
The Unified Modeling Language v1.1 and Beyond:
The Techniques of Object-Oriented Modeling

An AmbySoft Inc. White Paper

Scott W. Ambler
Object-Oriented Consultant

AmbySoft Inc.

Material for this White Paper has been modified from the books
Building Object Applications That Work

and
Process Patterns

by Scott W. Ambler

http://www.ambysoft.com/umlAndBeyond.pdf

Finalized: February 11, 2000

Copyright 1998-2000 Scott W. Ambler

Table Of Contents

1. THE UNIFIED MODELING LANGUAGE AND BEYOND... 1

2. UNDERSTANDING YOUR MODELING OPTIONS.. 1

2.1 CRC MODELING...1
2.2 DEFINING USE CASES, USE-CASE SCENARIOS, AND USE-CASE DIAGRAMS..2
2.3 INTERFACE-FLOW DIAGRAMS...3
2.4 CLASS DIAGRAMS...5
2.5 ACTIVITY DIAGRAMS...6
2.6 DATA DIAGRAMS...8
2.7 SEQUENCE DIAGRAMS..9
2.8 COMPONENT DIAGRAMS..10
2.9 DEPLOYMENT DIAGRAMS...11
2.10 STATE DIAGRAMS...12
2.11 COLLABORATION DIAGRAMS..13

3. HOW THE MODELING TECHNIQUES FIT TOGETHER...14

4. SUMMARY..17

5. REFERENCES ...17

6. GLOSSARY...19

7. ABOUT THE AUTHOR...22

List of Figures

Figure 1. The layout of a CRC card..2
Figure 2. An example of a use-case diagram. ...3
Figure 3. An interface flow diagram for an order-entry system...4
Figure 4. A class diagram representing the Contact-Point analysis pattern...5
Figure 5. An activity diagram for using an automated gasoline/petrol pump...7
Figure 6. A data diagram for a simple human resources database..8
Figure 7. A sequence diagram for transferring funds from one account to another..9
Figure 8. A component diagram for the architectural business view of a telecommunications company........10
Figure 9. A deployment diagram for a three-tier client/server application..12
Figure 10. A statechart diagram for a bank account...13
Figure 11. A collaboration diagram for a simple university...14
Figure 12. The Detailed Modeling process pattern...15
Figure 13. The Deliverables Document Deliverables process pattern...16

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

1

1. The Unified Modeling Language and Beyond
This white paper describes the object-oriented (OO) modeling techniques employed on large-scale, mission-
critical applications. The modeling techniques described by the Unified Modeling Language (UML) v1.1
(Rational, 1997) are used as a basis for OO modeling. Because it is my experience that they are not sufficient
(Ambler, 1998a) for completely modeling an OO application I have extended the UML with additional
industry-standard modeling techniques. Heresy? Read on and decide for yourself.

2. Understanding Your Modeling Options
In this white paper I will briefly review the major modeling techniques and diagrams used on object-oriented
development projects. The goal of this white paper is to describe each modeling approach, provide an
example where appropriate, and indicate when the approach should be used. I am not going to go into
enough detail to teach you how to actually model with them, there are many good books written about OO
analysis and design, I instead direct you to the best sources for each modeling approach.

The modeling techniques that we will cover in this white paper include:
• Class responsibility collaborator (CRC) modeling
• Use cases and use-case scenarios
• Use-case diagrams
• Interface flow diagrams
• Class diagrams
• Process diagrams
• Data diagrams
• Sequence diagrams
• Component diagrams
• Deployment diagrams
• Statechart diagrams
• Collaboration diagrams

2.1 CRC Modeling
CRC (class responsibility collaborator) modeling (Beck & Cunningham, 1989; Wirfs-Brock,
Wilkerson, and Wiener, 1990; Jacobson, Christerson, Jonsson, and Overgaard, 1992;
Ambler, 2000a) provides a simple yet effective technique for working with your users to
determine their needs. CRC modeling is a process in which a group of business domain
experts (BDEs) analyze their own needs for a system. CRC modeling sessions typically
start with brainstorming, a technique in which people suggest whatever ideas they come
up with about the application. Brainstorming allows people to get loosened up, as well as
to gain a better understanding of where the other BDEs are coming from. After the
brainstorming is finished the group produces a CRC model together, which describes the
requirements for the system.

CRC modeling
is an analysis

technique in
which users
form most of
the modeling

team.

A CRC model is a collection CRC cards, standard index cards (usually 5 x7) that have been divided into
three sections as shown in Figure 1. A class is any person, place, thing, event, concept, screen or report.
The responsibilities of a class are the things that it knows and does, its attributes and methods. The
collaborators of a class are the other classes that it works with to fulfill its responsibilities. CRC cards are a
simple, easy to explain, low-tech approach to working with users to define the requirements for an
application.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

2

Figure 1. The layout of a CRC card.

Experience shows that CRC modeling works best with front-line employees, whereas techniques such as use
cases, discussed in the next section, are more effective with upper management. CRC modeling originated as
a training tool (Beck & Cunningham, 1989) to teach experienced developers OO concepts and is also used as
a design brainstorming technique that leads directly to class diagramming (object modeling). Because CRC
models approach requirements definition from a different direction than do use cases they are often used to
validate the information gathered by use cases (and vice versa of course).

Blatant Advertising Purchase The Object Primer, 2nd Edition (late Spring of 2000)!
The Object Primer is a straightforward, easy to understand introduction to
object-oriented concepts, requirements, analysis, and design techniques
applying the techniques of the Unified Modeling Language (UML). The
Object Primer goes further to show you how to move from object modeling to
object-oriented programming, providing Java examples, and describes the
techniques of the Full Lifecycle Object-Oriented Testing (FLOOT)
methodology to enable you to test all of your development artifacts. It also
puts this material in the context of the leading software processes, including
the enhanced lifecycle for the Unified Process, the process patterns of the
Object-Oriented Software Process (OOSP), and the best practices Extreme
Programming (XP). Visit http://www.ambysoft.com/theObjectPrimer.html for
more details.

2.2 Defining Use Cases, Use-Case Scenarios, and Use-Case Diagrams
A use case (Jacobson, Christerson, Jonsson, Overgaard, 1992; Ambler, 2000a) is a
description, typically written in structured English or point form, of a potential
business situation that an application may or may not be able to handle. You can also
say that a use case describes a way in which a real-world actor a person,
organization, or external system interacts with the application. For example, the
following would be considered use-cases for a university information system:

Use cases
describe the basic
business logic of

an application.

• Enrol students in courses.
• Output seminar enrolment lists.
• Remove students from courses.
• Produce student transcripts.

A use-case scenario is a specific example of a use-case. Potential use-case scenarios for
the use case Enrol students in courses are:

Use-case
scenarios are

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

3

• A student wants to enrol in a course but they are missing a prerequisite.
• A students wants to enrol in a course but the course is over-booked for the term.
• A student wants to enrol in a course, they have the prerequisites and there is still

room left.

specific
examples of

use cases.

To put our use cases into context, we will draw a use-case diagram (Rational, 1997; Jacobson, Christerson,
Jonsson, Overgaard, 1992; Ambler, 1998a), an example of which is shown in Figure 2. Use-case diagrams are
straightforward, showing the actors, the use cases they are involved with, and the system itself. An actor is
any person, organization, or system that interacts with the application but is external to it. Actors are shown
as stick figures, use cases are shown as ovals, and the system is shown as a box. The arrows indicate which
actor is involved in which use cases, and the direction of the arrow indicates flow of information (in the
UML, indicating the flow is optional, although I highly suggest it). In this example, students are enrolling in
courses via the help of registrars. Professors input and read marks, and registrars authorize the sending out
of transcripts (report cards) to students. Note how for some use cases there is more than one actor
involved, and that sometimes the flow of information is in only one direction.

Student

Professor

Registrar

Input Marks

Enrol in
Course

Distribute
Transcripts

.

Figure 2. An example of a use-case diagram.

2.3 Interface-Flow Diagrams
To your users the user interface is the system. It is as simple as that. Does it not
make sense that you should have some sort of mechanism to help you design a
user interface? Prototypes are one means of describing your user interface,
although with prototypes you can often get bogged down in the details of how
the interface will actually work. As a result you often miss high-level
relationships and interactions between the interface objects (usually screens) of
your application. Interface-flow diagrams (Page-Jones, 1995; Ambler, 1998a)
allow you to model these high-level relationships.

Interface flow diagrams
show the relationships

between the user
interface components,

screens and reports,
that make up your

application.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

4

:Main
Menu

:Customer
Search
Screen

:Customer
List

:Customer
Edit

Screen

:Product
Search
Screen

:Product
List

:Product
Edit

Screen

:Order
Entry

Screen

:Customer
Order
List

select
customer icon

select
order icon

click
search
button

click
search
button

click
search
button

click
search
button

select
product

select
customer

select
customer

.

:Customer
Summary

Report

select
print

select
print

:Order
Printout

.

Figure 3. An interface flow diagram for an order-entry system.

In Figure 3 we see an example of an interface-flow diagram for an order-entry system. The boxes represent
interface objects (screens, reports, or forms) and the arrows represent the possible flow between screens.
The labels on the arrows represent the action that the user has to take to traverse from one interface object
to another. For example, when you are on the main menu screen you can go to either the customer search
screen or to the order-entry screen by clicking on the appropriate icons. Once you are on the order-entry
screen you can go to the product search screen or to the customer order list by clicking on the
corresponding buttons. Interface-flow diagrams allow you to easily gain a high-level overview of the
interface for your application.

Because interface-flow diagrams offer a high-level view of the interface of a system you can quickly gain an
understanding of how the system is expected to work. It puts you into a position where you can easily do
some reality checking. For example, does the screen flow make sense? I am not so sure. Why cannot I get
from the customer edit screen to the customer order list, which is a list of all the orders that a customer has

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

5

ever made. Furthermore, why cannot I get the same sort of list from the point of view of a product? In some
cases it might be interesting to find out which orders include a certain product, especially when the product
is back-ordered or no longer available.

The boxes are often documented by the appropriate screen, report, or form designs as well as a description
of their purpose. Although the UML doesn t directly include interface-flow diagrams in a pinch you can
substitute collaboration diagrams, discussed elsewhere in this paper, where the instances are screen
objects.

2.4 Class Diagrams
Class diagrams (Rational, 1997; Ambler, 1998a; Booch 1994; Rumbaugh, Blaha,
Premerlani, Eddy, & Lorenson, 1991; Shlaer & Mellor 1992), formerly called object
models, show the classes of the system and their intrarelationships (including
inheritance, aggregation, and associations). Figure4

Class diagrams
(object models)

are the mainstay
of OO modeling.

shows an example class diagram, using the UML notation, which models the Contact-Point analysis pattern
(Ambler, 1998a). Class diagrams are the mainstay of OO modeling and are used to show both what the
system will be able to do (analysis) and how it will be built (design).

Business Entity
Contact Point (Abstract)

+sendTo()
+labelInfo()

Shipping Address (Abstract)

Contact Point Type

-description : String

Electronic Address

+sendTo()
+labelInfo()

-emailAddress : String

Surface Address

+sendTo()
+labelInfo()

-street : String
-city : String
-state : String
-country : String
-zip : Zip Code

Phone Number

+call()
+sendTo()
+labelInfo()

-number : Large Integer
-countryCode : Integer

1..1

0..n described by1..n

1..n contacted through

Listable

.

Figure 4. A class diagram representing the Contact-Point analysis pattern.

Class diagrams are typically drawn by a team of people lead by an experienced OO modeler. Depending on
what is being modeled the team will be composed of subject matter experts who supply the business
knowledge captured by the model, and/or other developers who provide input into how the application
should be designed. The information contained in a class diagram directly maps to the source code that will
be written to implement the application and therefore a class diagram must always be drawn for an OO

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

6

application. Notice how the class Contact Point Type implements the Listable interface (interfaces are Java
programming constructs).

Classes are documented with a description of what they do, methods are documented with a description of
their logic, and attributes are documented with a description of what they contain, their type, and an
indication of a range of values if applicable. Statechart diagrams, see below, are used to describe complex
classes. Relationships between classes are documented with a description of their purpose and an
indication of their cardinality (how many objects are involved in the relationship) and their optionality
(whether or not object must be involved in the relationship).

Blatant Advertising Purchase Building Object Applications That Work today!
Building Object Applications That Work is an intermediate-level book about
object-oriented development. It covers a wide range of topics that few other
books dare to consider, including: architecting your applications so that
they re maintainable and extensible; OO analysis and design techniques; how
to design software for stand-alone, client/server, and distributed
environments; how to use both relational and object-oriented (OO) databases
to make your objects persistent; OO metrics, analysis and design patterns; OO
testing; ΟΟ υser interface design; and a multitude of coding techniques to
make your code robust. Visit
http://www.ambysoft.com/buildingObjectApplications.html for more details.

2.5 Activity Diagrams
Activity diagrams (Rational, 1997) are used to document the logic of a single
operation/method or the flow of logic of a business process. In many ways activity
diagrams are the object-oriented equivalent of flow charts and data-flow diagrams
(DFDs) from structured development (Gane & Sarson, 1978).

Activity diagrams
are used to model
the logic of a
business process
or method.

The activity diagram of Figure 5 shows the business logic for using a credit-card operated pump for filling
your car with gasoline/petrol. The rounded rectangles represent processes to perform, the diamonds
represent decision points, the arrows represent transitions between processes, the thick bars represent the
start and end of potentially parallel processes, the filled circle represents the starting point of the activity,
and the filled circle with a border represents the ending point.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

7

Swipe
Credit
Card

Person::Pump Gas

Pump
Gas

[Card accepted]

[tries other card]

[gives up]

Pump
Gas

Process
Credit Card

Payment

Display
Advertisement

Figure 5. An activity diagram for using an automated gasoline/petrol pump.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

8

Activity diagrams are usually documented, if at all, with a brief description of the activity and an indication
of any actions taken during a process. In fact, processes can be described with more detailed activity
diagrams or with a brief description. In many ways activity diagrams are simply a variation of statechart
diagrams, described in section 2.10 below.

2.6 Data Diagrams
Relational databases are often used as the primary storage mechanism to
make your objects persistent. Because relational databases do not
completely support OO concepts the physical design of your database is
often different than the design of your class diagram. Data diagrams (Hay,
1996; Ambler, 1998a) are used to communicate the physical design of a
relational database.

RDBs are commonly used
to store objects. Therefore

we need a diagram that
describes how we will use

them.

Figure 6. A data diagram for a simple human resources database.

In Figure 6 we see an example of a data diagram for the design of a simple human resources system. In the
diagram we have four data entities Position, Employee, Task, and Benefit which in many ways are
simply classes that have data but no functionality. The entities are connected by relationships.
Relationships in a data diagram are identical in concept to associations in a class diagram. One interesting
thing to note is the concept of a key: A key is one or more attributes that uniquely identify an entity. On
data diagrams keys are indicated by underlining the attribute(s) that define them.

The strength of data diagrams is that data entities are conceptually the same as the tables of a relational
database and that attributes are the same as table columns, providing a one-to-one mapping. Although
often tempted to use data diagrams to drive the development of class diagrams, I tend to shy away from this
approach. It is my experience that to successfully use relational technology for object-oriented applications
you should let your class diagram drive the design of your data diagram because the class diagram models
the full picture, data and behavior, needed by your OO application. In other words create the class diagram
that is right for your application and then use it to derive the data base design for that application.

Data entities are described by a paragraph and their attributes, like those of classes, are documented with a
description of what they contain, their type, and an indication of a range of values if applicable.
Relationships between entities are documented with a description of their purpose and an indication of their
cardinality (how many objects are involved in the relationship) and their optionality (whether or not object
must be involved in the relationship).

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

9

2.7 Sequence Diagrams
A sequence diagram (Rational 1997; Jacobson, Christerson, Jonsson, Overgaard,
1992; Ambler, 1998a) is often used to rigorously define the logic for a use-case
scenario. Because sequence diagrams look at the use case from a different direction
from which it was originally developed, it is common to use sequence diagrams to
validate your use cases. Figure 7 shows an example, using the UML notation, of a
sequence diagram. Sequence diagrams are a design construct that are typically drawn
by a group of developers, often the programmers responsible for implementing the
scenario, lead by the designer or architect for the project.

Sequence
diagrams are used

to rigorously
document and

verify the logic
contained within

use cases.

:Transfer
Screen

account1
:Account

withDrawal
:Transaction

account2
:Account

deposit
:Transaction

Transfer to

Withdraw

Post

Transfer to

Post

Amount

Amount

Amount

.

Figure 7. A sequence diagram for transferring funds from one account to another.

Traditional sequence diagrams show the types of objects1 involved in the use case, the messages that they
send each other, and any return values associated with the messages. For large applications it is quite
common to show the components and use cases in addition to objects across the top of the diagram. The
basic idea is that a sequence diagram shows the flow of logic of a use case in a visual manner, allowing you
to both document and reality check your application design at the same time. The boxes on the vertical lines
are called method-invocation boxes and they represent the running of a method in that object.

Sequence diagrams are a great way to review your work as they force you to walk through the logic to fulfill
a use-case scenario. Second, they document your design, at least from the point of view of use cases.
Third, by looking at what messages are being sent to an object/component/use case, and by looking at

1 Objects (instances) in the UML are shown underlined to distinguish them from classes. In Figure 7 we
have named and unnamed objects: :Transfer Screen is an instance of the Transfer Screen class and both
account1 and account2 are instances of Account. We didn t name the instance of Transfer Screen

because there is only one and we really do not care which one, whereas there are two instances of Account
for this example therefore they needed to be named. If we had cared about which instance of Transfer
Screen, perhaps it has to be screen 1701 for some reason (probably for testing), then we would have named
it as well.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

10

roughly how long it takes to run the invoked method, you quickly get an understanding of potential
bottlenecks, allowing you to rework your design to avoid them.

When documenting a sequence diagram it is important to maintain traceability to the appropriate methods in
your class diagram(s). The methods should already have their internal logic described as well as their return
values (if they do not, time to document them).

2.8 Component Diagrams
Component diagrams (Rational, 1997; Booch 1994) show the software components
that make up a larger peice of software, their interfaces, and their interrelationships.
For the sake of our discussion, a component may be any large-grain item such as a
common subsystem, an exectuable binary file, a commercial off-the-shelf (COTS)
system, an OO application, or a wrapped legacy application that is used in the day-
to-day operations of your business. In many ways a component diagram is simply a
class diagram at a larger, albeit less-detailed, scale.

Component
diagrams show

software
components, their

interfaces, and
their

interrelationships.

Figure 8 shows an example of a component diagram being used to model the architectural business view of a
telecommunications company. The boxes represent components, in this case either applications or internal
subsystems, and the dotted lines represent dependencies between components. One of the main goals of
architectural modeling is to partition a system into cohesive components that have stable interfaces,
creating a core that need not change in reponse to subsystem-level changes (Mowbray, 1997). Component
diagrams are ideal for this purpose.

Figure 8. A component diagram for the architectural business view of a telecommunications company.

Each component within the diagram will be documented either by a more detailed component diagram, a use-
case diagram, or by a class diagram. In the example presented in Figure 8 it is likely that you would want to
develop a set of detailed models for the component Customer Management because it is a reasonably well-
defined subset. At the same time you would draw a more detailed component diagram for Network
Management because it is a large and complex domain that needs to be broken down further.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

11

Components can be implemented using a wide range of technologies, include CORBA, Microsoft’s COM+,
Java, and Enterprise JavaBeans (EJB).

Blatant Advertising Purchase The Elements of Java Style today!
This book (Vermeulen et. al., 2000) presents a collection of strategies for
writing superior Java source code. This book presents a wider range of
guidelines than what is presented here in this paper, and more importantly
presents excellent source code examples. It covers many topics that are not
covered in this paper, such as type safety issues, exception handling,
assertions, and concurrency issues such as synchronization. This paper was
combined with Rogue Wave s internal coding standards and then together
were evolved to become The Elements of Java Style, so you should find the
book to be an excellent next step in your Java learning process. Visit
http://www.ambysoft.com/elementsJavaStyle.html for more details.

2.9 Deployment Diagrams
Deployment diagrams (Rational, 1997) show the configuration of run-time
processing components and the software that runs on them. Figure 9 shows an
example of a deployment diagram, using the UML notation, which models the
configuration of a customer service application that takes a three-tier client server
approach. Deployment diagrams are reasonably simple models that are used to
show how the hardware and software components will be configured and deployed
for an application.

Deployment
diagrams show the

run-time
configuration of

hardware and
software

components.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

12

Figure 9. A deployment diagram for a three-tier client/server application.

Deployment diagrams reflect decisions that have been made by the technical architecture group. In Figure 9
a three-tier client/server architecture has been chosen, as well as those within the detailed models developed
for the application. The message flow between components is often analyzed to determine which software
components should be deployed to which hardware devices. The idea is that you want to utilize the
hardware at your disposal in the best way possible to meet the requirements for your application.

For each component of a deployment diagram you will want to document the applicable technical issues,
such as the required transaction volume, the expected network traffic, and the required response time.
Furthermore, each component will be documented by a set of appropriate models. For example the
databases will be described with data models, the application server will be described with a component
diagram and/or class diagram, and the customer service screens would at least be documented by an
interface-flow diagram and a prototype.

2.10 State Diagrams
Objects have both behavior and state, in other words they do things and they know
things. Some objects do and know more things, or at least more complicated things,
than other objects. Some objects are incredibly complex, so to better understand
them we often draw a statechart diagram (Rational, 1997; Ambler, 1998a; Booch
1994; Rumbaugh, Blaha, Premerlani, Eddy, & Lorenson, 1991; Shlaer & Mellor 1992)
to describe how they work.

Statechart diagrams
show the various

states, and the
transitions between

those states, of an
object.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

13

Figure 10. A statechart diagram for a bank account.

In Figure 10 we see the statechart diagram for a bank account. The rectangles represent states which are
stages in the behavior of an object. States are represented by the attribute values of an object. The arrows
represent transitions, progressions from one state to another that are represented by the invocation of a
method on an object/class. Transitions are often a reflection of our business rules. There are also two kinds
of psuedo states, an initial state in which an object is first created and a final state that an object doesn t
leave once it enter it. Initial states are shown as closed circles and final states shown as an open circle
enclosing a solid circle. In Figure 10 we see that when an account is active we see that we can withdraw
from it, deposit to it, query it, and close it.

States are documented by a paragraph describing them and a indication of the range of values that
applicable attributes take in the state, for example when an account is overdrawn the balance is negative. It
is also appropriate to document any actions that are taken when an object enters a state, for example when
an account becomes overdrawn a twenty-five dollar fine is charged to it. Transitions are documented with
an indication of the event that triggers them. Where statechart diagrams are used to document the internal
complexities of a class, collaboration diagrams are used to document the external interactions between
objects.

2.11 Collaboration Diagrams
Unlike some notations (Coad & Yourdon, 1991; Ambler, 2000a) that show both state
and behavior on class diagrams, the UML separates out behavior into
collaboration diagrams (Rational, 1997; Ambler, 1998a). The basic difference
between the two approaches is that UML class diagrams do not include messages,
which makes sense because messages tend to clutter your class diagram and make
them difficult to read. Because UML class diagrams do not show the message flow
between classes a separate diagram, the collaboration

Collaboration
diagrams show the

collaborations
(messages), but not

their order, between
objects.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

14

diagram, was created to do so. Collaboration diagrams show the message flow between objects in an OO
application and imply the basic associations (relationships) between classes.

Figure 11. A collaboration diagram for a simple university.

Figure11 presents a simplified collaboration diagram for a university application. The rectangles represent
the various objects 2 that make up the application, and the lines between the classes represent the
relationships/associations between them. Messages are shown as a label followed by an arrow indicating
the flow of the message and return values are shown as labels with arrow-circles beside them. In the figure
there are instances of the Seminar and Enrolment classes, open and display info are both messages, and
seats is a return value (presumably the result of sending the message max seats to Course).

Collaboration diagrams are usually drawn in parallel with class diagrams and sequence diagrams. Class
diagrams provide input into the basic relationships between objects, and sequence diagrams provide an
indication of the message flow between objects. The basic idea is that you identify the objects, the
associations between the objects, and the messages that are passed between the objects. Collaboration
diagrams are used to get a big picture outlook for the system, incorporating the message flow of many use
case scenarios. Although you can indicate the order of message flow on a Collaboration Diagram, by
numbering the messages, this typically is not done as sequence diagrams are much better at showing
message ordering.

3. How the Modeling Techniques Fit Together
Detailed modeling also called component modeling, application modeling, or subsystem modeling
concentrates on the modeling of one application or subsystem. Where the architectural models define the
components needed to support your organization, a detailed model defines the inner workings of a single
component.

2 The UML also allows you to indicate the roles that objects take on, a common occurrence in both
collaboration diagrams and sequence diagrams.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

15

Interface-Flow
Diagram

A,D

User Interface
Prototype

U,A

CRC
Model

U,A

Use Cases

U,A

Activity
Diagram

A,D

Sequence
Diagram

D,P

Class
Diagram

A,D,P

Statechart
Diagram

D,P

Collaboration
Diagram

D,P

Use-Case
Diagram

A

Key:
 U = User
 A = Analyst
 D = Designer
 P= Programmer

Deployment
Diagram

A,D

Physical
Data Model

D

Component
Diagram

A,D

Technical
Prototype

D, P

.

Figure 12. The Detailed Modeling process pattern.

Figure 12 depicts the Detailed Modeling process pattern (Ambler, 1998b) in which the boxes represent the
main techniques/diagrams of OO modeling and the arrows show the relationships between them, with the
arrow heads indicating an input into relationship. For example, we see that an activity diagram is an input
into a class diagram. In the bottom right-hand corner of each box are letters which indicate who is typically
involved in working on that technique/diagram. The key is straightforward: U=User, A=Analyst,
D=Designer, and P=Programmer. The letter that is underlined indicates the group that performs the majority
of the work for that diagram. For example, we see that users form the majority of the people involved in
developing a CRC model and designers form the majority of those creating statechart diagrams.

Blatant Advertising Purchase Process Patterns today!
This book presents a collection of process patterns for successfully
initiating a software project and taking it through the construction
phase. It provides a wealth of advice for engineering requirements,
modeling, programming, and testing. It puts these topics in the context
of a proven software process for the development of large-scale,
mission-critical software, covering topics that you typically don t find
in other books about object-oriented development such as project
management, quality assurance, risk management, and deliverables
management. Object-oriented development is hard, particularly if you
are building systems using n-tier technology such as Enterprise
JavaBeans (EJB) or even the simple Java platform, and you need to
understand the big picture to be successful. Process Patterns, and its
sister book, More Process Patterns, give you that big picture. For more
information, and to order online, visit
http://www.ambysoft.com/processPatterns.html

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

16

An interesting feature of Figure 12 is that it illustrates that the object-oriented modeling process is both
serial in the large and iterative in the small. The serial nature is exemplified when you look from the top-left
corner to the bottom right corner: the techniques move from requirements gathering to analysis to design.
You see the iterative nature of OO modeling from the fact that each technique drives, and is driven by, other
techniques. In other words you iterate back and forth between models.

From a serial perspective, Figure 13 depicts the Deliverables Drive Deliverables approach process pattern
(Ambler, 1998b), indicating the general order in which you will work on deliverables during the Construct
Phase. It is important to point out that the views in Figures 12 and 13 are complementary, not contradictory.
In Figure 12 we see that we generally start modeling with techniques, such as use cases and CRC models,
that focus on user requirements, moving into analysis-oriented techniques such as sequence and
component diagrams, then into design techniques and finally to code. The arrows in Figure 13 represent a
documents relationship. For example a use-case diagram is documented by use cases, which in turn are
documented by sequence diagrams. Component diagrams are interesting in that a component within a
component diagram is often documented by either another component diagram, a class diagram, and/or a
use-case diagram.

User requirements Analysis Design Code

Use-Case Diagram

Use Cases
Sequence
Diagram

CRC Model

Interface-Flow
Diagram

User Interface
Prototype

Component
Diagram

Class
Diagram

Statechart
Diagram

Collaboration
Diagram

Data
Diagram

Deployment
Diagram

Technical
Prototype

Source
Code

Process
Diagram

.
Figure 13. The Deliverables Document Deliverables process pattern.

As an aside, in the UML (Rational, 1997) the traces stereotype is used to connect related pieces of
information in separate models to maintain traceability throughout your work. Traceability is an important
concept for testing.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

17

Blatant Advertising Purchase More Process Patterns today!
This book presents a collection of process patterns for successfully
delivering a software project and then operating and supporting it once
it is in production. It provides a wealth of advice for testing your
object-oriented application, for reworking it, for preparing to transition it
to your user community, and for supporting it once it is in production.
It puts these topics in the context of a proven software process for the
development of large-scale, mission-critical software, covering topics
that you typically don t find in other books about object-oriented
development such as project management, quality assurance, risk
management, and deliverables management. Object-oriented
development is hard, particularly if you are building systems using n-
tier technology such as Enterprise JavaBeans (EJB) or even the
simple Java platform, and you need to understand the big picture to

be successful. More Process Patterns, and its sister book, Process
Patterns, give you that big picture. For more information, and to order
online, visit http://www.ambysoft.com/moreProcessPatterns.html

4. Summary
It is my experience that the UML is a very good start at describing the models that are needed to develop a
model representing an OO application, but that it is not sufficient. In this white paper we explored several
techniques for modeling an OO application, many of which are included in the UML, and saw how they fit
together.

5. References

Ambler, S.W. (1998a). Building Object Applications That Work Your Step-by-Step Handbook for
Developing Robust Systems With Object Technology. New York: Cambridge University Press.

Ambler, S.W. (1998b). Process Patterns Building Large Scale Systems Using Object Technology . New
York: Cambridge University Press.

Ambler, S.W. (1999). More Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New York: Cambridge University Press.

Ambler, S.W. (2000a). The Object Primer2nd Edition The Application Developer s Guide to Object-
Orientation. New York: Cambridge University Press.

Ambler, S.W. (2000b). The Unified Process Inception Phase. Gilroy, CA: R&D Books.

Ambler, S.W. (2000c). The Unified Process Elaboration Phase. Gilroy, CA: R&D Books.

Ambler, S.W. (2000d). The Unified Process Construction Phase. Gilroy, CA: R&D Books.

Beck, K. & Cunningham, W. (1989). A Laboratory for Teaching Object-Oriented Thinking. Proceedings of
OOPSLA 89, pp. 1-6.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

18

Booch, G. (1994). Object-Oriented Analysis and Design with Applications, 2nd Edition. Redwood City,
California: The Benjamin/Cummings Publishing Company, Inc.

Coad, P. (1992) Object-Oriented Patterns. Communications of the ACM, 35(9) pp. 152-159.

Coad, P., North, D., & Mayfield, M. (1995). Object Models Strategies, Patterns, & Applications .
Englewood Cliffs, NJ: Yourdon Press.

Coad, P., Yourdon, E. (1991). Object-Oriented Analysis, 2nd Edition. Englewood Cliffs, New Jersey: Yourdon
Press.

Gane, C., Sarson, T. (1978). Structured Systems Analysis: Tools and Techniques. Englewood Cliffs, New
Jersey: Prentice Hall, Inc.

Hay, D.C. (1996). Data Model Patterns: Conventions of Thought. New York: Dorset House Publishing.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. (1992). Object-Oriented Software Engineering A
Use Case Driven Approach. ACM Press.

Mowbray, T. (1997). Architectures: The Seven Deadly Sins of OO Architecture. New York: SIGS
Publishing, Object Magazine April, 1997, 7(1), pp. 22-24.

Page-Jones, M. (1995). What Every Programmer Should Know About Object-Oriented Design. New York:
Dorset-House Publishing.

Rational (1997). The Unified Modeling Language v1.1 Documentation Set. Rational Software Corporation,
Monterey California.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (1991). Object-Oriented Modeling and
Design. Englewood Cliffs, New Jersey: Prentice Hall, Inc.

Shlaer, S., Mellor, S. (1992). Object Life Cycles Modeling the World in States . Englewood Cliffs, New
Jersey: Yourdon Press.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing Object-Oriented Software. New Jersey:
Prentice Hall, Inc.

Yourdon, E. (1997). Death March: The Complete Software Developer s Guide to Surviving Mission
Impossible Projects . Upper Saddle River, NJ: Prentice-Hall , Inc.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

19

6. Glossary

Activity diagram A UML diagram which can be used to model a high-level business process or the
transitions between states of a class (in this respect activity diagrams are effectively specializations of
statechart diagrams).

Actor Any person, organization, or system that interacts with an application but is external to it.

Analysis An approach to modeling where the goal is understanding the problem domain.

Analysis paralysis A derogatory term used by system professionals to describe the actions of a
development team that spends too much time modeling, trying to document every minute detail.

Analysis pattern -- A pattern that describes a solution to a business/analysis problem.

Architectural modeling High-level modeling, either of the problem or technical domain, whose goal is to
provide a common, overall vision of the problem domain. Architectural models provide a base from which
detailed modeling can begin.

Business-domain expert (BDE) -- Someone with intimate knowledge of all or a portion of a problem domain.
Often referred to as a subject matter expert (SME).

CASE Computer aided system engineering.

Class diagram -- Class diagrams show the classes of a system and their intrarelationships. Class diagrams
are often mistakenly referred to as object models.

Collaboration diagram Collaboration diagrams show instances of classes, their interrelationships, and the
message flow between them. The order of the messaging is not indicated.

Component diagram A diagram that shows the software components, their interrelationships, interactions,
and their public interfaces that comprise an application, system, or enterprise.

CRC (Class Responsibility Collaborator) card A standard index card divided into three sections that
show the name of the class, the responsibilities of the class, and the collaborators of the class.

CRC model A collection of CRC cards that describe the classes that make up a system or a component of
a system.

Data diagram A diagram used to communicate the design of a (typically relational) database. Data
diagrams are often referred to as entity-relationship (ER) diagrams.

Data model A data diagram and its corresponding documentation.

Diagram A visual representation of a problem or solution to a problem.

Domain architecture A collection of high-level models that describe the problem domain. Domain
architectures are typically documented by high-level use cases, use-case diagrams, and class models that
describe the various sub domains and the relationships between them.

Design A style of modeling with the goal of describing how a system will be built based on the defined
requirements.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

20

Design pattern A pattern that describes a solution to a design problem.

Enterprise modeling The act of modeling an organization and its external environment from a business,
not and information system, viewpoint.

Feature creep The addition as development proceeds of new features to an application that are above and
beyond what the original specification called for. This is also called scope creep.

Interface-flow diagram A diagram that models the interface objects of your system and the relationships
between them.

Joint application design (JAD) A structured, facilitated meeting in which modeling is performed by both
users and developers together. JADs are often held for gathering user requirements.

Message-invocation box The long, thin vertical boxes that appear on sequence diagrams that represent a
method invocation in an object.

Middleware The technology that allows computer hardware to communicate with one another. This
includes the network itself, its operating system, and anything needed to connect computers to the network.

Model An abstraction describing a problem domain and/or a solution to a problem domain. Traditionally
models are thought of as diagrams plus their corresponding documentation although non-diagrams such as
interview results, requirement documents, and collections of CRC cards are also considered to be models.

Modeling The act of creating or updating one or more models.

Notation The set of symbols that are used in the drawing of diagrams. The Unified Modeling Language
(UML) defines a defacto industry-standard modeling notation.

Pattern A model of several classes that work together to solve a common problem in your problem or
technical domain.

Persistence mechanism -- The permanent-storage facility used to store objects. Relational databases, flat
files, and objectbases are all potential persistence mechanisms.

Process diagram A diagram that shows the movement of data within a system. Similar in concept to a
DFD but not as rigid and documentation heavy.

Process pattern A pattern which describes a proven, successful approach and/or series of actions for
developing software.

Prototyping An iterative analysis technique in which users are actively involved in the mocking up of the
user interface for an application.

Requirements document A document which describes the user, technical, and environmental
requirements for an application. This document potentially contains the major use cases, detailed use-case
scenarios, and traditional requirements for the application as well.

Sequence diagram A diagram that shows the types of objects involved in a use-case scenario, including
the messages they send to one another and the values that they return.

Statechart diagram A diagram that describes the states that an object may be in, as well as the transitions
between states.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

21

Technical architecture A set of models and documents that describes the technical components of an
application, including but not limited to the hardware, software, middleware, persistence mechanisms, and
operating systems to be deployed.

Unified Modeling Language (UML) The industry standard OO modeling notation proposed by Rational
Corporation of Santa Clara California. At the time of this writing the UML is being considered by the Object
Management Group (OMG) to make it the OMG standard.

Use case A description of a high-level user requirement that an application may or may not be expected to
handle.

Use-case diagram A diagram that shows the use cases and actors for the application that we are
developing.

Use-case scenario A description of a specific, detailed user requirement that an application may or may
not be expected to handle. A use-case scenario is a detailed example of a use case.

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

22

7. About the Author
Scott W. Ambler is a Software Process Mentor living in Newmarket, Ontario, 45 km north of Toronto,
Canada and is President of Ronin International (www.ronin-intl.com) a consulting firm specializing in object-
oriented architecture, software process, and Enterprise JavaBeans (EJB) development. He has worked with
OO technology since 1990 in various roles: Business Architect, System Analyst, System Designer, Process
Mentor, Lead Modeler, Smalltalk Programmer, Java Programmer, and C++ Programmer. He has also been
active in education and training as both a formal trainer and as an object mentor.

Scott has a Master of Information Science and a Bachelor of Computer Science from the University of
Toronto. He is the author of the best-selling books The Object Primer, Building Object Applications That
Work, Process Patterns, and More Process Patterns and co-author of The Elements of Java Style, all of
which are published by Cambridge University Press (www.cup.org). Scott is also editor of The Unified
Process Series from R&D Books (www.rdbooks.com) to be published in 2000. Scott is a contributing editor
and columnist with Software Development (http://www.sdmagazine.com) and writes columns for Computing
Canada (http://www.plesman.com).

He can be reached via e-mail at:
scott@ambysoft.com
scott.ambler@ronin-intl.com

Visit his personal web site:
http://www.AmbySoft.com

Visit his corporate web site:
http://www.ronin-intl.com

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

23

Index

A

Activity diagram... 6, 19
documentation of... 8
example .. 8

Actor .. 19
Analysis ... 19
Analysis paralysis .. 19
Analysis pattern ... 19

Contact Point .. 5
Analysis patterns... 6
Architectural modeling.. 19
Architecture .. 6
Assertions ... 11
Author

contacting ... 22

B

BDE..............................See Business domain expert
Booch... 5, 10, 12
Book

Building Object Applications That Work 6
Elements of Java Style................................... 2, 11
Process Patterns... 15, 17

Business domain expert (BDE) 1, 19

C

CASE.. 19
Class diagram.. 5, 19

and data diagrams .. 8
documenting... 6
example .. 5

Class diagramming ... 5
Class responsibility collaborator (CRC) modeling

.. 1
Collaboration diagram...................................... 13, 19

example .. 14
COM+... 11
Component diagram... 10, 19

documenting... 10
example .. 10

Concurrency.. 11
CORBA .. 11
CRC...............See Class responsibility collaborator
CRC card .. 19
CRC model... 19

D

Data diagram... 8, 19
and class diagrams ... 8

documenting... 8
example .. 8

Data model... 19
Databases .. 6
Data-flow diagram (DFD)

and activity diagrams .. 6
Deployment diagram.. 11

documenting... 12
example .. 12

Design.. 19
Design pattern .. 20
Design patterns .. 6
Detailed modeling... 14

modeling order.. 16
Diagram.. 19
Distributed design.. 6
Domain architecture ... 19

E

EJB.. 11
Enterprise JavaBeans... 11
Enterprise modeling ... 20
Entity-relationship (ER) diagramSee Data diagram
Example source code.. 11
Exception handling... 11
Extreme Programming... 2

F

Feature creep... 20
FLOOT... 2
Full Lifecycle Object-Oriented Testing................. 2

I

Interface flow diagram....................................... 3, 20
example .. 4

Interface-flow diagram
documenting... 5

Iterative in the small... 16

J

Jacobson.. 2, 3, 9
Java... 11
Joint application design (JAD)............................. 20

M

Message invocation box....................................... 20
Metrics ... 6
Middleware.. 20
Model... 20
Modeling ... 20

Copyright 1998-2000 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

24

Modeling techniques
modeling order.. 16

N

Notation... 20

O

Object databases .. 6
Object model............................... See Class diagram
Object-Oriented Software Process......................... 2
OOSP.. 2

P

Pattern .. 20
Persistence

relational databases ... 8
Persistence mechanism.. 20
Process diagram.. 20
Process pattern ... 20

deliverables document deliverables 16
detailed modeling... 15

Prototyping ... 20
and interface flow diagrams 3

R

Relational databases .. 6
Requirements document.. 20
Rumbaugh ... 5, 12

S

Scott Ambler
contacting ... 22

Sequence diagram.. 9, 20
documenting... 10
example .. 9
when to use... 9

Serial development... 16

Serial in the large .. 16
Shlaer & Mellor... 5, 12
State

notation ... 13
Statechart diagram.. 12, 20

documenting... 13
example .. 13

Synchronization.. 11

T

Task process pattern
deliverables document deliverables 16

Technical architecture ... 21
Testing

user interface flow.. 4
Traces stereotype... 16
Transition

notation ... 13
Type safety ... 11

U

UML...................... See Unified modeling language
Unified Modeling Language................................... 2
Unified Modeling Language (UML)........ 16, 17, 21
Unified Process... 2
Use case... 21

examples of.. 2
Use-case .. 2
Use-case diagram... 3, 21

example .. 3
Use-case scenario .. 2, 21

examples of.. 2

X

XP ... 2

