\qquad

MATHEMATICS (Grades 7-12) ENDORSEMENT

Candidates' academic major must ensure:

- Acquisition of "knowledge and skills specified for endorsement in Mathematics 7-12."
- Experience that reflects use of "vocabulary, language, terminology, and grammatical constructions, syntax and notation specific to professionals in mathematics."
- Study and/or experience that ensures "the ability of candidates to promote the learning of mathematics applications to science, business, and art."

CONTENT MAJOR

MATH credits

The mathematical concepts and supporting contextual abilities are encompassed in the following:
Check all those standard indicators that have been met and provide evidence (in the space provided) of formal study or equivalent experience:

Standard 1: Mathematical Processes:
All indicators addressed as part of the Peabody M.Ed. Program in Mathematics/Secondary Education.
Standard 2: Numbers and Operations: Evidence =
2.1 Explore the nature of the types of elements in the real and complexnumbers (integer, whole
number, irrational, numbers arising from roots, etc.) and the mathematical imperatives that influenced the
study of each type of element
2.2 Establish an ability to estimate, select appropriate units, evaluate accuracy of calculations and
make estimations of error arising from limitations in the technological representation of numbers and in
measurements.
2.3 Explore vectors as elements in a numeric system, focusing on graphic representations as well as
ordered n-tuple notation
2.4 Develop number theory principles including modular arithmetic and the Fundamental Principle
otarithmetic. Explore algebraic principles in his setting for arithmetic and exponents
2.5 Develop an understanding of equivalent representations of numbers via an equivalence relations
and bility to substitute equivalent representation when performing operations
2.6 Explore a variety of equivalence relations and establish the definition and structure of
equivalence classes. Examine these concepts in the context of modular arithmetic
2.7 Establish set notation and operations; use this structure to analyze logical arguments and apply
to real world problems

Standard 3: Functions: Evidence = \qquad

[^0]
Graduate Program Audit Form C-Subject Area Audit for MATHEMATICS

\square 3.3 Develop a complete understanding of functions as elements in an arithmetic system using composition of the functions as the operation and the inverse function as the inverse element. Explore the relation between a function and its inverse graphically; establish therequirements for the existence of the inverse function
3.4 Differentiate between continuous and discontinuous functions and establish their importance to the development of the concept of limit and to calculus
3.5 Establish a thorough understanding of the definition and development of exponential, logarithmic, and trigonometric functions. Include the six fundamental trigonometric functions and their inverses. Explore the domain and range for all these functions

Standard 4: Algebra; Evidence $=$ \qquad
4.1 Perform arithmetic operations involving polynominals and rational expressions, including
calculations of substantial complexity. Understand the nature and differences arising from viewing these
elements as both formal expressions and as functions with domain restrictions
4.2 Construct and solve systems of linear equations and inequalities in n dimensions. Understand
the nature of finite and infinite solution sets and the parametric representation of infinite solutions sets. Be
able to write infinite solutions in parametric form
4.3 Understand the real-world applications and problems that require the use of exponential
functions for solutions. Solve problems in settings that provide domain or range information and deduce
the other information
4.4 Apply the processes of linear algebra, calculus of vectors and linear transformations to solving
rearworld applications
4.5 Explore vectors as elements with algebraic properties, focusing on the properties of the
operations in both the geometric as well as n-tuple (arithmetic) context

Standard 5: Geometry and Measurement; Evidence =

5.1 Use analytic geometry tools to explore geometric problems involving planar figures including parallel and perpendicular lines, circles and special points of a polygon
5.2 Explore the conic sections, including parabolas, ellipses and hyperbolas. Extend these concepts to the three-dimensional surfaces whose crosssections/ level curves are conic sections (cones, hyperbolic, paraboloids, ellipsoids, etc) Analyze solids using cross-sections and level curves

5.3 Develop the connections between radians and degrees as methods of angular measurements and the relationships between measurement of angles and measurement of arc length
MEd 5.4 Solve problems using relationships between parts of geometric figures. Use similarities and congruences to solve problems
MEd 5.5 Incorporate an understanding of the use of trigonometric formulas to evaluate some specific values of the trigonometric functions. Prove trigonometric identities and solve trigonometric equations MEd 5.6 Describe the key characteristics of a curve, identity families of curves, and determine parameters which affect the nature of the particular curve. Parameters to be identified should include those that control vertical and horizontal shifts, periodicity, and amplitude. Include the use of calculus to determine maxima, minima and inflection points
MEd 5.7 Develop an understanding of the nature of geometry, including planar geometry, threedimensional geometry, Euclidean geometry, non-Euclidean geometries, projective geometry, and nontraditional geometries
MEd 5.8 Use geometry to develop a cogent and detailed understanding of the formulation of transitions in logic and reasoning: a . from measuring the concrete, b . analyzing the concrete, c . establishing a sense of the abstract classification. Include comparisons and classifications of quadrilateral figures

Graduate Program Audit Form C-Subject Area Audit for MATHEMATICS

and properties of circles
5.9 Use geometry and trigonometry methods to address scientific problems which arise from scientific inquiry
MEd 5.10 Use geometry to establish deductive and inductive reasoning in particular, perform substantial logical arguments to establish classical geometric theorems involving points, lines, angles and triangles MEd 5.11 Be able to perform geometric constructions with straightedge/compass and with technology and understand the historical, mathematical and pedagogical implications to yield desired effects MEd 5.12 Explore the effect of transformations on geometric figures and shapes in the coordinate plane. Include perspectives originating in geometry and linear algebra as well as the functional implications and discovering appropriate compositions to yield desired results

Standard 6: Data Analysis, Probability and Statistical Analysis; Evidence = \qquad

Standard 7: Discrete and Finite Mathematics; Evidence = \qquad
statements as well as negation of implications and the use of counterexamples

8.1 Develop an intuitive and a formal understanding of the concept of limit, including an informal
explanation (verbal and diagrammatic) of the purpose and meaning of the definition. Establish means for
determining that a limit does not exist and provide multiple representations
8.2 Extend the definition of limit to limits of sequences and to end behavior of functions and
functional behavior at asymptotes
and continuous functions
8.3 Develions between the existence of the tangent line, existence of the derivative
(such as velocity) an understanding of the derivative as a measure of rate of change of tangible quantities
and second derivatives to completely describe planar curves and specific characteristics
8.5 Calculate derivatives of polynomial, exponential and trigonometric functions and compositions
ofthese functions using the derivative and the limit theorems. Approximate derivatives numerically
8.6 Perform standard integration techniques and establish integration as a method of calculating
volume. Approximate values of definite integrals numerically
8.7 Extend the concept of rectangular area to approximation of area of irregular shapes. Use the
approximation to specifically develop Riemann sums and the concept of the integral
8.8 Develop an intuitive verbal and pictorial understanding of the Mean Value Theorem and the
Fundamental Theorem of Calculus

DEFICIENCIES:

ADVISER APPROVAL:

[^0]: - 3.1 Develop the definitions of relations and functions from multiple approaches including verbal, numeric, symbolic, graphic, diagrammatic, and subset of a cross-product. Distinguish between relations and functions and move flexibly between different descriptions. Explore oneto- one and onto functions in this setting
 - 3.2 Develop formal and informal understanding of domain, range and restriction of domain; establish the nature of both algebraic and transcendental functions

