Vst Technical Statechart Collaboration
A= Anglys[Prototype Diagram Diagram
D =Designer D.P DA DP
P=Programmer

Figure 12. The Detailed M odeling process pattern.

Figure 12 depicts the Detailed Modeling process pattern (Ambler, 1998b) in which the boxes represent the
main techniques/diagrams of OO modeling and the arrows show the relationships between them, with the
arrow headsindicating an input into relationship. For example, we see that an activity diagramis aninput
into aclassdiagram. In the bottom right-hand corner of each box are letters which indicate who istypically
involved in working on that technique/diagram. The key is straightforward: U=User, A=Analyst,
D=Designer, and P=Programmer. Theletter that is underlined indicates the group that performs the majority
of thework for that diagram. For example, we see that users form the majority of the peopleinvolved in
developing a CRC model and designers form the majority of those creating statechart diagrams.

Blatant Advertising Purchase Process Patternstoday!

This book presents a collection of process patterns for successfully
initiating a software project and taking it through the construction
PROC ESS phase. It provides awealth of advice for engineering requirements,

PATTERNS modeling, programming, and testing. It puts these topics in the context
uikding Large-Scole Satens Using of' aproven goftware process for the deyel opment of Iz':\rgescal &
Object Technalogy mission-critical software, covering topics that you typically don t find
scorr w. amniie - in other books about object-oriented devel opment such as project

management, quality assurance, risk management, and deliverables
management. Object-oriented development is hard, particularly if you
are building systems using n-tier technology such as Enterprise
JavaBeans (EJB) or even the simple Javaplatform, and you need to
understand the big picture to be successful. Process Patterns, and its
sister book, More Process Patterns give you that big picture. For more
information, and to order online, visit
http://www.ambysoft.com/processPatterns.html

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 16

Aninteresting feature of Figure 12 isthat it illustrates that the object-oriented modeling processis both
serial inthe large and iterative in the small. The serial nature is exemplified when you look from the top-left
corner to the bottom right corner: the techniques move from requirements gathering to analysis to design.

Y ou see theiterative nature of OO modeling from the fact that each technique drives, and is driven by, other
techniques. In other wordsyou iterate back and forth between models.

From aserial perspective, Figure 13 depicts the Deliverables Drive Deliverables approach process pattern
(Ambler, 1998b), indicating the general order in which you will work on deliverables during the Construct
Phase. It isimportant to point out that the views in Figures 12 and 13 are complementary, not contradictory.
In Figure 12 we see that we generally start modeling with techniques, such as use cases and CRC models,
that focus on user requirements, moving into analysis-oriented techniques such as sequence and
component diagrams, then into design techniques and finally to code. The arrowsin Figure 13 represent a
documentsrelationship. For example a use-case diagram is documented by use cases, which in turn are
documented by sequence diagrams. Component diagrams are interesting in that acomponent within a
component diagram is often documented by either another component diagram, a class diagram, and/or a
use-case diagram.

User reguirements Analysis Design Code
Use-Case Diagram Com —> plas —> Sta
Diagram Diagram Diagram
Sequence Source
UseCases Diagram Code
CRCModd Prooes Deployman Coll_aboralion
Diagram Diagram Diagram
Interface-Flow Technica Data
Diagram Prototype Diagram
User Interfece
Prototype

Figure 13. The Deliverables Document Deliver ables process pattern.
Asan aside, inthe UML (Rational, 1997) the traces stereotype is used to connect related pieces of

information in separate models to maintain traceability throughout your work. Traceability isan important
concept for testing.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 17

Blatant Advertising Purchase More Process Patternstoday!
This book presents a collection of process patterns for successfully
delivering a software project and then operating and supporting it once
itisin production. It providesawealth of advice for testing your
object-oriented application, for reworking it, for preparing to transition it
to your user community, and for supporting it onceit isin production.
DT e It puts these topics in the context of a proven software process for the
g Diject Technelagy - . - .
sconn w. development of large-scale, mission-critical software, covering topics
] that you typically don t find in other books about object-oriented
development such as project management, quality assurance, risk
management, and deliverables management. Object-oriented
development is hard, particularly if you are building systems using n-
tier technology such as Enterprise JavaBeans (EJB) or even the
simple Java platform, and you need to understand the big picture to
be successful. More Process Patterns, and its sister book, Process
Patterns, give you that big picture. For moreinformation, and to order
online, visit http://www.ambysoft.com/moreProcessPatterns.html

4. Summary

Itis my experience that the UML isavery good start at describing the models that are needed to develop a
model representing an OO application, but that it is not sufficient. In thiswhite paper we explored several
techniques for modeling an OO application, many of which areincluded in the UML, and saw how they fit
together.

5. References

Ambler, SW. (1998a). Building Object Applications That Work Your Step-by-Step Handbook for
Developing Robust Systems With Object Technology. New Y ork: Cambridge University Press.

Ambler, SW. (1998b). Process Patterns Building Large Scale Systems Using Object Technology . New
Y ork: Cambridge University Press.

Ambler, SW. (1999). More Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New York: Cambridge University Press.

Ambler, S.W. (2000a). The Object Primer2nd Edition The Application Developer s Guide to Object-
Orientation. New Y ork: Cambridge University Press.

Ambler, S.W. (2000b). The Unified Process Inception Phase. Gilroy, CA: R& D Books.
Ambler, S.W. (2000c). The Unified Process Elaboration Phase. Gilroy, CA: R&D Books.
Ambler, S.W. (2000d). The Unified Process Construction Phase. Gilroy, CA: R&D Books.

Beck, K. & Cunningham, W. (1989). A Laboratory for Teaching Object-Oriented Thinking. Proceedings of
OOPSLA 89, pp. 1-6.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 18
Booch, G. (1994). Object-Oriented Analysis and Design with Applications, 2™ Edition. Redwood City,
Cadlifornia: The Benjamin/Cummings Publishing Company, Inc.
Coad, P. (1992) Object-Oriented Patterns Communications of the ACM, 35(9) pp. 152-159.

Coad, P., North, D., & Mayfield, M. (1995). Object Models Strategies, Patterns, & Applications.
Englewood Cliffs, NJ: Y ourdon Press.

Coad, P., Yourdon, E. (1991). Object-Oriented Analysis, 2™ Edition. Englewood Cliffs, New Jersey: Y ourdon
Press.

Gane, C., Sarson, T. (1978). Structured Systems Analysis: Tools and Techniques. Englewood Cliffs, New
Jersey: Prentice Hall, Inc.

Hay, D.C. (1996). Data Model Patterns: Conventions of Thought. New Y ork: Dorset House Publishing.

Jacobson, |., Christerson, M., Jonsson, P., Overgaard, G. (1992). Object-Oriented Software Engineering A
Use Case Driven Approach. ACM Press.

Mowbray, T. (1997). Architectures: The Seven Deadly Sins of OO Architecture. New York: SIGS
Publishing, Object Magazine April, 1997, 7(1), pp. 22-24.

Page-Jones, M. (1995). What Every Programmer Should Know About Object-Oriented Design. New Y ork:
Dorset-House Publishing.

Rationd (1997). The Unified Modeling Language v1.1 Documentation Set. Rational Software Corporation,
Monterey California.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (1991). Object-Oriented Modeling and
Design. Englewood Cliffs, New Jersey: Prentice Hall, Inc.

Shlaer, S, Méellor, S. (1992). Object Life Cycles Modeling the World in States . Englewood Cliffs, New
Jersey: Y ourdon Press.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing Object-Oriented Software. New Jersey:
Prentice Hall, Inc.

Yourdon, E. (1997). Death March: The Complete Software Developer s Guide to Surviving Mission
Impossible Projects. Upper Saddle River, NJ: Prentice-Hall , Inc.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 19

6. Glossary

Activity diagram A UML diagram which can be used to model a high-level business process or the
transitions between states of a class (in this respect activity diagrams are effectively specializations of
statechart diagrams).

Actor Any person, organization, or system that interacts with an application but is external to it.

Analysis An approach to modeling where the goal isunderstanding the problem domain.

Analysisparalysis A derogatory term used by system professionals to describe the actions of a
development team that spends too much time modeling, trying to document every minute detail.

Analysispattern -- A pattern that describes a solution to a business/analysis problem.
Architectural modeling High-level modeling, either of the problem or technical domain, whose goal isto
provide acommon, overall vision of the problem domain. Architectural models provide a base from which

detailed modeling can begin.

Business-domain expert (BDE) -- Someone with intimate knowledge of al or aportion of aproblem domain.
Often referred to as a subject matter expert (SME).

CASE Computer aided system engineering.

Classdiagram -- Class diagrams show the classes of a system and their intrarelationships. Class diagrams
are often mistakenly referred to as object models.

Collaboration diagram Collaboration diagrams show instances of classes, their interrelationships, and the
message flow between them. The order of the messaging is not indicated.

Component diagram A diagram that shows the software components, their interrelationships, interactions,
and their public interfacesthat comprise an application, system, or enterprise.

CRC (Class Responsibility Collaborator) card A standard index card divided into three sections that
show the name of the class, the responsibilities of the class, and the collaborators of the class.

CRC mode A collection of CRC cards that describe the classes that make up a system or acomponent of
asystem.

Datadiagram A diagram used to communicate the design of a (typically relational) database. Data
diagrams are often referred to as entity-relationship (ER) diagrams.

Datamode A datadiagram and its corresponding documentation.

Diagram A visual representation of a problem or solution to a problem.

Domain architecture A collection of high-level models that describe the problem domain. Domain
architectures are typically documented by high-level use cases, use-case diagrams, and class models that

describe the various sub domains and the rel ationships between them.

Design A style of modeling with the goal of describing how a system will be built based on the defined
requirements.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 20

Design pattern A pattern that describes a solution to a design problem.

Enterprissmodeling The act of modeling an organization and its external environment from a business,
not and information system, viewpoint.

Featurecreep The addition as development proceeds of new features to an application that are above and
beyond what the original specification called for. Thisisalso called scope creep.

Interface-flow diagram A diagram that models the interface objects of your system and the relationships
between them.

Joint application design (JAD) A structured, facilitated meeting in which modeling is performed by both
users and devel opers together. JADs are often held for gathering user requirements.

Message-invocation box The long, thin vertical boxes that appear on sequence diagrams that represent a
method invocation in an object.

Middleware The technology that allows computer hardware to communicate with one another. This
includes the network itself, its operating system, and anything needed to connect computers to the network.

Mode An abstraction describing a problem domain and/or a solution to a problem domain. Traditionally
models are thought of as diagrams plus their corresponding documentation although non-diagrams such as
interview results, requirement documents, and collections of CRC cards are also considered to be models.

Modeling The act of creating or updating one or more models.

Notation The set of symbolsthat are used in the drawing of diagrams. The Unified Modeling Language
(UML) defines a defacto industry-standard modeling notation.

Pattern A model of several classes that work together to solve acommon problem in your problem or
technical domain.

Per sistence mechanism-- The permanent-storage facility used to store objects. Relational databases, flat
files, and objectbases are all potential persistence mechanisms.

Processdiagram A diagram that shows the movement of data within asystem. Similar in concept to a
DFD but not asrigid and documentation heavy.

Processpattern A pattern which describes a proven, successful approach and/or series of actions for
developing software.

Prototyping Aniterative analysis technique in which users are actively involved in the mocking up of the
user interface for an application.

Requirementsdocument A document which describes the user, technical, and environmental
requirements for an application. Thisdocument potentially contains the major use cases, detailed use-case
scenarios, and traditional requirements for the application aswell.

Sequencediagram A diagram that shows the types of objectsinvolved in a use-case scenario, including
the messages they send to one another and the values that they return.

Statechart diagram A diagram that describes the states that an object may bein, aswell asthe transitions
between states.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 21

Technical architecture A set of models and documents that describes the technical components of an
application, including but not limited to the hardware, software, middleware, persistence mechanisms, and
operating systems to be deployed.

Unified Modeling Language (UML) Theindustry standard OO modeling notation proposed by Rational
Corporation of Santa Clara California. At thetime of thiswriting the UML is being considered by the Object
Management Group (OMG) to make it the OMG standard.

Usecase A description of ahigh-level user requirement that an application may or may not be expected to
handle.

Use-casediagram A diagram that shows the use cases and actors for the application that we are
developing.

Use-casescenario A description of aspecific, detailed user requirement that an application may or may
not be expected to handle. A use-case scenario is adetailed example of a use case.

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 22

7. About the Author

Scott W. Ambler is a Software Process Mentor living in Newmarket, Ontario, 45 km north of Toronto,
Canadaand is President of Ronin International (www.ronin-intl.com) a consulting firm specializing in object-
oriented architecture, software process, and Enterprise JavaBeans (EJB) development. He has worked with
OO technology since 1990 in various roles: Business Architect, System Analyst, System Designer, Process
Mentor, Lead Modeler, Smalltalk Programmer, Java Programmer, and C++ Programmer. He has also been
active in education and training as both aformal trainer and as an object mentor.

Scott has a Master of Information Science and a Bachelor of Computer Science from the University of
Toronto. Heisthe author of the best-selling books The Object Primer, Building Object Applications That
Work, Process Patterns, and More Process Patternsand co-author of The Elements of Java Style, al of
which are published by Cambridge University Press (www.cup.org). Scott isalso editor of The Unified
Process Series from R& D Books (www.rdbooks.com) to be published in 2000. Scott is acontributing editor
and columnist with Software Devel opment (http://www.sdmagazine.cor) and writes columns for Computing
Canada (http://www.plesman.cor).

He can be reached viae-mail at:

scott@ambysoft.com
scott.ambler@ronin-intl.com

Visit his personal web site:
http://www.AmbySoft.com

Visit his corporate web site:
http://www.ronin-intl.com

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 23
Index
A documenting 8
example 8
Activity diagram 6,19 Data model 19
documentation of 8 Databases 6
example 8 Data-flow diagram (DFD)
Actor 19 and activity diagrams ... 6
Anaysis 19 Deployment diagram.
Analysis paralysis 19 documenting 12
Analysis pattern 19 example
Contact Point 5 Design 19
Analysis patterns 6 Design pattern 20
Architectural Modeling.........cueueeneeeneereenseenennnens 19 Design patterns 6
Architecture 6 Detailed modeling 14
Assertions 1 modeling order. 16
Author Diagram. 19
contacting 2 Distributed design. 6
B Domain architecture 19
BDE.....coninerreriinns See Business domain expert E
Booch 5,10, 12 EB 1
Book Enterprise JavaBeans. 11
Building Object Applications That Work 6 Enterprise modeling 20
Elements of Java Style. Entity-relationship (ER) diagramSee Data diagram
Process Patterns. Example source code. 11
Business domain expert (BDE)coccuereneeenne 1,19 Exception handling 1
c Extreme Programming 2
F
CASE 19
Class diagram 5,19 Feature creep. 20
and data diagrams 8 FLOOT 2
documenting 6 Full Lifecycle Object-Oriented Testing..........o...... 2
example 5 |
Class diagramming 5
Class responsibility collaborator (CRC) modeling Interface flow diagram..........c.cocveereneenieneenenns 3,20
1 example 4
Collaboration diagram............c.ceeeeeereerreeneeenees 13,19 Interface-flow diagram
example 14 documenting 5
COM+. 11 Iterative in the small 16
Component diagram...........ccvnereenisinens 10,19 3
documenting 10
example 10 Jacobson 2,39
Concurrency 1 Java 11
CORBA 11 Joint application design (JAD).......ccoeureereeerennenns 20
CRC....ovvureees See Class responsibility collaborator
CRC card 19 M
CRC model 19 M esSage iNVOCation DOX.......o..ccoccvvvveveererressssees 20
D Metrics 6
Middleware 20
Data diagram 8,19 Model 20
and class diagrams 8 Modeling 20

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 24

Modeling techniques

modeling order. 16
N
Notation 20
o
Object databases 6
Object MOodeloccreereernreens See Classdiagram
Object-Oriented Software Process..........ccueene 2
OOSP. 2
P
Pattern 20
Persistence

relational databases...... 8
Persistence mechanism.... 20
Process diagram. 20
Process pattern 20

16
15
20

deliverables document deliverables................
detailed modeling

Prototyping
and interface flow diagrams............cceeevreencienns 3
R
Relational databases 6
Requirements doCUMENt.........ceweeerreereeeneereenenns 20
Rumbaugh 5,12
S
Scott Ambler
contacting 22
Sequence diagram 9,20
documenting 10
example 9
when to use. 9
Serial development 16

Serial inthelarge 16
Shlaer & Méllor. 512
State
notation 13
Statechart diagram.........c..ceeeeneeeeneeneenenenns 12,20
documenting 13
example 13
Synchronization un
T
Task process pattern

deliverables document deliverables....
Technical architecture

Testing

user interface flow. 4
Traces stereotype. 16
Transition

notation 13
Type safety 11
u
UML . See Unified modeling language
Unified Modeling Language. 2

Unified Modeling Language (UML)........ 16,17,21

Unified Process 2
Use case 21
examples of. 2
Use-case 2
Use-case diagram 321
example 3
Use-case scenario 2,21
examples of. 2
X
XP 2

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

