
JOURNAL OF PHYSICAL AGENTS, VOL. 2, NO. 1, MARCH 2008 53

Linear-Time Temporal Logic Control of
Discrete Event Models of Cooperative Robots

Bruno Lacerda, Pedro Lima
Institute for Systems and Robotics

Instituto Superior Técnico
Lisbon, Portugal

{blacerda, pal}@isr.ist.utl.pt

Abstract—A Discrete Event System (DES) is a discrete state
space dynamic system that evolves in accordance with the
instantaneous occurrence, at possibly unkown times, of physical
events. Given a DES, its behavior (the sequence of displayed
events) may not satisfy a set of logical performance objectives.
The purpose of Supervisory Control is to restrict that behavior
in order to achieve those objectives. Linear-Time Temporal
Logic (LTL) is an extension of Propositional Logic which allows
reasoning over an infinite sequence of states. We will use this
logical formalism as a way to specify our performance objectives
for a given DES and build a supervisor that restricts the DES’
behavior to those objectives by construction. Several simulated
application examples illustrate the developed method.

Index Terms—Discrete Event Systems, Supervisory Control,
Linear-Time Temporal Logic

I. INTRODUCTION

I
N recent years there has been a considerable interest
in Discrete Event Systems (DES), whose discrete states

change in response to the occurrence of events from a
predefined event set. Examples of such systems can be found
in communication networks, computer programs, operating
systems, manufacturing processes and robotics. One of the
main fields of study is Supervisory Control, introduced
in [9] and further developed in [2], which focuses on the
restriction of a DES behavior in order to satisfy a set of
performance objectives. This restriction is, in many cases,
performed in an ad-hoc manner, but with the continuing
growth of this type of systems, a more generalized framework
is needed. In this work, we present a framework to restrict
a DES behavior specifying its performance objectives with
Linear-Time Temporal Logic (LTL). Using this approach,
we guarantee that the required behavior is achieved by
construction. Furthermore, in many cases, the specification of
the performance objectives using LTL is almost immediate,
allowing the supervision of more complex systems. A great
deal of work has been done recently in a slightly different
context: controlling continuous state space time-driven linear
systems with LTL specifications ([1], [7], [10]). In this
context, a discretization of the linear system is needed before
the LTL specification can be enforced, obtaining a discrete
space system. The system is then refined to a hybrid system.
This approach is mainly used to perform robot motion
planning (enforcing a robot to go to certain places and
avoid certain obstacles). Our approach is different because

we will be concerned with, given a team of robots where
we assume that each one can perform a number of tasks
individually, coordinating their behavior so that they reach
a given objective. For this purpose DES models are more
suitable and reduce the involved complexity by comparison
to hybrid systems models. LTL enables the formulation of
complex sentences by compact logical sentences.
The work in divided in three main Sections: In Section
2 we introduce the notions of Discrete Event System and
Supervisory Control, explaining how one can see a Finite
State Automaton as a DES. In Section 3 we define Linear-
Time Temporal Logic and mention a method to build a Büchi
automaton that accepts exactly the ω-language of the infinite
sequences that satisfy a given formula ϕ. Finally, in Section
4 we congregate all the theory defined throughout this work
to present our method of supervisory control and give some
operational examples of applications of the presented method.
The developed approach is illustrated with simulation
examples that are deployed along the paper.

II. DISCRETE EVENT SYSTEMS

A. Preliminaries

Definition 1 (Discrete Event System): A Discrete Event
System is composed of a discrete set X of possible states
and a finite set E = {e1, ..., em} of possible events.
At a given time t ≥ 0 , the DES is in a given state x ∈ X ,
which is all the information needed to characterize the system
at that time instant. The state of a DES can only be changed
by the occurence of an event e ∈ E and these events occur
both instanteneously and asynchronously.

The set X is called the state-space of the DES and the set E
is called the event-space of the DES. Both these sets must be
discrete and E must be finite. We can interpret the state as the
task the system if performing at a given moment, such as a
robot moving forward, a machine being idle or a computer
running a program. The events are interpreted as physical
phenomenons, such as a robot’s sensor detecting something, a
new job arriving to a machine or a program crashing.

Example 1 (Transporting robots): Consider two robots,
each one holding one end of a bar. Their objective is to
transport the bar to another place. To simplify, assume that
the robots can only move a constant distance forward or stop.

54 JOURNAL OF PHYSICAL AGENTS, VOL. 2, NO. 1, MARCH 2008

This situation can be modeled as a DES with X = {Both
robots stopped, Robot1 moving and Robot2 stopped, Robot1
stopped and Robot2 moving, Both robots moving} and
E = {Move1, Move2, Stop1, Stop2}.
A sequence of events in this DES can be ((Move1, t1),
(Stop1,t2), (Move1,t3), (Move2, t4), (Stop1,t5), (Stop2,
t6)), t1 < t2 < ... < t6.

In this example, one of the robots can move forward to a
position where it is too far from the other one, making the bar
fall.

B. Modeling Logical DES

There are three levels of abstraction usually considered
in the study of DES, Untimed (or logical) DES models,
Deterministic Timed DES Models and Stochastic Timed DES

Models.
The theory of Supervisory Control is defined over Logical

DES Models, so in this work we will introduce Finite State
Automata as our modeling framework.

Definition 2 (Finite State Automaton): A Finite State Au-
tomaton (FSA) is a six-tuple G = (X,E, f,Γ, X0, Xm)
where:

• X is the finite set of states
• E is the finite state of events
• f : X×E → X (deterministic) or f : X×E → 2X (non-

deterministic) is the (possibly partial) transition function
• Γ : X → 2E is the active event function
• X0 ⊆ X is the initial state (a singleton for deterministic

FSA)
• Xm ⊆ X is the set of marked states

Deterministic FSA (DFA) and Nondeterministic FSA (NFA)
are equivalent, as proven in [5]. The following definitions
will be made for DFA, but the generalization for NFA is
straightforward. f(x, e) = y means that there is a transition
labeled by event e from state x to state y. Γ(x) is the set of all
events e for which f(x, e) is defined. Note that Γ is uniquely
defined by f , it was included in the definition for convenience.
We also extend f from domain X ×E to domain X ×E∗ in
the following recursive manner:

• f(x, ǫ) = x
• f(x, se) = f(f(x, s), e), s ∈ E∗, e ∈ E

Now, we are in conditions to define the languages generated
and marked by a DFA. As we will see, the objective of
Supervisory Control is to restrict these languages to the strings
we consider "legal" for our system.

Definition 3 (Generated and Marked Languages): Let
G = (X,E, f,Γ, x0, Xm) be a DFA. We define

• L(G) = {s ∈ E∗ : f(x0, s) is defined}, the language
generated by G

• Lm(G) = {s ∈ L(G) : f(x0, s) ∈ Xm}, the language
marked by G

The notion of marked language is used to model "complete
tasks" of a DES. We will now introduce three operations over
DFA that are very useful in DES modeling and necessary to
perform supervision.

Definition 4 (Acessible Part): Let G =
(X,E, f,Γ, x0, Xm) be a DFA. The accessible part of
G is the DFA Ac(G) = (Xac, E, fac,Γac, x0, Xac,m) where

• Xac = {x ∈ X : ∃s ∈ E∗f(x0, s) = x}
• Xac,m = Xm ∩Xac

• fac = f |Xac×E→Xac

• Γac = Γ|Xac→2E

The accessible part of a DFA is simply its restriction to
the states that can be reached from the initial state. fac is the
restriction of f to domain Xac ×E and Γac is the restriction
of Γ to domain Xac. It is clear that L(G) = L(Ac(G)) and
Lm(G) = Lm(Ac(G)).

Definition 5 (Product Composition): Let
G1 = (X1, E1, f1,Γ1, x01, Xm1) and G2 =
(X2, E2, f2,Γ2, x02, Xm2) be two DFA. The product
composition of G1 and G2 is the DFA G1 × G2 =
Ac(X1 × X2, E1 ∩ E2, f,Γ1×2, (x01, x02), (Xm1 × Xm2))
where

f((x1, x2), e) =

{

(f1(x1), f2(x2)) if e ∈ Γ1(x1) ∩ Γ2(x2)
undefined otherwise

and thus Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2)
The product composition is also called the completely

synchronous composition. In this composition, the transitions
of the two DFA must always be synchronized on a common
event e ∈ E1 ∩ E2. This means that an event occurs in
G1 × G2 if and only if it occurs in both DFA. Thus, it
is easily verified that L(G1 × G2) = L(G1) ∩ L(G2) and
Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2).

Definition 6 (Parallel Composition): Let
G1 = (X1, E1, f1,Γ1, x01, Xm1) and G2 =
(X2, E2, f2,Γ2, x02, Xm2) be two DFA. The parallel
composition of G1 and G2 is the DFA G1 ‖ G2 =
Ac(X1 × X2, E1 ∪ E2, f,Γ1‖2, (x01, x02), (Xm1 × Xm2))
where

f((x1, x2), e) =

(f1(x1), f2(x2)) if e ∈ Γ1(x1) ∩ Γ2(x2)
(f1(x1), x2) if e ∈ Γ1(x1) \ E2

(x1, f2(x2)) if e ∈ Γ2(x2) \ E1

undefined otherwise

and thus Γ1‖2(x1, x2) = [Γ(x1) ∩ Γ(x2)] ∪ [Γ(x1) \ E2] ∪
[Γ(x2) \ E1]

The parallel composition is also called the synchronous

composition. In this composition, an event in E1∩E2 (common
event) can only be executed if the two DFA both execute it
sinultaneously. An event in (E2 \ E1) ∪ (E1 \ E2) (private
event) can be executed whenever possible. If E1 = E2,
then the parallel composition reduces to the product, since
all transitions must be synchronized and if E1 ∩E2 = ∅, then
there are no synchronized transitions and G1 ‖ G2 models
the concurrent behavior of G1 and G2 (in this case we call
G1 ‖ G2 the shuffle of G1 and G2).

Example 2 (Transporting Robots): The DES of Example 1
can be modeled by the FSA shown in Figure 1.

Another way of modeling this system is using parallel
composition, which is very useful when our system has
several components operating concurrently. It allows us to
model each component separately and then get the FSA that

LACERDA & LIMA: LINEAR-TIME TEMPORAL LOGIC CONTROL OF DISCRETE EVENT SYSTEMS 55

Fig. 1. FSA model of Transporting Robots

models the whole system by applying it. Hence, if we model
each robot separately, we obtain the FSA Gi, i = 1, 2, seen
in Figure 2.

Fig. 2. FSA model of Transporting Robot i

It is easy to see that G1 ‖ G2 is the FSA represented in
Figure 1.

Example 3 (Robotic Soccer): Consider a team of n robots
playing a soccer game. The objective is to reach a situation
in which one of the robots is close enough to the goal to
shoot and score. When a robot does not have the ball in its
possession, it has two options:

• Move to the ball until it is close enough to take its
possession, or

• Get ready to receive a pass from a teammate.

When a robot has the possession of the ball, it can:

• Shoot the ball (if it is close enough to the goal), or
• Take the ball to the goal, if there is no opponent blocking

its path, or
• Choose a teammate to pass the ball and, when it is ready.

to receive, pass it

For simplicity, we assume that, when a robot shoots the ball,
the team loses its possession (we do not differentiate the
situation where the robot scores from the situation where
the robot does not score since the team will lose the ball’s
possession in both) and that the opponents do not steal the ball
(they are only able to block paths, at which point our robot will
try to pass to a teammate). Figure 3 depicts a possible FSA Ri

model for robot i. An FSA model for the whole team is given

by T = R1 ‖ R2 ‖ ... ‖ Rn. Note that the pass(i, j) event
must be synchronized between robot i (the passing robot) and
robot j (the receiving robot).

Fig. 3. FSA for Robot Ri

Note that, when we write start_passing(i, j), pass(i, j)
and pass(j, i) in a transition, we are representing n−1 events,
since j = 1, ..., n, j 6= i.

III. SUPERVISORY CONTROL

As we have seen in previous examples, sometimes our
DES model has some behaviors that are not satisfactory. Let’s
assume we have a DES modeled by FSA G. G models the
"uncontrolled behavior" of the DES and is called the plant.
Our objective is to modify the plant’s behavior, i.e., restrict its
behavior to an admissible language La ⊆ L(G), using control.

To do this, we start by partitioning the event set E in two
disjoint subsets E = Ec ∪ Euc.
Ec is the set of controllable events, i. e., the events that

can be prevented from happening and Euc is the set of
uncontrollable events , i.e., the events that cannot be prevented
from happening. This partition is due to the fact that, in
general, there are events that make a DES change its state
that are not of the "responsibility" of the DES itself.

Example 4: We list the set of controlled and uncontrolled
events in previous examples.

• In Example 2, we assume that the robots can only move
a constant distance forward. Hence, after a robot starts
moving, the decision to stop is not its responsibility, it
always stops after it moves the predefined distance.

– Ec = {Move1, Move2}
– Euc = {Stop1, Stop2}

• In Example 3 the events close_to_ball, close_to_goal
and blocked_path are caused by changes in the environ-
ment around the robots and not by the robots themselves.

56 JOURNAL OF PHYSICAL AGENTS, VOL. 2, NO. 1, MARCH 2008

Therefore, they are considered uncontrollable events. The
controllable events correspond to the actions available to
each robot.

– Ec = {move_to_ball(i), get_ball(i), kick_ball(i),
move_to_goal(i), start_passing(i, j),
start_receiving(i), pass(i, j) : i, j = 1, ..., n, j 6=
i}

– Euc = {close_to_ball(i), blocked_path(i),
close_to_goal(i) : i = 1, ..., n}

Next, we introduce the notion of a DES G = (X,E = Ec∪
Euc, f,Γ, X0, Xm) controlled by a supervisor S. Formally, a
supervisor is a function S : L(G) → 2E that, given s ∈
L(G) outputs the set of events G can execute next (enabled

events). We only allow supervisors S such that, when event
e ∈ Euc is active in the plant G, it is also enabled by S.
That is, a supervisor must always allow the plant to execute
its uncontrollable events.

Definition 7 (Admissible Supervisor): Let G = (X,E =
Ec ∪ Euc, f,Γ, x0, Xm) be a DES and S : L(G) → 2E .
S is an admissible supervisor for G if for all s ∈ L(G)
Euc ∩ Γ(f(x0, s)) ⊆ S(s).

We will check the admissibility of our supervisors S in a
case-by-case basis.

Definition 8 (Controlled DES): Let G = (X,E = Ec ∪
Euc, f,Γ, x0, Xm) be a DES and S : L(G) → 2E . The
controlled DES (CDES) S/G (S controlling G) is a DES
that constrains G in such a way that, after generating a string
s ∈ L(G), the set of events that S/G can execute next (enabled
events) is S(s) ∩ Γ(f(x0, s)).

The way S/G operates is represented in Figure 4 and is
as follws: s is the string of all events executed so far by G,
which is observed by S. S uses s to determine what events
should be enabled, that is, which events can occur after the
generation of s.

Fig. 4. The feedback loop of supervisory control

Definition 9 (Generated and Marked Languages by a CDES):

Let S/G be a CDES and e one of its events. The language
generated by S/G, L(S/G), is defined as follows:

• ǫ ∈ L(S/G);
• if s ∈ L(G) and se ∈ L(G) and e ∈ S(s) then se ∈
L(S/G).

and the language marked by S/G, Lm(S/G), is

• Lm(S/G) = L(S/G) ∩ Lm(G).

Thus, given a plant G and an admissible language La ⊆
L(G), we want to find a supervisor S such that L(S/G) = La

(in this work we will be focused on generated languages and
will not be concerned with marked languages).

In this framework, the supervisor is usually implemented
by an FSA R, such that L(R) = La. R is refered to as the
standard realization of S. The most common method to build
R is to start by building a simple FSA Hspec that captures the
essence of the natural language specification and then combine
it with G, using either product or parallel composition. We
choose parallel composition if the events that appear in G
but not in Hspec are irrelevant to the specification that Hspec

implements or product composition when, on the other hand,
the events that appear in G but not in Hspec should not happen
in the admissible behavior La.

Having the FSA G = (XG, EG, fG,ΓG, xG,0, XG,m) and
R = (XR, ER, fR,ΓR, xR,0,XR,m) that represent the plant
and the standard realization of S respectively (note that ER ⊆
EG), the feedback loop of supervisory control is implemented
as follows: Let G be in state x and R be in state y following
the execution of string s ∈ L(S/G). G executes an event e that
is currently enabled, i.e., e ∈ ΓG(x)∩ΓR(y). R also executes
the event, as a passive observer of G. Let x′ = fG(x, e) and
y′ = fR(y, e) be the new states of G and R respectively, after
the execution of e. The set of enabled events of G after string
se is now given by ΓG(x′) ∩ ΓR(y′). It is common to make
XR,m = XR, so that R×G represents the closed-loop system
S/G:

• L(R×G) = L(R)∩L(G) = La∩L(G) = La = L(S/G)
• Lm(R × G) = Lm(R) ∩ Lm(G) = La ∩ Lm(G) =
L(S/G) ∩ Lm(G) = Lm(S/G)

So, from now on, we will refer to a supervisor S and its
standard realization R interchangeably.

Next, we address modular supervision, a mean of reducing
the complexity of the controlled DES model.

Definition 10 (Modular Supervision): Let S1, ..., Sn, n ∈
N be admissible supervisors for DES G = (X,E = Ec ∪
Euc, f,Γ, x0, Xm) and s ∈ L(G). We define the (admissible)
modular supervisor as

• Smod12...n(s) = S1(s) ∩ S2(s) ∩ ... ∩ Sn(s)

It is obvious, by definition 7 that Smod12...n is admissible
for G. In Figure 5 we represent modular supervision with
2 supervisors. In modular control, an event is enabled by
Smod12...n if and only if it is enabled for all Si, i = 1, ..., n.

Fig. 5. The feedback loop of modular supervisory control

LACERDA & LIMA: LINEAR-TIME TEMPORAL LOGIC CONTROL OF DISCRETE EVENT SYSTEMS 57

Remark 1 (Multiple Specifications): When our admissible
behavior is composed of multiple specifications, that is, when
La = La,1 ∩ ... ∩ La,n, where La,i represents a given
specification we want our plant G to satisfy, we will build
n supervisors Si, i = 1, ..., n such that L(Si/G) = La,i and
use modular control to implement a supervisor Smod1...n such
that L(Smod1...n/G) = La.

Example 5 (Transporting Robots): As we have mentioned,
it is possible for one robot to move forward to a position where
it is too far from the other, making the bar fall. One way to
avoid this is to impose alternation between the robots’ motion:
one robot moves forward while the other is stopped, holding
the bar. Then the other robot moves forward while the one that
moved before is stopped, holding the bar, etc. So, we have 4
specifications:

• Spec 1 - Robot 1 cannot start moving while Robot 2 is
moving;

• Spec 2 - Robot 2 cannot start moving while Robot 1 is
moving;

• Spec 3 - After Robot 1 moves, it will only start moving
again after Robot 2 has moved;

• Spec 4 - After Robot 2 moves, it will only start moving
again after Robot 1 has moved.

Example 6 (Robotic Soccer): Regarding Example 3, one
may define the following specifications, which are useful to
improve the team’s performance in a soccer game for each
Robot i:

• Spec 1, i - If another teammate goes to the ball, robot
i will not go to the ball until it is kicked by some robot
in the team;

• Spec 2, i - Robot i will not get ready to receive a pass,
unless one of its teammates decides to pass it the ball
and, in this case, it will be ready to receive the pass as
soon as possible.

Spec 1, i guarantees that only one robot moves to the ball
at a time and that, when the team has the ball, no robot moves
to it and Spec 2, i guarantees that no robot will be ready to
receive a pass when none of its teammates wants it to receive
a pass and that when a robot wants to pass the ball, another
one will get ready to receive it as soon as possible .

IV. LINEAR-TIME TEMPORAL LOGIC AND

BÜCHI AUTOMATA

In this Section we introduce Linear-Time Temporal Logic
(LTL). We start by defining the syntax and semantics of LTL
and then refer the translation from LTL formulas to Büchi
Automata.

A. Linear-Time Temporal Logic

LTL is an extension of Propositional Logic which allows
reasoning over an infinite sequence of states. LTL is widely
used for verification of properties of several concurrent sys-
tems (for example, safety and liveness), especially software
systems. In the following, Π is a set of propositional symbols.

Definition 11 (Syntax): The set LLTL(Π) of LTL formulas
over Π is defined inductively as follows:

• true, false ∈ LLTL(Π);
• If p ∈ Π then p ∈ LLTL(Π);
• If ϕ,ψ ∈ LLTL(Π) then (¬ϕ), (ϕ ∨ ψ), (ϕ ∧ ψ) ∈
LLTL(Π);

• If ϕ ∈ LLTL(Π) then (Xϕ) ∈ LLTL(Π);
• If ϕ,ψ ∈ LLTL(Π) then (ϕUψ) ∈ LLTL(Π);
• If ϕ,ψ ∈ LLTL(Π) then (ϕRψ) ∈ LLTL(Π).

In Definitions 12 and 13, we define the LTL semantics.
Definition 12 (Local Satisfaction): Let σ : N → 2Π, t ∈

N, p ∈ Π and ϕ,ψ ∈ LLTL(Π). The notion of satisfaction ()
is defined as follows:

• σ(t) true and σ(t) 6 false;
• σ(t) p if and only if p ∈ σ(t);
• σ(t) (¬ϕ) if and only if σ(t) 6 ϕ;
• σ(t) (ϕ ∨ ψ) if and only if σ(t) ϕ or σ(t) ψ ;
• σ(t) (ϕ ∧ ψ) if and only if σ(t) ϕ and σ(t) ψ ;
• σ(t) (Xϕ) if and only if σ(t+ 1) ϕ;
• σ(t) (ϕUψ) if and only if exists t′ ≥ t such that
σ(t′) ψ and for all t′′ ∈ [t, t′[σ(t′′) ϕ;

• σ(t) (ϕRψ) if and only if for all t′ ≥ t such that
σ(t′) 6 ψ exists t′′ ∈ [t, t′[such that σ(t′′) ϕ.

Definition 13 (Global Satisfaction): Let σ : N → 2Π and
ϕ ∈ LLTL(Π). The notion of global satisfaction is defined as
follows:

• σ ϕ if and only if σ(0) ϕ.

Now, we give a brief explanation of each operator defined:

• The X operator is read "next", meaning that the formula
it precedes will be true in the next state;

• The operator U is read "until", meaning that its first
argument will be true until its second argument becomes
true (and the second argument must become true in some
state, i.e., an ω-string where ϕ is always satisfied but ψ
is never satisfied does not satisfy ϕUψ);

• The operator R, which is the dual of U , is read "releases",
meaning that its second argument must always be true
until its first argument becomes true (in this case, an ω-
string where ψ is always satisfied satisfies ϕRψ, because
the definition does not require the existence of t′).

There are two other commonly used temporal operators, F
and G, usually defined by abbreviation.

Definition 14 (Abbreviations): Let p ∈ Π and ϕ,ψ ∈
LLTL(Π). We define the following abbreviations:

• (ϕ⇒ ψ) ≡abv ((¬ϕ) ∨ ψ);
• (ϕ⇔ ψ) ≡abv ((ϕ⇒ ψ) ∧ (ψ ⇒ ϕ));
• (Fϕ) ≡abv (trueUϕ);
• (Gϕ) ≡abv (falseRϕ).

• The F operator is read "eventually", meaning that the
formula it precedes will be true in a future state;

• The G operator is read "always", meaning the formula it
precedes will be true in all future states.

B. Büchi Automata

Büchi Automata are used to describe ω-languages, i.e.,
languages of infinite strings1 (ω-strings). Büchi automata have

1One should notice that a function σ : N → 2Π is in fact an ω-string
whose i-th element is given by σ(i − 1).

58 JOURNAL OF PHYSICAL AGENTS, VOL. 2, NO. 1, MARCH 2008

the same structure as FSA, The characteristic that sets them
apart is their semantics, since for Büchi Automata one defines
generated and marked ω-languages instead of generated and
marked languages.

To define the generated and marked ω-languages by a Büchi
Automaton, we need to introduce the notion of valid state
labeling.

Definition 15 (Valid State Labeling): Let B =
(X,E, f,Γ, X0, Xm) be a Büchi automaton and σ ∈ Eω an
ω-string. A valid state labeling for B and σ is a function
ρ : N → X such that:

• ρ(0) ∈ X0

• ρ(i+ 1) ∈ f(ρ(i), σ(i)), for all i ∈ N

We denote P (B, σ) as the set of all possible valid state
labelings for B and σ.

A valid state labeling for B and σ is an ω-string over the
state set of B, where ρ(i) is one of the possible states B can
be in (in the deterministic case, the state where B is), while
applying its transition function to σi. If, for some i ∈ N, event
σ(i+ 1) is not active for any of the possible states B can be
in, that is,

σ(i+ 1) 6∈
⋃

x0∈X0

(

⋃

x∈f(x0,σi)

Γ(x)
)

no such function exists.
Definition 16 (Generated ω-Language by Büchi Automata):

Let B = (X,E, f,Γ, X0, Xm) be a Büchi automaton. We
define the ω-language generated by B as

• L(B) = {σ ∈ Eω : P (B, σ) 6= ∅}

The generated ω-strings by B are the ones for which there
exists a valid state labeling.

Definition 17 (Marked ω-Language by Büchi Automata):

Let B = (X,E, f,Γ, X0, Xm) be a Büchi automaton. We
define the ω-language marked by B as

• Lm(B) = {σ ∈ L(B) : exists ρ ∈
P (B, σ) such that inf(ρ) ∩Xm 6= ∅}

where, for χ ∈ Xω, inf(χ) ⊆ X is the set of all x ∈ X that
appear infinite times in χ.
The marked ω-strings by B are the ones generated by "runs"
of B that visit at least one of the marked states infinite times.

Now, we state the Theorem that allows us to perform
Supervisory Control over a DES given a set of LTL formulas
stating our performance objectives. The proof of this theorem
is constructive and yields a method to construct the Büchi
Automaton that marks the sequences that satisfy a given
formula ϕ. [11] presents the most immediate proof of the
theorem and [4] describes a most efficient method for the
translation, which is used to calculate the examples we will
present later.

Theorem 1: Let ϕ ∈ LLTL(Π). Then there exists a (non-
deterministic) Büchi automaton Bϕ such that

σ ϕ if and only if σ ∈ Lm(Bϕ)

V. SUPERVISOR SYNTHESIS

In this Section, we explain how to define the LTL -
based supervisor for a plant G and a set of LTL formulas

ϕ1, ..., ϕn, n ∈ N. As we have seen, the first step in
building a standard realization of a supervisor S, such
that L(S/G) = La is to construct an FSA Hspec that
captures the essence of our natural language specification.
The construction of Hspec can be very error - prone and, in
general, not obvious. On the other hand, translating natural
language to LTL formulas is, in most cases, straightforward.
Thus, we can define our performance objectives in LTL and
use the Büchi Automaton referred in Theorem 1 to solve our
problem in a much more user - friendly way.

Note that, in order to restrict L(G) to La, we will be
constructing LTL formulas over the set of propositional
symbols E (G’s event set), i.e., we will be interested in
formulas ϕ ∈ LLTL(E). Since we assume the occurence of
events in a DES to be asynchronous, at each state exactly
one event can occur. This allows us to assume σ : N → E in
Definition 12 and substitute condition σ(t) p if and only if
p ∈ σ(t) by σ(t) e if and only if σ(t) = e, for t ∈ N and
e ∈ E. Thus, given a Büchi automaton Bϕ, we can delete all
events that are not singletons in Bϕ’s event set and redefine
Bϕ’s transition function accordingly.

Since a Büchi automaton’s structure is the same as an
NFA, we consider Bϕ as an NFA. Next, we need to find the
equivalent DFA, Hϕ, of Bϕ. This must be done because, if we
build a supervisor from Bϕ, it will disable some events that
should not be disabled, due to the nondeterministic choices
that are made when an event occurs at a given state and there
is more than one state we can go to, e.g., if f(x, e) = {y, z}
we want the enabled events in state f(x, e) to be Γ(y)∪Γ(z)
but if we nondeterministically jump to state y we will not be
enabling the events in Γ(z) \Γ(y). This problem is solved by
using the equivalent DFA, thus keeping track of all the states
Bϕ can be in and enabling all the events that are active in at
least one of those states. As seen in [5], finding the equivalent
DFA of an NFA is an exponential operation, but, in general,
the LTL formulas that are relevant to perform supervision yield
small Büchi automata. Despite that, the complexity issue is a
major one when applying this theory, as we will see in the
next Section. Then, we obtain the supervisor Sϕ = G ‖ Hϕ or
Sϕ = G×Hϕ, depending on our supervision problem. Using
this method, we guarantee that for all s ∈ L(Sϕ/G), there
exists σ ∈ Eω such that sσ ϕ, i.e., the generated language of
the CDES S/G is always in conformity with the specification
given by ϕ. Since the generated language by a CDES is a set
of finite strings, this is the best we can have in this framework.
We can now describe the method we will use for supervision.
Given a plant G and a set of formulas {ϕ1, ..., ϕn}, n ∈ N

representing the specifications we want G to fulfill, we build
the supervisors Sϕ1

, ..., Sϕn
, as explained above, and perform

modular supervision, as explained in Section III. The use of
modular supervision gives us a gain in efficiency ([9]) and,
in addition, allows us to translate the formulas ϕ1, ..., ϕn to
Büchi automata one by one, which also allows a significant
improvement in the efficiency of the method: If r1, ..., rn is
the size (number of operators) of ϕ1, ..., ϕn respectively, then

• If we had not opted for modular control, to enforce all

LACERDA & LIMA: LINEAR-TIME TEMPORAL LOGIC CONTROL OF DISCRETE EVENT SYSTEMS 59

the specifications given by ϕ1, ..., ϕn we would need to
build a Büchi automaton Bϕ for formula

– ϕ =
(

∧n
i=1 ϕi

)

It is easy to see that ϕ has, at most, size

– r = (
∑n

i=1 ri) + n− 1

where the n − 1 factor is due to the n − 1 "and" (∧)
operators we added to ϕ. Hence, Bϕ would have, at
most, the following number of states (we have seen
that the translation from an LTL formula to a Büchi
automaton yields an automaton whose number of states
is exponential in the size of the formula):

– |Bϕ| = 2r

• Using modular supervision, we need to build n Büchi
automata Bϕ1

, ..., Bϕn
, which, altogether, have at most

the following total number of states:

–
∑n

i=1 |Bϕi
| =

∑n
i=1 2ri

which is clearly better than the previous option’s worst
case scenario.

VI. EXAMPLES

In this section, we present some applications of the frame-
work defined throughout this work. We will build super-
visors for the DES in Examples 2 and 3 that enforce
the specifications we gave in natural language in Examples
5 and 6. To build these examples, some functions were
implemented in Matlab. These functions can be found in
http://islab.isr.ist.utl.pt/ltldes_examples.zip:

• A function that receives a NFA and outputs its equivalent
DFA;

• A function that receives two FSA and outputs their
product composition;

• A function that receives two FSA and outputs their
parallel composition;

• A function that receives a set of LTL formulas and
translates them to Büchi automata (this function uses
the implementation described in [4] to build the Büchi
automaton, which is written in C and adapts a Matlab

function written for the implementation described in [7]
to take the output of the C function and turn it into a
viable Matlab structure);

• A function that, given a plant and n supervisors, simulates
the feedback loop of modular control;

• A function that congregates all of the above. This func-
tion receives a plant and n LTL formulas, creates the
supervisors and simulates the feedback loop of modular
control.

Example 7 (Transporting Robots): Let’s return to the trans-
porting robots example and let G be the FSA represented in
Example 2. In Example 5 we defined 4 specifications that
prevent the robots from moving to a position where they are
too far from the other, making the bar fall. Spec i can be
translated to LTL by formula ϕi, where

• ϕ1 = (G(Move2 ⇒ (X((¬Move1)UStop2))))
• ϕ2 = (G(Move1 ⇒ (X((¬Move2)UStop1))))
• ϕ3 = (G(Move1 ⇒ (X((¬Move1)UStop2))))

• ϕ4 = (G(Move2 ⇒ (X((¬Move2)UStop1))))

Looking at these formulas, one can see that the events that
can be disabled are Move1 and Move2. Hence, an admissible
supervisor will be obtained. We construct the DFA Hϕi

, i =
1, 2, 3, 4 from the Büchi automata, as explained before. In
Figure 6 we represent the Büchi automaton obtained from ϕ2.
Next, we obtain the 4 supervisors Si = G ‖ Hϕi

. In Figure

Fig. 6. Büchi automaton marking the ω - strings that satisfy ϕ2

7 we represent the supervisor S2. Note that the states reached
after an event Move1 happens do not have the event Move2
in their active event set. The modular supervisor Smod1234

Fig. 7. The supervisor S2, obtained by formula ϕ2

implements the robot alternation. The controlled system only
allows 2 types of strings, Move1−Stop1−Move2−Stop2−
Move1 −Stop1 −Move2 −Stop2 − ... or Move2 −Stop2 −
Move1 −Stop1 −Move2 −Stop2 −Move1 −Stop1 − In
Figure 8, we represent the automaton G×S1 ×S2 ×S3 ×S4

which, as we have seen, represents the controlled system. One
should notice that our controlled system is not minimum, i.e.,
there is a 5 states DFA that implements the robot alternation.
This is one drawback of this method: in general the controlled
system is not the smallest it could be.

Example 8 (Robotic Soccer): Regarding Example 6, it is
easier to represent Spec 1, i, i = 1, ..., n by only one formula

• ϕ1 = (G[(
∨

imove_to_ball(i))
⇒ (X[(¬(

∨

imove_to_ball(i)))U(
∨

i kick_ball(i))])])

Formula ϕ1 enforces that, after one robot moves to the
ball (which means the team does not have the ball in its

60 JOURNAL OF PHYSICAL AGENTS, VOL. 2, NO. 1, MARCH 2008

Fig. 8. Automaton representation of the controlled system, with the robot
alternation implemented

possession), all the robots will not move to the ball until one
of them shoots it (which means that the team lost the ball
possession).

Spec 2, i is represented by formulas ϕ2,i, i = 1, ..., n, where

• ϕ2,i = ((¬start_receiving(i))
∧(G[(

∨

j 6=i start_passing(j, i))
⇔ (Xstart_receiving(i))]))

Formula ϕ2,i enforces that a robot’s first action cannot be
getting ready to receive a pass and that, only when one of its
teammates chooses it as a receiver, it gets ready to receive the
ball and it gets ready as soon as possible.

These formulas do not refer to uncontrollable events, so
checking that an admissible supervisor is yield is immediate.

The controlled system was tested for 3 robots. The plant
has 729 states, the supervisor obtained by ϕ1 has 100 states
(the great reduction in the number of states is due to the
fact that the plant allows more than one robot to have the
ball in its possession and it is ϕ1 that disallows this kind of
situation) and the supervisors obtained by ϕ2,i, i = 1, 2, 3
have 1458 states each. Next, we give two examples of output
of the simulation. One should notice that when when one
robot is chosen by a teammate to receive a pass, it gets
ready to receive it immediately and that robots only go to
the ball when it is not in the team’s possession (i.e. when it
is kicked) and only go one at a time. In Simulations 1 and 2
we emphasize these situations respectively. In Simulation 3
we show the uncontrolled behavior of the system. The lack
of restrictions imposed for this system allows it to regularly
evolve to a deadlock situation.

Simulation 1 - move_to_ball(3) - close_to_ball(3)
- get_ball(3) - move_to_goal(3) - close_to_goal(3) -
kick_ball(3) - move_to_ball(1) - close_to_ball(1) - get_ball(1)
- blocked_path(1) - start_passing(1,2) - start_receiving(2)

- pass(1,2) - blocked_path(2) - start_passing(2,1) -

start_receiving(1) - pass(2,1) - move_to_goal(1) -
blocked_path(1) - start_passing(1,3) - start_receiving(3)

- pass(1,3) - move_to_goal(3) - close_to_goal(3) -
kick_ball(3) - move_to_ball(3) - close_to_ball(3) - get_ball(3)
- move_to_goal(3) - blocked_path(3) - start_passing(3,1) -

start_receiving(1) - pass(3,1) - close_to_goal(1) - kick_ball(1)
- move_to_ball(1) - close_to_ball(1) - get_ball(1) -
blocked_path(1) - start_passing(1,3) - start_receiving(3)

- pass(1,3) - blocked_path(3) - start_passing(3,1) -

start_receiving(1) - pass(3,1) - move_to_goal(1) -
blocked_path(1) - start_passing(1,2) - start_receiving(2) -

pass(1,2) - close_to_goal(2) - kick_ball(2) - move_to_ball(3)
- close_to_ball(3) - get_ball(3)

Simulation 2 - move_to_ball(1) - close_to_ball(1)

- get_ball(1) - blocked_path(1) - start_passing(1,3)
- start_receiving(3) - pass(1,3) - move_to_goal(3) -
blocked_path(3) - start_passing(3,1) - start_receiving(1)
- pass(3,1) - blocked_path(1) - start_passing(1,3) -
start_receiving(3) - pass(1,3) - move_to_goal(3) -
close_to_goal(3) - kick_ball(3) - move_to_ball(2) -

close_to_ball(2) - get_ball(2) - blocked_path(2) -
start_passing(2,3) - start_receiving(3) - pass(2,3) -
blocked_path(3) - start_passing(3,2) - start_receiving(2)
- pass(3,2) - close_to_goal(2) - kick_ball(2) - move_to_ball(1)

- close_to_ball(1) - get_ball(1) - close_to_goal(1) -
kick_ball(1) - move_to_ball(2) - close_to_ball(2) - get_ball(2)

- close_to_goal(2) - kick_ball(2) - move_to_ball(3) -

close_to_ball(3) - get_ball(3) - move_to_goal(3) -
blocked_path(3) - start_passing(3,1) - start_receiving(1)
- pass(3,1) - close_to_goal(1) - kick_ball(1)

Simulation 3 - start_receiving(3) - move_to_ball(1)
- move_to_ball(2) - close_to_ball(2) - close_to_ball(1)
- get_ball(1) - blocked_path(1) - start_passing(1,2) -
get_ball(2) - blocked_path(2) - pass(1,3) - move_to_ball(1)
- move_to_goal(3) - start_passing(2,1) - close_to_goal(3) -
close_to_ball(1) - get_ball(1) - kick_ball(3) - close_to_goal(1)
- kick_ball(1) - move_to_ball(3) - close_to_ball(3)
- move_to_ball(1) - get_ball(3) - blocked_path(3) -
start_passing(3,2) - close_to_ball(1) - get_ball(1) -
move_to_goal(1) - blocked_path(1) - start_passing(1,2)

VII. CONCLUSION

In this work, we defined a method to perform supervisory
control of Discrete Event Systems using Linear-Time
Temporal Logic. We introduced all the necessary theory to
understand how the method works and gave some examples
of application. Analyzing the examples, one can conclude
that, with this method, the specification of supervisors for
systems with an arbitrary number of components that must
coordinate themselves is almost straightforward: all the
formulas are written for an arbitrary n ∈ N. Unfortunately,
this advantage is somewhat shadowed by the high complexity
of the method: despite writing the formulas for an arbitrary
number of components, when performing the simulations we
witnessed the great increase of the number of states, both
in the plant and in the supervisors, which only allows the
application of the method for systems with a relatively small
number of components.

There are several paths one can follow to improve the
method we just presented. The most obvious one is to try

LACERDA & LIMA: LINEAR-TIME TEMPORAL LOGIC CONTROL OF DISCRETE EVENT SYSTEMS 61

to reduce its complexity. Another improvement is to increase
the method’s expressive power, for example by using CTL (a
temporal logic that is incomparable with LTL) or CTL∗ (a
temporal logic that contains both LTL and CTL) [6] as a way
to specify the supervisors or by identifying each state of the
DES model with a set of propositions that are satisfied in that
state and build our LTL specification over those propositions,
instead of building it over the DES’ event set. One major
advantage of this option is that it allows for more than one
proposition to be satisfied at each state of the DES, unlike the
method we presented, where only one is satisfied. One can also
model the DES itself as a set of LTL formulas, as seen in [8],
avoiding the construction of any automaton by hand (which
can be very error-prone). Another option is to define a similar
logic to LTL, but with its semantics defined over finite string,
avoiding the need to use Büchi Automata. A final suggestion
is to develop this theory in order to cover other aspects
of Supervisory Control. For example, being concerned with
marked languages and deal with blocking issues or introduce
the notion of unobservable events [2].

REFERENCES

[1] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric
Klavins and George J. Pappas, Symbolic Planning and Control of Robot
Motion. In IEEE Robotics & Automation Magazine:61-70, March 2007

[2] Christos G. Cassandras and StŐphane Lafortune, Introduction to Dis-

crete Event Systems, Kluwer Academic Publishers, 1999.
[3] E. Allen Emerson, Temporal and Modal Logic. In Handbook of theo-

retical computer science (vol. B): formal models and semantics, MIT
Press:995 - 1072 1991

[4] Paul Gastin and Denis Oddoux, Fast LTL to Büchi Automata Translation,
LIAFA, UniversitŐ Paris 7

[5] John E. Hopcroft, Motwani, Rajeev Ullman, Jeffrey D., Introduction to

Automata Theory, Languages, and Computation (2nd Edition), Addison-
Wesley, 2001

[6] Shengbing Jiang and Ratnesh Kumar, Supervisory Control Of Discrete
Event Systems with CTL∗ Temporal Logic Specifications. In Proceeding
of the 40th IEEE, Conference on Decision and Control:4122-4127,
December 2001

[7] Marius Kloetzer and Calin Belta, A Fully Automated Framework for
Control of Linear Systems From LTL Specifications. In Lecture Notes
in Computer Science , J. Hespanha and A. Tiwari, Eds. Berlin, Germany:
Springer-Verlag, vol 3927:333-347, 2006

[8] Jing-Yue Ling and Dan Ionescu, A Reachability Synthesis Procedure
for Discrete Event Systems in a Temporal Logic Framework. In IEEE
Transactions on Systems, Man, and Cybernetics, VOL. 24, No. 9:1397-
1406, September 1994

[9] Peter J. G. Ramadge and W. Murray Wonham, The Control of Discrete
Event Systems. In Proceedings of the IEEE, Vol. 77, No. 1:81-98, 1989.

[10] Paulo Tabuada and George J. Pappas, Linear Time Logic Control of
Discrete-Time Linear Systems. In IEEE Transactions on Automatic

Control, Vol. 51, No. 12:1862-1877, 2006.
[11] Pierre Wolper, Constructing Automata from Temporal Logic Formulas:

A Tutorial. In Lectures on Formal Methods in Performance Analysis, Vol.
2090:261-277 of Lecture Notes in Computer Science, Springer-Verlag,
2001

