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Factor Form

 Factor form s – beyond SOP
 Exam ple:  

(ad+ b’c) (c+ d’(e+ ac’) )+ (d+ e) fg

 Advantages
 good representat ion reflect ing logic com plexity (SOP m ay not  be 

representat ive)
 E.g., f= ad+ ae+ bd+ be+ cd+ ce has com plem ent  in sim pler SOP  f ’=  

a’b’c’+ d ’e’;  effect ively has sim ple factor form   f= (a+ b+ c) (d+ e)

 in m any design styles (e.g. com plex gate CMOS design)  the 
im plem entat ion of a funct ion corresponds direct ly to its factored form

 good est im ator of logic im plem entat ion com plexity
 doesn ’t  blow up easily

 Disadvantages
 not  as m any algorithm s available for m anipulat ion
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Factor From

 Factored form s are useful 

in est im at ing area and 

delay in m ult i- level logic

 Note: literal count   
t ransistor count   area 

 however, area also 

depends on wir ing, gate 

size, etc.

 therefore very crude 

m easure
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Factor From

There are funct ions whose sizes are 

exponent ial in the SOP representat ion, but  

polynom ial in the factored form

Exam ple

Achilles’ heel funct ion

There are n literals in the factored form  and 
(n/ 2)2n/ 2 literals in the SOP form .

  

(x
2i1

 x
2i

)
i1

in / 2
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Factor Form

 Factored form s can be graphically represented as labeled 
t rees, called factor ing t rees, in which each internal node 
including the root  is labeled with either + or ,  and each 
leaf has a label of either a variable or its com plem ent

 Exam ple: factor ing t ree of ( (a’+ b)cd+ e) (a+ b ’)+ e’
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Multi-Level Logic Minimization

Basic techniques in Boolean network 

m anipulat ion:

 st ructural m anipulat ion (change network 
topology)

 node sim plificat ion (change node funct ions)

node m inim izat ion using don ’t  cares
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Multi-Level Logic Minimization
Structural Manipulation

Rest ructur ing Problem : Given init ial network, find best network.

Exam ple:
f1 =  abcd+ abce+ ab ’cd’+ ab’c’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df ’

f2 =  bdg+ b’dfg+ b’d’g+ bd’eg

m inim izing,

f1 =  bcd+ bce+ b’d’+ a’c+ cdf+ abc’d’e’+ ab’c’df ’

f2 =  bdg+ dfg+ b’d’g+ d’eg

factor ing,
f1 =  c(b(d+ e)+ b ’(d’+ f)+ a’)+ ac’(bd’e’+ b’df ’)

f2 =  g(d(b+ f)+ d’(b’+ e) )

decom pose,

f1 =  c(b(d+ e)+ b ’(d’+ f)+ a’)+ ac’x ’

f2 =  gx

x =  d(b+ f)+ d’(b’+ e)
Two problem s:

 find good com m on subfunct ions
 effect  the division
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Multi-Level Logic Minimization
Structural Manipulation

Basic operat ions:

1. Decom posit ion ( for a single funct ion)

f =  abc+ abd+ a’c’d ’+ b ’c’d ’


f =  xy+ x ’y ’ x =  ab y =  c+ d

2. Ext ract ion ( for m ult iple funct ions)

f =  (az+ bz’)cd+ e g =  (az+ bz’)e’ h =  cde


f =  xy+ e g =  xe’ h =  ye    x =  az+ bz’ y =  cd

3. Factor ing (series-parallel decom posit ion)

f =  ac+ ad+ bc+ bd+ e


f =  (a+ b) (c+ d)+ e
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Multi-Level Logic Minimization
Structural Manipulation

Basic operat ions (cont ’d) :

4. Subst itut ion

f =  a+ bc g =  a+ b


f =  g(a+ c)     g =  a+ b

5. Collapsing (also called elim inat ion)

f =  ga+ g’b g =  c+ d


f =  ac+ ad+ bc’d ’ g =  c+ d

Note: “division” plays a key role in all these operat ions
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Multi-Level Logic Minimization
Node Simplification

 Goal:  For any node of a given Boolean network, 
find a least -cost SOP expression am ong the set  of 
perm issible funct ions for the node

 Don ’t  care com putat ion +  two- level logic m inim izat ion

combinational Boolean network
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Combinational Logic Minimization

 Tw o- level: m inim ize # product  term s and # literals

 E.g., F =  x1’x2’x3’+  x1’x2’x3+  x1x2’x3’+  x1x2’x3+  x1x2x3’  F =  
x2’+  x1x3’

 Mult i- level: m inim ize the #  literals (area m inim izat ion)

 E.g., equat ions are opt im ized using a sm aller number of 
literals
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Timing Analysis and Optimization

 Delay m odel at  logic level
 Gate delay m odel (our focus)

 Constant  gate delay, or pin- to-pin gate delay

 Not  accurate

 Fanout delay m odel
 Gate delay considering fanout load (# fanouts)

 Slight ly m ore accurate

 Library delay m odel
 Tabular delay data given in the cell library

 Determ ine delay from  input  slew and output  
load

 Table look-up +  interpolat ion/ ext rapolat ion

 Accurate

d
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Timing Analysis and Optimization
Gate Delay

The delay of a gate depends on:

1. Output  Load

 Capacit ive loading charge 
needed to swing the output  
voltage

 Due to interconnect  and 
logic fanout

2. I nput  Slew

 Slew =  t ransit ion t im e

 Slower t ransistor switching 
 longer delay and longer 
output  slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter
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Timing Analysis and Optimization
Timing Library

 Tim ing library contains all 
relevant  inform at ion about  each 
standard cell 

 E.g., pin direct ion, clock, pin 
capacitance, etc.

 Delay ( fastest , slowest , and often 
typical)  and output  slew are 
encoded for each input - to-output  
path and each pair of t ransit ion 
direct ions

 Values typically represented as 2 
dim ensional look-up tables (of 
output  load and input  slew)

 I nterpolat ion is used

Output load (nF)

In
p

u
t 

sl
ew

 (
n

s)

10.34.93.72.82.0

8.14.03.42.61.0

7.23.92.92.40.5

6.13.42.62.10.1

10.04.02.01.0

“delay_table_1”

Path(

inputPorts(A), 

outputPorts(Z), 

inputTransition(01),  

outputTransition(10), 

“delay_table_1”, 

“output_slew_table_1”

);

A

B

Z

01

10
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Static Timing Analysis

 Arrival t ime:  the t im e signal arr ives
 Calculated from  input  to output in the topological order

 Required t im e:  the t im e signal m ust  ready (e.g., due to the clock 
cycle const raint )
 Calculated from  output  to input in the reverse topological order

 Slack =  required t im e – arr ival t ime
 Tim ing flexibilit y m argin (posit ive:  good;  negat ive:  bad)

node k

A(j) R(j)

node j

D(j,k)
r(j,k)

A(k) R(k)

A(j): arrival time of signal j

R(k): required time or for signal k

S(k): slack of signal k

D(j,k): delay of node j from input k

A(j) = maxkFI (j) [A(k) + D(j,k)]

r(j,k) = R(j) - D(j,k)

R(k) = minjFO(k) [r(j,k)]

S(k) = R(k) - A(k)
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Static Timing Analysis

 Arrival t im es known at  l1 and l2
 Required t im es known at  l3,  l4,  and l5
 Delay analysis gives arr ival and required t im es (hence 

slacks) for com binat ional blocks C1,  C2,  C3,  C4

C3

C1
C2

C4

l1

l2 l3

l4

l5
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Static Timing Analysis

 Arrival t im e can be com puted in the topological 
order from  inputs to outputs 

 When a node is visited, its output  arr ival t im e is:  

the m ax of its fanin arr ival t im es +  its own gate delay

 Required t im e can be com puted in the reverse 
topological order from  outputs to inputs

 When a node is visited, its input  required t im e is:  

the m in of its fanout required t im es – it s own gate delay
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Static Timing Analysis

 Exam ple

2 1

2 2 1

21

R2=5R1=5

A8=0
A9=0

98

0

0
1

0-1

-1
-1

-1

10
-1

-1

5
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3

1 2

4

1

4

2

34

56

node ID

arrival time

slack

A10=2

10

1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki  fanin(k)

Sk = min{Sk,kj }, kj  fanout(k)
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Timing Optimization

I dent ify t im ing cr it ical regions

Perform  t im ing opt im izat ion on the 

selected regions

E.g., gate sizing, buffer insert ion, fanout
opt im izat ion, t ree height  reduct ion, etc.
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Timing Optimization

Buffer insert ion

Divide the fanouts of a gate into cr it ical and 
non-cr it ical parts, and dr ive the non-cr it ical 
fanouts with a buffer

more

critical less

critical

timing is improved
due to less loading
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Timing Optimization

Fanout opt im izat ion

Split  the fanouts of a gate into several parts. 
Each part  is dr iven by a copy of the or iginal 
gate.
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Timing Optimization

Tree height  reduct ion

n

l m

i j

h

k

3

6

5 5

1 4

1

0 0 0 0 2 0 0

a b c d e f g

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
duplicated

logic

1
2

00

5
critical region

collapsed

critical region 
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Timing Optimization

Tree height  reduct ion

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
Duplicated

logic

1
2

00

5

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed

Critical region

New delay = 5
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Combinational Optimization

From  Boolean funct ions to circuits
Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Technology Independent vs. Dependent 
Optimization

 Technology independent  opt im izat ion produces a 
two- level or m ult i- level net list where literal 
and/ or cube counts are m inim ized

 Given the opt im ized net list , it s logic gates are to 
be im plem ented with library cells

 The process of associat ing logic gates with library 
cells is technology m apping

 Translat ion of a technology independent  representat ion 

(e.g. Boolean networks)  of a circuit  into a circuit  for a 

given technology (e.g. standard cells)  with opt im al cost
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Technology Mapping

 Standard- cell technology m apping: standard cell design
 Map a funct ion to a lim ited set  of pre-designed library cells

 FPGA technology m apping
 Lookup table (LUT)  architecture:  

 E.g., Lucent , Xilinx FPGAs

 Each lookup table (LUT)  can im plement  all logic funct ions with up to k inputs (k =  4, 5, 6)

 Mult iplexer-based technology m apping:  
 E.g., Actel FPGA

 Logic m odules are const ructed with m ult iplexers
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Standard-Cell Based Design
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Technology Mapping

 Form ulat ion:
 Choose base funct ions

Ex:  2- input  NAND and I nverter

 Represent  the (opt im ized)  Boolean network with base 
funct ions

Subject  graph

 Represent  library cells with base funct ions

Pat tern graph
Each pat tern is associated with a cost  depending on the 

opt im izat ion cr iter ia, e.g., area, t im ing, power, etc.

 Goal:
 Find a m inim al cost  covering of a subject  graph using 

pat tern graphs
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Technology Mapping

 Technology Mapping: The opt im izat ion problem  
of finding a m inim um  cost  covering of the subject  
graph by choosing from  a collect ion of pat tern 
graphs of gates in the library.

 A cover is a collect ion of pat tern graphs such that  
every node of the subject  graph is contained in 
one (or m ore)  of the pat tern graphs.

 The cover is further const rained so that  each 
input  required by a pat tern graph is actually an 
output  of som e other pat tern graph.
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Technology Mapping

Exam ple
Subject  graph

t1 = d + e

t2 = b + h

t3 = a t2 + c

t4 = t1 t3 + f g h

F = t4’

f
g
d
e
h
b
a
c

Ft1

t2

t3

t4
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Technology Mapping

 Exam ple
 Pat tern graphs (1/ 3)

inv (1)

nand2 (2) nor2 (2)

nand3 (3) nor3 (3)

cell name (cost)

and2 (3) or2 (3)

(cost  can be area or delay)
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Technology Mapping

 Exam ple
 Pat tern graphs (2/ 3)

nand4 (4)

nor4 (4)

aoi21 (3)
oai21 (3)

aoi22 (4)

oai22 (4)
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Technology Mapping

 Exam ple
 Pat tern graphs (3/ 3)

xor (5) xnor (5)

nand4 (4) nor4 (4)
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Technology Mapping

 Exam ple
 A t r ivial covering

Mapped into NAND2 ’s and I NV’s
 8 NAND2 ’s and 7 I NV’s at  cost  of 23

cost = 23
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Technology Mapping

 Exam ple
 A bet ter covering

f
g

d

e

h

b

a

c

F
OR2

OR2

AND2

AOI22

NAND2

NAND2
INV

cost = 18

For a covering to be legal, every input  of a pat tern 

graph m ust  be the output  of another pat tern graph!
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Technology Mapping

 Exam ple
 An even bet ter covering

OAI21

OAI21

NAND3

AND2

NAND2
INV

f
g

d

e

h

b

a

c

F

cost = 15

For a covering to be legal, every input  of a pat tern 

graph m ust  be the output  of another pat tern graph!
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Technology Mapping

Com plexity of covering on directed acyclic 

graphs (DAGs)

NP-com plete

 I f the subject  graph and pat tern graphs are 

t rees, then an efficient  algorithm  exists (based 

on dynam ic program m ing)
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Technology Mapping
DAGON Approach

 Part it ion a subject  graph into t rees
 Cut  the graph at  all mult iple fanout points

 Opt im ally cover each t ree using dynam ic program m ing approach

 Piece the t ree-covers into a cover for the subject  graph
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Technology Mapping
DAGON Approach

 Principle of opt im ality:  opt im al cover for the t ree consists of 

a m atch at  the root  plus the opt im al cover for the sub- t ree 

start ing at  each input  of the m atch

I1

I3

I2

I4

Match: cost = m

root

C(root) = m + C(I1) + C(I2) + C(I3) + C(I4) 

cost of a leaf (i.e. primary input) = 0
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Technology Mapping
DAGON Approach

 Exam ple
 Library

INV 2 a’

NAND2 3 (ab)’

NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4
(ab+c)’

AOI22 5
(ab+cd)’

library element base-function representation
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Technology Mapping
DAGON Approach

 Exam ple
NAND2(3)

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)

NAND3(4)

NAND2(13)

INV(15)

AOI21(9)
NAND2(16)

NAND3(18)

AOI21(22)

INV(18)

NAND2(21)

NAND3(17)

NAND4(19)
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Technology Mapping
DAGON Approach

Com plexity of DAGON for t ree m apping is 

cont rolled by finding all sub- t rees of the 

subject  graph isom orphic to pat tern t rees

Linear com plexity in both the size of 

subject  t ree and the size of the collect ion 

of pat tern t rees

Consider library size as constant
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Technology Mapping
DAGON Approach

 Pros:

 Strong algorithm ic 

foundat ion

 Linear t im e com plexity

Efficient  approxim at ion 

to graph-covering 

problem

 Give locally opt im al 

m atches in term s of both 

area and delay cost  

funct ions

 Easily “portable” to new 

technologies

 Cons:

 With only a local ( to the 

t ree)  not ion of t im ing

Taking load values into 

account  can im prove 

the results

 Can dest roy st ructures of 

opt im ized networks

Not  desirable for well-

st ructured circuits

 I nabilit y to handle non-

t ree library elem ents 

(XOR/ XNOR)

 Poor inverter allocat ion
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Technology Mapping
DAGON Approach

DAGON can be im proved by

Adding a pair  of inverters for each wire in the 
subject  graph

Adding a pat tern of a wire that  m atches two 
inverters with zero cost

2 INV

1 AIO21
2 NOR2
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Available Logic Synthesis Tools

 Academ ic CAD tools:  

 Espresso (heurist ic two- level m inim izat ion, 1980s)

 MI S (m ult i- level logic m inim izat ion, 1980s)  

 SI S (sequent ial logic m inim izat ion, 1990s)  

 ABC (sequent ial synthesis and verificat ion system , 

2005- )

ht tp: / / www.eecs.berkeley.edu/ ~ alanm i/ abc/


