
53

Factor Form

 Factor form s – beyond SOP
 Exam ple:  

(ad+ b’c) (c+ d’(e+ ac’) )+ (d+ e) fg

 Advantages
 good representat ion reflect ing logic com plexity (SOP m ay not  be 

representat ive)
 E.g., f= ad+ ae+ bd+ be+ cd+ ce has com plem ent  in sim pler SOP  f ’=  

a’b’c’+ d ’e’;  effect ively has sim ple factor form   f= (a+ b+ c) (d+ e)

 in m any design styles (e.g. com plex gate CMOS design)  the 
im plem entat ion of a funct ion corresponds direct ly to its factored form

 good est im ator of logic im plem entat ion com plexity
 doesn ’t  blow up easily

 Disadvantages
 not  as m any algorithm s available for m anipulat ion
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Factor From

 Factored form s are useful 

in est im at ing area and 

delay in m ult i- level logic

 Note: literal count   
t ransistor count   area 

 however, area also 

depends on wir ing, gate 

size, etc.

 therefore very crude 

m easure
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Factor From

There are funct ions whose sizes are 

exponent ial in the SOP representat ion, but  

polynom ial in the factored form

Exam ple

Achilles’ heel funct ion

There are n literals in the factored form  and 
(n/ 2)2n/ 2 literals in the SOP form .

  

(x
2i1

 x
2i

)
i1

in / 2


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Factor Form

 Factored form s can be graphically represented as labeled 
t rees, called factor ing t rees, in which each internal node 
including the root  is labeled with either + or ,  and each 
leaf has a label of either a variable or its com plem ent

 Exam ple: factor ing t ree of ( (a’+ b)cd+ e) (a+ b ’)+ e’
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Multi-Level Logic Minimization

Basic techniques in Boolean network 

m anipulat ion:

 st ructural m anipulat ion (change network 
topology)

 node sim plificat ion (change node funct ions)

node m inim izat ion using don ’t  cares
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Multi-Level Logic Minimization
Structural Manipulation

Rest ructur ing Problem : Given init ial network, find best network.

Exam ple:
f1 =  abcd+ abce+ ab ’cd’+ ab’c’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df ’

f2 =  bdg+ b’dfg+ b’d’g+ bd’eg

m inim izing,

f1 =  bcd+ bce+ b’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df ’

f2 =  bdg+ dfg+ b’d’g+ d’eg

factor ing,
f1 =  c(b(d+ e)+ b ’(d’+ f)+ a’)+ ac’(bd’e’+ b’df ’)

f2 =  g(d(b+ f)+ d’(b’+ e) )

decom pose,

f1 =  c(b(d+ e)+ b ’(d’+ f)+ a’)+ ac’x ’

f2 =  gx

x =  d(b+ f)+ d’(b’+ e)
Two problem s:

 find good com m on subfunct ions
 effect  the division
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Multi-Level Logic Minimization
Structural Manipulation

Basic operat ions:

1. Decom posit ion ( for a single funct ion)

f =  abc+ abd+ a’c’d ’+ b ’c’d ’


f =  xy+ x ’y ’ x =  ab y =  c+ d

2. Ext ract ion ( for m ult iple funct ions)

f =  (az+ bz’)cd+ e g =  (az+ bz’)e’ h =  cde


f =  xy+ e g =  xe’ h =  ye    x =  az+ bz’ y =  cd

3. Factor ing (series-parallel decom posit ion)

f =  ac+ ad+ bc+ bd+ e


f =  (a+ b) (c+ d)+ e
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Multi-Level Logic Minimization
Structural Manipulation

Basic operat ions (cont ’d) :

4. Subst itut ion

f =  a+ bc g =  a+ b


f =  g(a+ c)     g =  a+ b

5. Collapsing (also called elim inat ion)

f =  ga+ g’b g =  c+ d


f =  ac+ ad+ bc’d ’ g =  c+ d

Note: “division” plays a key role in all these operat ions
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Multi-Level Logic Minimization
Node Simplification

 Goal:  For any node of a given Boolean network, 
find a least -cost SOP expression am ong the set  of 
perm issible funct ions for the node

 Don ’t  care com putat ion +  two- level logic m inim izat ion

combinational Boolean network
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Combinational Logic Minimization

 Tw o- level: m inim ize # product  term s and # literals

 E.g., F =  x1’x2’x3’+  x1’x2’x3+  x1x2’x3’+  x1x2’x3+  x1x2x3’  F =  
x2’+  x1x3’

 Mult i- level: m inim ize the #  literals (area m inim izat ion)

 E.g., equat ions are opt im ized using a sm aller number of 
literals
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Timing Analysis and Optimization

 Delay m odel at  logic level
 Gate delay m odel (our focus)

 Constant  gate delay, or pin- to-pin gate delay

 Not  accurate

 Fanout delay m odel
 Gate delay considering fanout load (# fanouts)

 Slight ly m ore accurate

 Library delay m odel
 Tabular delay data given in the cell library

 Determ ine delay from  input  slew and output  
load

 Table look-up +  interpolat ion/ ext rapolat ion

 Accurate

d
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Timing Analysis and Optimization
Gate Delay

The delay of a gate depends on:

1. Output  Load

 Capacit ive loading charge 
needed to swing the output  
voltage

 Due to interconnect  and 
logic fanout

2. I nput  Slew

 Slew =  t ransit ion t im e

 Slower t ransistor switching 
 longer delay and longer 
output  slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter
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Timing Analysis and Optimization
Timing Library

 Tim ing library contains all 
relevant  inform at ion about  each 
standard cell 

 E.g., pin direct ion, clock, pin 
capacitance, etc.

 Delay ( fastest , slowest , and often 
typical)  and output  slew are 
encoded for each input - to-output  
path and each pair of t ransit ion 
direct ions

 Values typically represented as 2 
dim ensional look-up tables (of 
output  load and input  slew)

 I nterpolat ion is used

Output load (nF)

In
p

u
t 

sl
ew

 (
n

s)

10.34.93.72.82.0

8.14.03.42.61.0

7.23.92.92.40.5

6.13.42.62.10.1

10.04.02.01.0

“delay_table_1”

Path(

inputPorts(A), 

outputPorts(Z), 

inputTransition(01),  

outputTransition(10), 

“delay_table_1”, 

“output_slew_table_1”

);

A

B

Z

01

10
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Static Timing Analysis

 Arrival t ime:  the t im e signal arr ives
 Calculated from  input  to output in the topological order

 Required t im e:  the t im e signal m ust  ready (e.g., due to the clock 
cycle const raint )
 Calculated from  output  to input in the reverse topological order

 Slack =  required t im e – arr ival t ime
 Tim ing flexibilit y m argin (posit ive:  good;  negat ive:  bad)

node k

A(j) R(j)

node j

D(j,k)
r(j,k)

A(k) R(k)

A(j): arrival time of signal j

R(k): required time or for signal k

S(k): slack of signal k

D(j,k): delay of node j from input k

A(j) = maxkFI (j) [A(k) + D(j,k)]

r(j,k) = R(j) - D(j,k)

R(k) = minjFO(k) [r(j,k)]

S(k) = R(k) - A(k)
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Static Timing Analysis

 Arrival t im es known at  l1 and l2
 Required t im es known at  l3,  l4,  and l5
 Delay analysis gives arr ival and required t im es (hence 

slacks) for com binat ional blocks C1,  C2,  C3,  C4

C3

C1
C2

C4

l1

l2 l3

l4

l5
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Static Timing Analysis

 Arrival t im e can be com puted in the topological 
order from  inputs to outputs 

 When a node is visited, its output  arr ival t im e is:  

the m ax of its fanin arr ival t im es +  its own gate delay

 Required t im e can be com puted in the reverse 
topological order from  outputs to inputs

 When a node is visited, its input  required t im e is:  

the m in of its fanout required t im es – it s own gate delay
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Static Timing Analysis

 Exam ple

2 1

2 2 1

21

R2=5R1=5

A8=0
A9=0

98

0

0
1

0-1

-1
-1

-1

10
-1

-1

5
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3

1 2

4

1

4

2

34

56

node ID

arrival time

slack

A10=2

10

1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki  fanin(k)

Sk = min{Sk,kj }, kj  fanout(k)
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Timing Optimization

I dent ify t im ing cr it ical regions

Perform  t im ing opt im izat ion on the 

selected regions

E.g., gate sizing, buffer insert ion, fanout
opt im izat ion, t ree height  reduct ion, etc.
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Timing Optimization

Buffer insert ion

Divide the fanouts of a gate into cr it ical and 
non-cr it ical parts, and dr ive the non-cr it ical 
fanouts with a buffer

more

critical less

critical

timing is improved
due to less loading
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Timing Optimization

Fanout opt im izat ion

Split  the fanouts of a gate into several parts. 
Each part  is dr iven by a copy of the or iginal 
gate.
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Timing Optimization

Tree height  reduct ion

n

l m

i j

h

k

3

6

5 5

1 4

1

0 0 0 0 2 0 0

a b c d e f g

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
duplicated

logic

1
2

00

5
critical region

collapsed

critical region 
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Timing Optimization

Tree height  reduct ion

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
Duplicated

logic

1
2

00

5

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed

Critical region

New delay = 5
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Combinational Optimization

From  Boolean funct ions to circuits
Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Technology Independent vs. Dependent 
Optimization

 Technology independent  opt im izat ion produces a 
two- level or m ult i- level net list where literal 
and/ or cube counts are m inim ized

 Given the opt im ized net list , it s logic gates are to 
be im plem ented with library cells

 The process of associat ing logic gates with library 
cells is technology m apping

 Translat ion of a technology independent  representat ion 

(e.g. Boolean networks)  of a circuit  into a circuit  for a 

given technology (e.g. standard cells)  with opt im al cost
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Technology Mapping

 Standard- cell technology m apping: standard cell design
 Map a funct ion to a lim ited set  of pre-designed library cells

 FPGA technology m apping
 Lookup table (LUT)  architecture:  

 E.g., Lucent , Xilinx FPGAs

 Each lookup table (LUT)  can im plement  all logic funct ions with up to k inputs (k =  4, 5, 6)

 Mult iplexer-based technology m apping:  
 E.g., Actel FPGA

 Logic m odules are const ructed with m ult iplexers
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Standard-Cell Based Design
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Technology Mapping

 Form ulat ion:
 Choose base funct ions

Ex:  2- input  NAND and I nverter

 Represent  the (opt im ized)  Boolean network with base 
funct ions

Subject  graph

 Represent  library cells with base funct ions

Pat tern graph
Each pat tern is associated with a cost  depending on the 

opt im izat ion cr iter ia, e.g., area, t im ing, power, etc.

 Goal:
 Find a m inim al cost  covering of a subject  graph using 

pat tern graphs
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Technology Mapping

 Technology Mapping: The opt im izat ion problem  
of finding a m inim um  cost  covering of the subject  
graph by choosing from  a collect ion of pat tern 
graphs of gates in the library.

 A cover is a collect ion of pat tern graphs such that  
every node of the subject  graph is contained in 
one (or m ore)  of the pat tern graphs.

 The cover is further const rained so that  each 
input  required by a pat tern graph is actually an 
output  of som e other pat tern graph.
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Technology Mapping

Exam ple
Subject  graph

t1 = d + e

t2 = b + h

t3 = a t2 + c

t4 = t1 t3 + f g h

F = t4’

f
g
d
e
h
b
a
c

Ft1

t2

t3

t4
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Technology Mapping

 Exam ple
 Pat tern graphs (1/ 3)

inv (1)

nand2 (2) nor2 (2)

nand3 (3) nor3 (3)

cell name (cost)

and2 (3) or2 (3)

(cost  can be area or delay)
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Technology Mapping

 Exam ple
 Pat tern graphs (2/ 3)

nand4 (4)

nor4 (4)

aoi21 (3)
oai21 (3)

aoi22 (4)

oai22 (4)
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Technology Mapping

 Exam ple
 Pat tern graphs (3/ 3)

xor (5) xnor (5)

nand4 (4) nor4 (4)
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Technology Mapping

 Exam ple
 A t r ivial covering

Mapped into NAND2 ’s and I NV’s
 8 NAND2 ’s and 7 I NV’s at  cost  of 23

cost = 23
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Technology Mapping

 Exam ple
 A bet ter covering

f
g

d

e

h

b

a

c

F
OR2

OR2

AND2

AOI22

NAND2

NAND2
INV

cost = 18

For a covering to be legal, every input  of a pat tern 

graph m ust  be the output  of another pat tern graph!
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Technology Mapping

 Exam ple
 An even bet ter covering

OAI21

OAI21

NAND3

AND2

NAND2
INV

f
g

d

e

h

b

a

c

F

cost = 15

For a covering to be legal, every input  of a pat tern 

graph m ust  be the output  of another pat tern graph!
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Technology Mapping

Com plexity of covering on directed acyclic 

graphs (DAGs)

NP-com plete

 I f the subject  graph and pat tern graphs are 

t rees, then an efficient  algorithm  exists (based 

on dynam ic program m ing)
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Technology Mapping
DAGON Approach

 Part it ion a subject  graph into t rees
 Cut  the graph at  all mult iple fanout points

 Opt im ally cover each t ree using dynam ic program m ing approach

 Piece the t ree-covers into a cover for the subject  graph
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Technology Mapping
DAGON Approach

 Principle of opt im ality:  opt im al cover for the t ree consists of 

a m atch at  the root  plus the opt im al cover for the sub- t ree 

start ing at  each input  of the m atch

I1

I3

I2

I4

Match: cost = m

root

C(root) = m + C(I1) + C(I2) + C(I3) + C(I4) 

cost of a leaf (i.e. primary input) = 0
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Technology Mapping
DAGON Approach

 Exam ple
 Library

INV 2 a’

NAND2 3 (ab)’

NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4
(ab+c)’

AOI22 5
(ab+cd)’

library element base-function representation
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Technology Mapping
DAGON Approach

 Exam ple
NAND2(3)

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)

NAND3(4)

NAND2(13)

INV(15)

AOI21(9)
NAND2(16)

NAND3(18)

AOI21(22)

INV(18)

NAND2(21)

NAND3(17)

NAND4(19)
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Technology Mapping
DAGON Approach

Com plexity of DAGON for t ree m apping is 

cont rolled by finding all sub- t rees of the 

subject  graph isom orphic to pat tern t rees

Linear com plexity in both the size of 

subject  t ree and the size of the collect ion 

of pat tern t rees

Consider library size as constant
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Technology Mapping
DAGON Approach

 Pros:

 Strong algorithm ic 

foundat ion

 Linear t im e com plexity

Efficient  approxim at ion 

to graph-covering 

problem

 Give locally opt im al 

m atches in term s of both 

area and delay cost  

funct ions

 Easily “portable” to new 

technologies

 Cons:

 With only a local ( to the 

t ree)  not ion of t im ing

Taking load values into 

account  can im prove 

the results

 Can dest roy st ructures of 

opt im ized networks

Not  desirable for well-

st ructured circuits

 I nabilit y to handle non-

t ree library elem ents 

(XOR/ XNOR)

 Poor inverter allocat ion
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Technology Mapping
DAGON Approach

DAGON can be im proved by

Adding a pair  of inverters for each wire in the 
subject  graph

Adding a pat tern of a wire that  m atches two 
inverters with zero cost

2 INV

1 AIO21
2 NOR2
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Available Logic Synthesis Tools

 Academ ic CAD tools:  

 Espresso (heurist ic two- level m inim izat ion, 1980s)

 MI S (m ult i- level logic m inim izat ion, 1980s)  

 SI S (sequent ial logic m inim izat ion, 1990s)  

 ABC (sequent ial synthesis and verificat ion system , 

2005- )

ht tp: / / www.eecs.berkeley.edu/ ~ alanm i/ abc/


