Factor Form

OO0 Factor forms — beyond SOP
m Example:
(ad+b’c)(c+d’(e+ac))+ (d+e)fg

O Advantages

B good representation reflecting logic complexity (SOP may not be
representative)

O E.g., f=ad+ae+bd+be+cd+ce has complement in simpler SOP f'=
a’b’c’+d’e’; effectively has simple factor form f=(a+b+c)(d+e)

B in many design styles (e.g. complex gate CMOS design) the
implementation of a function corresponds directly to its factored form

B good estimator of logic implementation complexity
B doesn’t blow up easily

O Disadvantages
B not as many algorithms available for manipulation

53
Factor From
O Factored forms are useful X=(a+b)c + d
in estimating area and vdd

delay in multi-level logic

® Note: literal count =
transistor count ~ area

O however, area also
depends on wiring, gate
size, etc.

O therefore very crude
measure

Gnd

54

Factor From

COThere are functions whose sizes are
exponential in the SOP representation, but
polynomial in the factored form
m Example

Achilles’ heel function

i=n/2

[T +x)
i=1

There are n literals in the factored form and
(n/2)x2"2 literals in the SOP form.

55

Factor Form

O Factored forms can be graphically represented as labeled
trees, called factoring trees, in which each internal node
including the root is labeled with either + or x, and each
leaf has a label of either a variable or its complement

B Example: factoring tree of ((a'+b)cd+e)(a+b’)+e’

((a’+b)cd+e)(a+b’)+e’

56

Multi-Level Logic Minimization

CIBasic techniques in Boolean network
manipulation:

M structural manipulation (change network

topology)
B node simplification (change node functions)
COnode minimization using don’t cares

57

Multi-Level Logic Minimization
Structural Manipulation

Restructuring Problem: Given initial network, find best network.
Example:
f; = abcd+ abce+ ab’cd’+ ab’c’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df’
f, = bdg+ b’dfg+ b’d’g+ bd’eg

bcd+ bce+ b’d’+ a’c+ cdf+abc’d’e’+ ab’c’df’
bdg+ dfg+ b’d’'g+ d’eg

N
nn

c(b(d+e)+b’(d’+f)+a’)+ac’(bd’e’+ b’df’)
g(d(b+f)+d’(b’+e))

o
n

f;= c(b(d+e)+b’(d'+f)+a’)+acx’
2= gX

x = d(b+f)+d(b'+e)

Two problems:

O find good common subfunctions
O effect the division

58

Multi-Level Logic Minimization
Structural Manipulation

Basic operations: o
= abc+abd+a’c’d’+b’c’d’
f= xy+x’y’U x=ab y=-c+d
= (az+bz’)cd+e g = (az+bz)e’ = cde
= xy+e g=xe h=ye x=az+bzZ y-=cd
f = ac+ad+bc+bd+e
= (a+1119)(c+ d)+e
59
Multi-Level Logic Minimization
Structural Manipulation

Basic operations (cont’d):
= a+bc g=a+b
U
f=g9(a+rc) g= a+b
f=9a+gb g=c+d
U

= ac+ad+bcd” g = c+d

Note: “division” plays a key role in all these operations

60

Multi-Level Logic Minimization
Node Simplification

0 Goal: For any node of a given Boolean network,
find a SOP expression among the set of
permissible functions for the node

® Don’t care computation + two-level logic minimization

combinational Boolean network

SRR

61

Combinational Logic Minimization

O Two-level: minimize # product terms and # literals
B E.g., F= X{Xo'Xg'+ XX Xg+ XqXo'Xg'+ X X5'Xg+ X XoX5' = F =
Xo'+ XqXg'

O Multi-level: minimize the # literals (area minimization)
B E.g., equations are optimized using a smaller number of

literals

= k optimization 5 _ 2 | p"
B=ab+d, — . :
r4:?1r2+fg: B=a+c
15=t4 h+ 12 13: M=t 13+fgh
F=t5;

subject graph for the optimized equations

62

Timing Analysis and Optimization

[0 Delay model at logic level T
B Gate delay model (our focus)
O Constant gate delay, or pin-to-pin gate delay ‘
O Not accurate / T \
B Fanout delay model
O Gate delay considering fanout load (# fanouts)
O Slightly more accurate
B Library delay model
O Tabular delay data given in the cell library
= Determine delay from input slew and output
load
= Table look-up + interpolation/extrapolation
O Accurate
63
Timing Analysis and Optimization
Gate Delay
The delay of a gate depends on: o o
lf l T = ReCioad
O
1. Output Load J
O Capacitive loading « charge | ﬁ_‘
needed to swing the output E‘ Eload %Reff Croud
voltage = = = =
O Due to interconnect and An inverter e.g. output 1—0
logic fanout
Tslew
2. Input Slew . —
OO0 Slew = transition time
O Slower transistor switching V.
= longer delay and longer
output slew 0

64

Timing Analysis and Optimization
Timing Library

I
O Timing library contains all 01 A
relevant information about each = _"~.,. 7
standard cell : —\6
B E.g., pin direction, clock, pin B — 1
capacitance, etc.
Path (
O Delay (fastest, slowest, and often inputPorts (a),
typical) and output slew are ji;ii;i;izif;;m)
encoded for each_input-to-gqtput outputTransition(lO;,
path and each pair of transition “delay table 17, —
directions “output slew table 1”
)
O Values typically represented as 2 “delay_table_17 <«——
dimensional look-up tables (of Output load (nF)
output load and input slew) ”g 10 20 4o Moo
B [Interpolation is used ‘; o121 b6 B.4l61
2l o524 .9 3972
‘é 1.0 [2.6 [3.4 |4.0 8.1
gl .o 2.8 [3.7 [4.9 [10.3
— 65
I

O Arrival time: the time signal arrives

O Slack = required time — arrival time

®m Calculated from input to output in the topological order
OO0 Required time: the time signal must ready (e.g., due to the clock

cycle constraint)

B Calculated from output to input in the reverse topological order

B Timing flexibility margin (positive: good; negative: bad)

A(J')‘ RG)
node j ")
/ H AK)_| R(K)

A(j): arrival time of signal j

R(k): required time or for signal k
S(k): slack of signal k
D(j.k): delay of node j from input k

A() = maxy gy 5 [Ak) + D(,k)]

1(G,k) = R(j) - D(.k)

R(k) = min; g [1(,K)]

S(k) = R(k) - Ak)

66

Static Timing Analysis

O Arrival times known at /; and /,
O Required times known at /5, /,, and /5

O Delay analysis gives arrival and required times
for combinational blocks C,, C,, C;, C,

.
. 5

14

12 13

67

Static Timing Analysis
0 Arrival time can be computed in the topological
order from inputs to outputs

B When a node is visited, its output arrival time is:
the max of its fanin arrival times + its own gate delay

0 Required time can be computed in the reverse
topological order from outputs to inputs
® When a node is visited, its input required time is:
the min of its fanout required times — its own gate delay

68

Static Timing Analysis

A =6 R,=5
0 Example Al=5 R.=5
R=5 R,=5 S;=-1 Ry=3
in : S,;=0 Ry=1
6 i 51)0 slack S34=-1 Rg=-1
102 1 2 / arrival time 34,1 = E)1
S 42~
o 1% 1 /node ID 852 =1
4 .‘."‘-1 ““ 4 0 3 86’3 = 0
3(2 o D -5 / 37'3 N 11
A\ 74° "
......... :1 “‘.-_’] ‘ 1 87’5 = 1
1 S e "_2 1 LO 38,6; ?1
1 6 29 7 Ao=2 o
‘ . e critical path edges
i
8 9° :
A=0 Ag=0 Siik = Sk + rT‘aX{Akj} - Ayi» Ky K; € fanin(k)
8 Sy =min{S,,,;}, k; € fanout(k) 5
Timing Optimization

Clldentify timing critical regions

ClPerform timing optimization on the
selected regions

mE.g., gate sizing, buffer insertion, fanout
optimization, tree height reduction, etc.

70

Timing Optimization

CIBuffer insertion

m Divide the fanouts of a gate into critical and
non-critical parts, and drive the non-critical

fanouts with a buffer

=]

e more

critical

e

e

less
critical

71

Timing Optimization

COFanout optimization

W Split the fanouts of a gate into several parts.

Each part is driven by a copy of the original

gate.

] —

l

—
—

72

Timing Optimization

CITree height reduction

73

Timing Optimization

CITree height reduction

|
Collapsed 5
Critical region

n’

Combinational Optimization

COFrom Boolean functions to circuits

Boolean functions

/

two-level optimization

he]

multi-level optimization

/

technology mapping

l

circuits

75

Technology Independent vs. Dependent
Optimization

0 Technology independent optimization produces a
two-level or multi-level netlist where literal
and/or cube counts are minimized

0 Given the optimized netlist, its logic gates are to
be implemented with library cells

0 The process of associating logic gates with library
cells is technology mapping

B Translation of a technology independent representation
(e.g. Boolean networks) of a circuit into a circuit for a
given technology (e.g. standard cells) with optimal cost

76

Technology Mapping

| technology technology |
| independent dependent |
|

original logic optimized technology .
| optimization mapping [+—™ o[c)}[]gll;izt)ed
|

[logic synthesis |

O Standard-cell technology mapping: standard cell design
B Map a function to a limited set of pre-designed library cells

O FPGA technology mapping
B Lookup table (LUT) architecture:
O E.g., Lucent, Xilinx FPGAs
O Each lookup table (LUT) can implement all logic functions with up to k inputs (k = 4, 5, 6)
B Multiplexer-based technology mapping:
O E.g., Actel FPGA
O Logic modules are constructed with multiplexers

77

Standard-Cell Based Design

L

rl-r.i

nE\7 sEE &
._}I_

- carn D

Cell Cell D Feedihrongh Cell

78

Technology Mapping

O Formulation:
B Choose base functions
OEx: 2-input NAND and Inverter

B Represent the (optimized) Boolean network with base
functions

OSubject graph
®m Represent library cells with base functions
OPattern graph

O Each pattern is associated with a cost depending on the
optimization criteria, e.g., area, timing, power, etc.

O Goal:

B Find a minimal cost covering of a subject graph using
pattern graphs

79

Technology Mapping

O Technology Mapping: The optimization problem
of finding a minimum cost covering of the subject
graph by choosing from a collection of pattern
graphs of gates in the library.

0 A cover is a collection of pattern graphs such that
every node of the subject graph is contained in
one (or more) of the pattern graphs.

0 The cover is further constrained so that each
input required by a pattern graph is actually an
output of some other pattern graph.

80

Technology Mapping

CExample
M Subject graph

f
tl=d+e (%
©2=b+h o F
t3=at2+c h
t4=tlt3+fgh b
F=t4 9 o
C o
81
Technology Mapping
0 Example
B Pattern graphs (1/3)
nand?2 (2) nor2 (2)
= r—
cell name (cost)
A 1/
inv (1) and2 (3) or2 (3)
Do D
nand3 (3) nor3 (3)

%%

Technology Mapping

0 Example
M Pattern graphs (2/3) nor4 (4)

nand4 (4)

NGt g
oai2l (3)
aoi2l (3) M
&D&M

0ai22 (4)
a0i22 (4)
83
Technology Mapping
0 Example
B Pattern graphs (3/3)
nand4 (4) nor4 (4)
xor (5) xnor (5)

Eo o

84

Technology Mapping

0 Example
M A trivial covering
OMapped into NAND2’s and INV’s
= 8 NAND2’s and 7 INV’s at cost of 23
! [l
g
tl=d+ e; ’ F
12=0b+h; e
t3=a 12 +c; R
=1l 3+fgh b
85
Technology Mapping
0 Example
M A better covering
AND2

f o |

§ z A AOI22

e O (F

h o OR2

b NAND2

a

C

NAND2
INV

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph!

86

Technology Mapping

0 Example
B An even better covering

NAND3
gD AND2
d o ‘
c o 5o
h Oo— \/\
b OAI21

OAI21

a o
C D

NAND2
INV

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! 87

Technology Mapping

C0Complexity of covering on directed acyclic
graphs (DAGS)
m NP-complete

mIf the subject graph and pattern graphs are
trees, then an efficient algorithm exists (based
on dynamic programming)

88

Technology Mapping
DAGON Approach

O Partition a subject graph into trees

® Cut the graph at all multiple fanout points
OO0 Optimally cover each tree using dynamic programming approach
OO0 Piece the tree-covers into a cover for the subject graph

N
A
NC N
7N | 7N
89

Technology Mapping
DAGON Approach

O Principle of optimality: optimal cover for the tree consists of
a match at the root plus the optimal cover for the sub-tree
starting at each input of the match

/ Match: cost =m

root

C(root)=m+ C(I,) + C(I,) + C(I;) + C(1,)
cost of a leaf (i.e. primary input) =0

90

Technology Mapping
DAGON Approach

O Example v 2 o o —>o—
W Library
NAND2 3 o (ab) < o
NAND3 4 =)o (aboy %
NAND4 5 =)o

(abedy %—Dﬁ
=

aon1 4 Dy @ g o

AODD 5 %D (ab+cd)’ E

library element base-function representation
91

Technology Mapping
DAGON Approach

|]
0 Example
NAND2(3)
NAND2(8)
D —Do N2
NAND2(13) AOI21(9) NAND3(18) NANDA4(19)

4;1# AP Do

AOI21(22)
NAND2(8) INV(18)
NAND3(4)

ey

NAND2(3) INV(S)

92

Technology Mapping
DAGON Approach

COComplexity of DAGON for tree mapping is
controlled by finding sub-trees of the
subject graph isomorphic to pattern trees

O complexity in both the size of
subject tree and the size of the collection
of pattern trees

W Consider library size as constant

93

Technology Mapping
DAGON Approach
O Pros: O Cons:
B Strong algorithmic ® With only a local (to the
foundation tree) notion of timing
B Linear time complexity OTaking load values into
[Efficient approximation account can improve
to graph-covering the results
problem ® Can destroy structures of
® Give locally optimal optimized networks
matches in terms of both CONot desirable for well-
area and delay cost structured circuits
functions ® Inability to handle non-
B Easily “portable” to new tree library elements
technologies (XOR/ XNOR)

B Poor inverter allocation

94

Technology Mapping
DAGON Approach

COIDAGON can be improved by

W Adding a pair of inverters for each wire in the
subject graph

B Adding a pattern of a wire that matches two
inverters with zero cost

Solos Eomlon

2 INV
1 AIO21

2 NOR2

95

Available Logic Synthesis Tools

0 Academic CAD tools:
B Espresso (heuristic two-level minimization, 1980s)
B MIS (multi-level logic minimization, 1980s)
® SIS (sequential logic minimization, 1990s)

m ABC (sequential synthesis and verification system,
2005-)

Ohttp://www.eecs.berkeley.edu/~ alanmi/abc/

96

