
53

Factor Form

 Factor form s – beyond SOP
 Exam ple:

(ad+ b’c) (c+ d’(e+ ac’))+ (d+ e) fg

 Advantages
 good representat ion reflect ing logic com plexity (SOP m ay not be

representat ive)
 E.g., f= ad+ ae+ bd+ be+ cd+ ce has com plem ent in sim pler SOP f ’=

a’b’c’+ d ’e’; effect ively has sim ple factor form f= (a+ b+ c) (d+ e)

 in m any design styles (e.g. com plex gate CMOS design) the
im plem entat ion of a funct ion corresponds direct ly to its factored form

 good est im ator of logic im plem entat ion com plexity
 doesn ’t blow up easily

 Disadvantages
 not as m any algorithm s available for m anipulat ion

54

Factor From

 Factored form s are useful

in est im at ing area and

delay in m ult i- level logic

 Note: literal count
t ransistor count area

 however, area also

depends on wir ing, gate

size, etc.

 therefore very crude

m easure

55

Factor From

There are funct ions whose sizes are

exponent ial in the SOP representat ion, but

polynom ial in the factored form

Exam ple

Achilles’ heel funct ion

There are n literals in the factored form and
(n/ 2)2n/ 2 literals in the SOP form .

(x
2i1

 x
2i

)
i1

in / 2

56

Factor Form

 Factored form s can be graphically represented as labeled
t rees, called factor ing t rees, in which each internal node
including the root is labeled with either + or , and each
leaf has a label of either a variable or its com plem ent

 Exam ple: factor ing t ree of ((a’+ b)cd+ e) (a+ b ’)+ e’

57

Multi-Level Logic Minimization

Basic techniques in Boolean network

m anipulat ion:

 st ructural m anipulat ion (change network
topology)

 node sim plificat ion (change node funct ions)

node m inim izat ion using don ’t cares

58

Multi-Level Logic Minimization
Structural Manipulation

Rest ructur ing Problem : Given init ial network, find best network.

Exam ple:
f1 = abcd+ abce+ ab ’cd’+ ab’c’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df ’

f2 = bdg+ b’dfg+ b’d’g+ bd’eg

m inim izing,

f1 = bcd+ bce+ b’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df ’

f2 = bdg+ dfg+ b’d’g+ d’eg

factor ing,
f1 = c(b(d+ e)+ b ’(d’+ f)+ a’)+ ac’(bd’e’+ b’df ’)

f2 = g(d(b+ f)+ d’(b’+ e))

decom pose,

f1 = c(b(d+ e)+ b ’(d’+ f)+ a’)+ ac’x ’

f2 = gx

x = d(b+ f)+ d’(b’+ e)
Two problem s:

 find good com m on subfunct ions
 effect the division

59

Multi-Level Logic Minimization
Structural Manipulation

Basic operat ions:

1. Decom posit ion (for a single funct ion)

f = abc+ abd+ a’c’d ’+ b ’c’d ’

f = xy+ x ’y ’ x = ab y = c+ d

2. Ext ract ion (for m ult iple funct ions)

f = (az+ bz’)cd+ e g = (az+ bz’)e’ h = cde

f = xy+ e g = xe’ h = ye x = az+ bz’ y = cd

3. Factor ing (series-parallel decom posit ion)

f = ac+ ad+ bc+ bd+ e

f = (a+ b) (c+ d)+ e

60

Multi-Level Logic Minimization
Structural Manipulation

Basic operat ions (cont ’d) :

4. Subst itut ion

f = a+ bc g = a+ b

f = g(a+ c) g = a+ b

5. Collapsing (also called elim inat ion)

f = ga+ g’b g = c+ d

f = ac+ ad+ bc’d ’ g = c+ d

Note: “division” plays a key role in all these operat ions

61

Multi-Level Logic Minimization
Node Simplification

 Goal: For any node of a given Boolean network,
find a least -cost SOP expression am ong the set of
perm issible funct ions for the node

 Don ’t care com putat ion + two- level logic m inim izat ion

combinational Boolean network

62

Combinational Logic Minimization

 Tw o- level: m inim ize # product term s and # literals

 E.g., F = x1’x2’x3’+ x1’x2’x3+ x1x2’x3’+ x1x2’x3+ x1x2x3’ F =
x2’+ x1x3’

 Mult i- level: m inim ize the # literals (area m inim izat ion)

 E.g., equat ions are opt im ized using a sm aller number of
literals

63

Timing Analysis and Optimization

 Delay m odel at logic level
 Gate delay m odel (our focus)

 Constant gate delay, or pin- to-pin gate delay

 Not accurate

 Fanout delay m odel
 Gate delay considering fanout load (# fanouts)

 Slight ly m ore accurate

 Library delay m odel
 Tabular delay data given in the cell library

 Determ ine delay from input slew and output
load

 Table look-up + interpolat ion/ ext rapolat ion

 Accurate

d

64

Timing Analysis and Optimization
Gate Delay

The delay of a gate depends on:

1. Output Load

 Capacit ive loading charge
needed to swing the output
voltage

 Due to interconnect and
logic fanout

2. I nput Slew

 Slew = t ransit ion t im e

 Slower t ransistor switching
 longer delay and longer
output slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter

65

Timing Analysis and Optimization
Timing Library

 Tim ing library contains all
relevant inform at ion about each
standard cell

 E.g., pin direct ion, clock, pin
capacitance, etc.

 Delay (fastest , slowest , and often
typical) and output slew are
encoded for each input - to-output
path and each pair of t ransit ion
direct ions

 Values typically represented as 2
dim ensional look-up tables (of
output load and input slew)

 I nterpolat ion is used

Output load (nF)

In
p

u
t

sl
ew

 (
n

s)

10.34.93.72.82.0

8.14.03.42.61.0

7.23.92.92.40.5

6.13.42.62.10.1

10.04.02.01.0

“delay_table_1”

Path(

inputPorts(A),

outputPorts(Z),

inputTransition(01),

outputTransition(10),

“delay_table_1”,

“output_slew_table_1”

);

A

B

Z

01

10

66

Static Timing Analysis

 Arrival t ime: the t im e signal arr ives
 Calculated from input to output in the topological order

 Required t im e: the t im e signal m ust ready (e.g., due to the clock
cycle const raint)
 Calculated from output to input in the reverse topological order

 Slack = required t im e – arr ival t ime
 Tim ing flexibilit y m argin (posit ive: good; negat ive: bad)

node k

A(j) R(j)

node j

D(j,k)
r(j,k)

A(k) R(k)

A(j): arrival time of signal j

R(k): required time or for signal k

S(k): slack of signal k

D(j,k): delay of node j from input k

A(j) = maxkFI (j) [A(k) + D(j,k)]

r(j,k) = R(j) - D(j,k)

R(k) = minjFO(k) [r(j,k)]

S(k) = R(k) - A(k)

67

Static Timing Analysis

 Arrival t im es known at l1 and l2
 Required t im es known at l3, l4, and l5
 Delay analysis gives arr ival and required t im es (hence

slacks) for com binat ional blocks C1, C2, C3, C4

C3

C1
C2

C4

l1

l2 l3

l4

l5

68

Static Timing Analysis

 Arrival t im e can be com puted in the topological
order from inputs to outputs

 When a node is visited, its output arr ival t im e is:

the m ax of its fanin arr ival t im es + its own gate delay

 Required t im e can be com puted in the reverse
topological order from outputs to inputs

 When a node is visited, its input required t im e is:

the m in of its fanout required t im es – it s own gate delay

69

Static Timing Analysis

 Exam ple

2 1

2 2 1

21

R2=5R1=5

A8=0
A9=0

98

0

0
1

0-1

-1
-1

-1

10
-1

-1

5

76

3

1 2

4

1

4

2

34

56

node ID

arrival time

slack

A10=2

10

1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki fanin(k)

Sk = min{Sk,kj }, kj fanout(k)

70

Timing Optimization

I dent ify t im ing cr it ical regions

Perform t im ing opt im izat ion on the

selected regions

E.g., gate sizing, buffer insert ion, fanout
opt im izat ion, t ree height reduct ion, etc.

71

Timing Optimization

Buffer insert ion

Divide the fanouts of a gate into cr it ical and
non-cr it ical parts, and dr ive the non-cr it ical
fanouts with a buffer

more

critical less

critical

timing is improved
due to less loading

72

Timing Optimization

Fanout opt im izat ion

Split the fanouts of a gate into several parts.
Each part is dr iven by a copy of the or iginal
gate.

73

Timing Optimization

Tree height reduct ion

n

l m

i j

h

k

3

6

5 5

1 4

1

0 0 0 0 2 0 0

a b c d e f g

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
duplicated

logic

1
2

00

5
critical region

collapsed

critical region

74

Timing Optimization

Tree height reduct ion

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
Duplicated

logic

1
2

00

5

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed

Critical region

New delay = 5

75

Combinational Optimization

From Boolean funct ions to circuits
Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists

76

Technology Independent vs. Dependent
Optimization

 Technology independent opt im izat ion produces a
two- level or m ult i- level net list where literal
and/ or cube counts are m inim ized

 Given the opt im ized net list , it s logic gates are to
be im plem ented with library cells

 The process of associat ing logic gates with library
cells is technology m apping

 Translat ion of a technology independent representat ion

(e.g. Boolean networks) of a circuit into a circuit for a

given technology (e.g. standard cells) with opt im al cost

77

Technology Mapping

 Standard- cell technology m apping: standard cell design
 Map a funct ion to a lim ited set of pre-designed library cells

 FPGA technology m apping
 Lookup table (LUT) architecture:

 E.g., Lucent , Xilinx FPGAs

 Each lookup table (LUT) can im plement all logic funct ions with up to k inputs (k = 4, 5, 6)

 Mult iplexer-based technology m apping:
 E.g., Actel FPGA

 Logic m odules are const ructed with m ult iplexers

78

Standard-Cell Based Design

79

Technology Mapping

 Form ulat ion:
 Choose base funct ions

Ex: 2- input NAND and I nverter

 Represent the (opt im ized) Boolean network with base
funct ions

Subject graph

 Represent library cells with base funct ions

Pat tern graph
Each pat tern is associated with a cost depending on the

opt im izat ion cr iter ia, e.g., area, t im ing, power, etc.

 Goal:
 Find a m inim al cost covering of a subject graph using

pat tern graphs

80

Technology Mapping

 Technology Mapping: The opt im izat ion problem
of finding a m inim um cost covering of the subject
graph by choosing from a collect ion of pat tern
graphs of gates in the library.

 A cover is a collect ion of pat tern graphs such that
every node of the subject graph is contained in
one (or m ore) of the pat tern graphs.

 The cover is further const rained so that each
input required by a pat tern graph is actually an
output of som e other pat tern graph.

81

Technology Mapping

Exam ple
Subject graph

t1 = d + e

t2 = b + h

t3 = a t2 + c

t4 = t1 t3 + f g h

F = t4’

f
g
d
e
h
b
a
c

Ft1

t2

t3

t4

82

Technology Mapping

 Exam ple
 Pat tern graphs (1/ 3)

inv (1)

nand2 (2) nor2 (2)

nand3 (3) nor3 (3)

cell name (cost)

and2 (3) or2 (3)

(cost can be area or delay)

83

Technology Mapping

 Exam ple
 Pat tern graphs (2/ 3)

nand4 (4)

nor4 (4)

aoi21 (3)
oai21 (3)

aoi22 (4)

oai22 (4)

84

Technology Mapping

 Exam ple
 Pat tern graphs (3/ 3)

xor (5) xnor (5)

nand4 (4) nor4 (4)

85

Technology Mapping

 Exam ple
 A t r ivial covering

Mapped into NAND2 ’s and I NV’s
 8 NAND2 ’s and 7 I NV’s at cost of 23

cost = 23

86

Technology Mapping

 Exam ple
 A bet ter covering

f
g

d

e

h

b

a

c

F
OR2

OR2

AND2

AOI22

NAND2

NAND2
INV

cost = 18

For a covering to be legal, every input of a pat tern

graph m ust be the output of another pat tern graph!

87

Technology Mapping

 Exam ple
 An even bet ter covering

OAI21

OAI21

NAND3

AND2

NAND2
INV

f
g

d

e

h

b

a

c

F

cost = 15

For a covering to be legal, every input of a pat tern

graph m ust be the output of another pat tern graph!

88

Technology Mapping

Com plexity of covering on directed acyclic

graphs (DAGs)

NP-com plete

 I f the subject graph and pat tern graphs are

t rees, then an efficient algorithm exists (based

on dynam ic program m ing)

89

Technology Mapping
DAGON Approach

 Part it ion a subject graph into t rees
 Cut the graph at all mult iple fanout points

 Opt im ally cover each t ree using dynam ic program m ing approach

 Piece the t ree-covers into a cover for the subject graph

90

Technology Mapping
DAGON Approach

 Principle of opt im ality: opt im al cover for the t ree consists of

a m atch at the root plus the opt im al cover for the sub- t ree

start ing at each input of the m atch

I1

I3

I2

I4

Match: cost = m

root

C(root) = m + C(I1) + C(I2) + C(I3) + C(I4)

cost of a leaf (i.e. primary input) = 0

91

Technology Mapping
DAGON Approach

 Exam ple
 Library

INV 2 a’

NAND2 3 (ab)’

NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4
(ab+c)’

AOI22 5
(ab+cd)’

library element base-function representation

92

Technology Mapping
DAGON Approach

 Exam ple
NAND2(3)

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)

NAND3(4)

NAND2(13)

INV(15)

AOI21(9)
NAND2(16)

NAND3(18)

AOI21(22)

INV(18)

NAND2(21)

NAND3(17)

NAND4(19)

93

Technology Mapping
DAGON Approach

Com plexity of DAGON for t ree m apping is

cont rolled by finding all sub- t rees of the

subject graph isom orphic to pat tern t rees

Linear com plexity in both the size of

subject t ree and the size of the collect ion

of pat tern t rees

Consider library size as constant

94

Technology Mapping
DAGON Approach

 Pros:

 Strong algorithm ic

foundat ion

 Linear t im e com plexity

Efficient approxim at ion

to graph-covering

problem

 Give locally opt im al

m atches in term s of both

area and delay cost

funct ions

 Easily “portable” to new

technologies

 Cons:

 With only a local (to the

t ree) not ion of t im ing

Taking load values into

account can im prove

the results

 Can dest roy st ructures of

opt im ized networks

Not desirable for well-

st ructured circuits

 I nabilit y to handle non-

t ree library elem ents

(XOR/ XNOR)

 Poor inverter allocat ion

95

Technology Mapping
DAGON Approach

DAGON can be im proved by

Adding a pair of inverters for each wire in the
subject graph

Adding a pat tern of a wire that m atches two
inverters with zero cost

2 INV

1 AIO21
2 NOR2

96

Available Logic Synthesis Tools

 Academ ic CAD tools:

 Espresso (heurist ic two- level m inim izat ion, 1980s)

 MI S (m ult i- level logic m inim izat ion, 1980s)

 SI S (sequent ial logic m inim izat ion, 1990s)

 ABC (sequent ial synthesis and verificat ion system ,

2005-)

ht tp: / / www.eecs.berkeley.edu/ ~ alanm i/ abc/

