
US007409353B1

(12) Ulllted States Patent (10) Patent N0.: US 7,409,353 B1
Uslontsev et a]. (45) Date of Patent: Aug. 5, 2008

(54) METHODS AND SYSTEMS FOR PRODUCING 2005/0138469 A1 6/2005 Ryan, Jr. et a1.
SHIPPING LABELS 2005/0171791 A1 * 8/2005 Chimenti et a1. 705/1

2006/0004910 A1 1/2006 B d t 1.
(75) Inventors: Aleksandr Uslontsev, Seattle, WA (US); ur e a

Rafael Zimbero?; Seattle, WA (Us); 2006/0282271 A1 12/2006 Ananda et a1.
Stanislav Tugushev, Seattle, WA (US)

(73) Assignee: Z-Firm LLC, Seattle, WA (US)
(Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS

U'S'C' 154(1)) by 0 days' K0rpe1a,Jukka, “Re: Newsgroup Link tag, How t0?”USENET post,

(21) App1.No.: 11/952,561 alt'html’ Jul' 10,1995”

(22) Filed: Dec. 7, 2007 (Commued)

(51) I t Cl Primary ExamineriJohnW Hayes
n Assistant ExammeriNathan Erb

(52) 3052C??? 705/1 (74) Attorney’ Agent’ or Firmiseed IP Law Group PLLC

(58) Field of ~Classi?cation Search: 705/1 (57) ABSTRACT
See application ?le for complete search history.

(56) References Cited
Methods and systems for producing shipping labels are pro

U'S' PATENT DOCUMENTS vided. Example embodiments provide a Shipping Label Pro

5,956,483 A 9/1999 Grate et a1. duction System (“SLPS”), Which produces shipping labels
6,394,354 B1 5/2002 WilZ, 51 et a1~ based on a shipping uniform resource identi?er (“URI”) that
6’850’986 Bl 2/2005 Peacock . identi?es a shipping protocol and includes shipment informa
7,076,449 B2 7/2006 Tsunenarl et a1. . . .

7,184,973 B2 * 2/2007 Monteleone et a1. 705/26 “On and PeSF'baek mfermaben- The S_LP_S may be een?gured
7 ,225,400 B2 5/2007 Beezer et al, to produce, 1n accordance W1th the sh1pp1ng protocol, a ship
7,266,513 B2 9/2007 Chalmers et a1. ping label by outputting a shipping label based on the ship

2002/0010689 A1 1/2002 Tibbs et_a1~ ment information, and automatically posting information
2002/0087548 A1 7/2002 Twill?“ about the producing of the shipping label to a code module
2003/0004830 A1 1/2003 Fredenck identi?ed by the post-back information In some embodi
2003/0026620 A1 2/2003 Gallivan _ '_ _ _

2004/0215480 A1 * 10/2004 Kadaba 705/1 meme’ ‘be aebens eftbe SLPS may be lnmated by a Web

200200220845 A1 11/2004 Malapitan broWser in response to a user selection of a shipping URI.
2005/00387 58 Al 2/2005 Hilbush et al. This abstract is provided to comply With rules requiring an
2005/ 0060165 Al 3/2005 Knight et al~ abstract, and it is submitted With the intention that it Will not
2005/0071244 A1 3/2005 P11111113S et a1~ be used to interpret or limit the scope or meaning of the
2005/0114221 A1 5/2005 Walters et 31. Claims
2005/0114222 A1 5/2005 Mundy
2005/0130638 A1* 6/2005 Schrader 455/416

2005/0137937 A1 6/2005 Njo et a1. 20 Claims, 11 Drawing Sheets

sninnm Lam-1 Pwaumn

Rena/vs one or more sh/pp/ng URls, BIC"
nipping URI mcludlng shipment lnlcrml?an and
post-back informalion

lnllllbs output a! : :NpDim: libel blaed on ma
smpment inlurmilmn

Autnminoilly m1 lnfcrml?on mm ms
shinning 1abel pmduzmnn to a code module
Memi?ed by m post-back worm-lion

US 7,409,353 B1
Page 2

US. PATENT DOCUMENTS

2006/0294196 A1
2007/0055639 A1
2007/0l00967 Al
2007/0l742l3 A1

12/2006 FeirouZ et al.
3/2007 Garvey et a1.
5/2007 Smith et al.
7/2007 Whitehouse et a1.

OTHER PUBLICATIONS

Clark, “Building a better supply,” Chain Store Age 78(2):65-66,
2002.

Hoffman, “The mailto URL scheme,” RFC 2368, The Internet Soci
ety, 1998, URLIhttp://www.ietf.org/rfc/rfc2368, download date
Mar. 24, 2008.
Hoffman, “The telnet URI Scheme,” RFC 4248, The Internet Society,
2005, URLIhttp://www.ietf.org/rfc/rfc4248, download date Mar. 24,
2008.

Masinter, “Guidelines for new URL Schemes,” RFC 2718, The
Internet Society, 1999, URLIhttp:/www.ietf.org/rfc/rfc27l8, down
load date Mar. 24, 2008.
Obasanjo, “The feed URI scheme (PRE-DRAFT),” Network Work
ing Group, Dec. 2003, URLIhttp://www.25hoursaday.com/draft
obasanjo-feed-URI-scheme-02.htrnl, download date Mar. 24, 2008.
Registry of URI Schemes, Internet Assigned Numbers Authority,
2006, URLIhttp://www.ianaorg/assignments/uri-schemes.html,
download date Oct. 8, 2007.
“FedEx Shipping LabelszishipRush for FedEx Shippers,”
URLIhttp://Z?rm.com/products/shiprushifedex.shtml, download
date Dec. 6, 2007, 1 page.
ShipRush Product Documentation Excerpts, URL:http://www.
Z?rm.com/ProductiDocumentation/ShipRush/iv5 -0iFedEX/,
download date Dec. 4, 2007, 35 pages.
“ShipRush Product Screen Display,” Screen shot from running prod
uct.

* cited by examiner

US. Patent Aug. 5, 2008 Sheet 2 0f 11 US 7,409,353 B1

/ 201

C Shipping Label Production)

V

Receive one or more shipping URls, each
shipping URI including shipment information and
post-back information

shipping URls

/ 205

Fig. 2

Identify one of the shipping URls

v

204
Initiate output of a shipping label based on the /
shipment information

v

Automatically post information about the
shipping label production to a code module
identi?ed by the post-back information

v

End

llll'llullllllllll'l-lllIlllllllllllilliillllllllllllllllvnl'llll'lllllll

US. Patent Aug. 5, 2008 Sheet 4 0f 11 US 7,409,353 B1

on .mt
K , /, .

~ 1- § 4

$02m:202E."ozmc_x0958Scum29509952586;g?mgwonaaugvkSm J_ 68020 “6 3mm m?auumvumooéizw r < . [L

own

mm at

2m 2m

/Em/ Am /
1 /. . /> >

R J w J wmgouwEoswgé?soqég?iawomgmwooume0%502$EQESQEEHE356225 F 4 h {

in

US. Patent Aug. 5, 2008 Sheet 6 0f 11 US 7,409,353 B1

__‘____________ ______

mm .mE
___________ ______

own

56% a3. a5

US. Patent Aug. 5, 2008 Sheet 9 0f 11 US 7,409,353 B1

C Shipping Label Production Routine D

V

Receive scheme data including / 501
shipment information and post-back
information

No
information includes

V f 503 v f 504
Communicate with a code
module identi?ed by the URI
to obtain a destination
shipping address

505
[- — _ _ _ _ _ _ _ - _-'/_ _ _ _ _ _ _ _ _ — __1

: Generate a shipping data structure :
—>1 based on the obtained destination |<—

: shipping address :

506
Initiate output of a shipping label /
based at least in part on the
generated shipping data structure

Obtain a destination shipping
address from the shipment
information

Post information about the shipping / 507
label production to a code module
identi?ed in the post-back information

End Fig. 5

US. Patent Aug. 5, 2008 Sheet 11 0f 11 US 7,409,353 B1

C Shipment Management Routine)

" 701

f Receive request or information related
to a shipment

/ 703

Generate and provide a shipping
URI for the shipment

/ 705

Provide a destination shipping
address for the shipment V For address?

I 707

Record information about the
shipment

. . . 708

Perform other Indicated actlon as /
appropriate

709

Yes
1k Continue?

Fig. 7

US 7,409,353 B1
1

METHODS AND SYSTEMS FOR PRODUCING
SHIPPING LABELS

TECHNICAL FIELD

The present disclosure relates to methods and systems for
producing shipping labels and, in particular, to methods and
systems for producing shipping labels based on information
included in a shipping uniform resource identi?er.

BACKGROUND

A number of approaches exist for printing shipping labels
using a computer. In one approach, a shipping label is pre
pared and printed using a stand-alone application executing
on a shipper’s computing system. Such client-side applica
tions may include document preparation applications, such as
Word processors or special-purpose shipping label applica
tions. Using a Word processor to prepare shipping labels may
be an error prone process, as relevant information (e. g., each
destination shipping address) may need to be entered manu
ally. In addition, the Word processor may not be con?gured or
otherWise capable of preparing bar codes or other machine
readable indicia required or preferred by some carrier ser
vices.

Special-purpose shipping label applications also suffer
from a number of drawbacks. In particular, they are typically
limited in their ability to communicate over a netWork to
obtain information relevant to a shipping label (e. g., a recipi
ent address), or to inform other computing systems about a
shipping label that has been printed (e.g., for tracking pur
poses). Furthermore, even if a stand-alone shipping label
application has netWork capabilities, information is
exchanged in a potentially non-uniform manner betWeen
shipping label applications and remote computing systems.
In such cases, the developers of shipping label applications
may need to implement multiple diverse mechanisms for
communicating With different remote computing systems,
such as those provided by different shipping carriers for
tracking shipments. Further, some remote computing systems
may be unable or unWilling to grant or support access by a
special-purpose shipping label application (e.g., based on
security concerns, technical considerations, etc.), resulting in
reduced functionality for the special-purpose shipping label
application.

In other approaches, Web-based server-side shipping label
applications have been used. Such applications alloW a user to
utiliZe a Web broWser to prepare and print shipping labels.
Such approaches have the bene?t that they may not require
the installation of special softWare on a client machine (aside
from a Web broWser). HoWever, such approaches may be
limited by simple, Web-based user interfaces that restrict the
available functionality of the shipping label application. In
addition, Web-based shipping label applications may not be
able to readily or conveniently access information stored in
locations other than those that are accessible to the Web server
that provides the shipping label application (e.g., the client
machine, computing systems operated by third-parties, etc.).
For example, because the shipping label application is a
server side application, it may not be able to interact With
softWare (e.g., database systems, address books, etc.) and/or
hardWare (e.g., printers, disks, etc.) resident on the client
machine. Such limitations may result in reduced functionality
for the shipping label application, such as poor integration,
loW quality shipping label output, etc

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example block diagram of components of an
example environment for producing shipping labels using a
Shipping Label Production System.

FIG. 2 is an example block diagram of an overvieW of an
example shipping label production process.

FIGS. 3A-3F are example screen displays and diagrams
illustrating aspects of an example shipping label production
process.

FIG. 4 is an example block diagram of a computing system
for practicing embodiments of a Shipping Label Production
System.

FIG. 5 is an example How diagram of an example shipping
label production routine provided by an example embodi
ment of a Shipping Label Production System.

FIG. 6 is an example block diagram of a computing system
for practicing embodiments of a Shipment Management Sys
tem.

FIG. 7 is an example How diagram of an example shipment
management routine provided by an example embodiment of
a Shipment Management System.

DETAILED DESCRIPTION

Embodiments described herein provide enhanced com
puter- and netWork-based methods, techniques, and systems
for producing shipping labels. Example embodiments pro
vide a Shipping Label Production System (“SLPS”), Which
enables users to ef?ciently perform item shipments by auto
matically producing shipping labels and recording informa
tion about such shipments. An item shipment includes one or
more activities related to the transport of an item from one
location to another. Such activities may include obtaining
and/or providing information about a shipment (e.g., a desti
nation shipping address, a parcel Weight and/ or siZe, a track
ing number, etc.), outputting a shipping label for the shipment
(e.g., an address label, postage indicia, etc.), delivery and/or
receipt of the shipment, etc. Items may include any objects
that may be transported by a carrier netWork (e.g., the US.
Postal Service, Federal Express, a shipping agency, etc.),
such as goods (e.g., items purchased by customers), pack
ages, communications (e.g., letters, documents, magaZines,
?yers, etc.), etc.

In some embodiments, a syntax and semantics for shipping
uniform resource identi?ers is de?ned. A shipping uniform
resource identi?er (“URI”) may be used to specify actions
that that are to be taken by an SLPS to perform a particular
item shipment. A shipping URI includes a scheme name that
identi?es a shipping protocol and that is con?gured to cause
Web broWsers or other applications to execute an SLPS to
perform activities such as to produce a shipping label. A
shipping URI also includes scheme data that is provided to the
SLPS and that speci?es one or more aspects of a particular
item shipment. The scheme data may include, for example, a
destination shipping address that is to be included in a ship
ping label for a particular shipment. The scheme data may
also include an identi?er (e.g., another URI) of a code module
(e.g., a Web server) that is con?gured to store information
about shipments, such that the SLPS can provide information
about the item shipment to the code module. For example, the
SLPS may provide information regarding the printing of a
shipping label, a tracking number associated With the ship
ment, etc. By automatically providing information about the
item shipment to the code module, the information may then
be made available to other systems and/or users, such as the
intended recipient of the item shipment, so the recipient can
be noti?ed or otherWise learn that the item has been shipped.

US 7,409,353 B1
3

In this manner, a shipping URI facilitates the interoperation of
disparate computing systems to e?iciently perform item ship
ments.

FIG. 1 is an example block diagram of components of an
example environment for producing shipping labels using a
Shipping Label Production System. In particular, FIG. 1
depicts the production of a shipping label by a user 110 in the
context of an example Shipping Label Production Environ
ment (“SLPE”) 100. In the illustrated embodiment, the SLPE
100 includes a client computing system 101, a Shipment
Management System (“SMS”) 102, and a printer 111. The
client computing system 101 includes a client application
(e.g., a Web broWser) 103 and a Shipping Label Production
System (“SLPS”) 104.
The example SMS 102 includes a URI generation engine

105, an address management engine 106, and a shipment
information data engine/repository 107. The components of
the SMS 102 provide various functions and/or services
related to the management of shipments. The URI generation
engine 105, for example, manages the generation of shipping
URIs that may be used to initiate or otherWise perform item
shipments. The address management engine 106 provides
destination shipping addresses and/or other information
regarding item shipments in response to requests received
from the SLPS 104 and/or other systems/components. The
shipment information data engine 107 records (e.g., stores,
tracks, etc.) information about item shipments, such as When
a label Was printed, When a shipment Was sent, and/or other
details related to a particular shipment. The shipment infor
mation data engine 107 may provide additional services
related to item shipments, such as providing tracking capa
bilities to third parties (e.g., item recipients).

Note that although the URI generation engine 105, the
address management engine 106, and the shipment informa
tion data engine 107 are illustrated as part of the shipment
management system 102, no limitations are placed on the
location and/ or control of components 105-107. In particular,
in one embodiment, the shipment management system 102
may be deployed as a single Web server having softWare
modules (e.g., CGI modules, servlets, server-side code mod
ules, etc.) corresponding to each of components 105-107. In
another embodiment, components 105-107 are operated
under the control of different entities and/or on different
computing systems. For example, the URI generation engine
105 may be part of a ?rst Web site that provides an online
auction, the address management engine 106 may be an elec
tronic address book situated on the client computing system
101, and the shipment information data engine 107 may be
part of a second Web site that provides an interface to one or
more carrier services (e.g., United Parcel Service, US. Postal
Service, etc.). In addition, different and/ or additional compo
nents may be provided as part of an SMS 102.

In the illustrated example, a user 110 operates the client
application 103 to obtain one or more shipping URIs, such as
by accessing a Web page provided by the SMS 102. The client
application 103 may include any client application con?g
ured to process a shipping URI, such as by presenting a user
selectable control (e.g., a link) that represents the URI and
taking one or more actions in response to a user selection of
the control. Such client applications may include, for
example, Web broWsers, email clients, document preparation
applications (e.g., Word processors, spreadsheets, etc.), con
tact managers, neWs readers, instant messenger clients, etc.
The provided Web page may include one or more shipping
URIs that are displayed as links or other user interface con

trols (e.g., buttons) by the client application 103 to the user

20

25

30

35

40

45

50

55

60

65

4
110. Each shipping URI includes a scheme name and scheme
data. The scheme name of a given shipping URI is con?gured
to cause the client application 103 to provide the scheme data
to the SLPS 104 in response to the user’ s selection of the user
interface control representing the URI.
When the user 110 selects (e.g., clicks on) a link or other

representation of one of the displayed shipping URIs, the
client application 103 provides scheme data from the selected
URI to the SLPS 104.
Upon receiving the scheme data, the SLPS 104 uses the

scheme data of the selected shipping URI to access the
address management engine 106 and obtain a destination
shipping address associated With the shipping URI. Then, the
SLPS 104 generates a shipping label that includes the desti
nation shipping address and prints the shipping label via the
printer 111. Upon printing the shipping label, the SLPS 104
posts information about the printed label to the shipment
information data engine/repository 107. Posting information
to the shipment information data engine/repository 107 may
include providing, sending, transmitting, forWarding infor
mation using any protocol or other communication mecha
nism, such as HTTP, HTTPS, FTP, SMTP, SOAP, etc. The
posted information may include, for example, the fact that the
label has been printed along With other details related to the
shipment, such as package Weight, estimated transit time, etc.
Other users (e.g., shipment recipients) of the shipment man
agement system 102 or via other permitted systems may then
access information about the status of the shipment.

FIG. 2 is an example block diagram of an overvieW of an
example shipping label production process. The illustrated
process may be performed by one or more components and/ or
users of the SLPE 100, described With reference to FIG. 1, to
produce a shipping label. In particular, the illustrated process
demonstrates the production of a shipping label by an SLPS
based on information included in a shipping URI that is
received from a Web broWser, such as client application 103
of FIG. 1.
More speci?cally, in step 201 a Web broWser receives one

or more shipping URIs that each include shipment informa
tion and post-back information. The shipment information of
a particular shipping URI may include a destination shipping
address and/or a URI that may be used to obtain a destination
shipping address. For example, the shipment information
may include a URI that identi?es the address management
engine 106 and that may be used by the SLPS 104 to obtain a
destination shipping address from the address management
engine 106 (FIG. 1). In addition, the post-back information of
a particular shipping URI may include a URI that may be used
to provide information about a produced shipping label or
other details related to an item shipment. For example, the
post-back information may include a URI that identi?es the
shipment information data engine 107 and that may used by
the SLPS 104 to provide information about a shipment to the
shipment information data engine 107 (FIG. 1). Example
shipping URIs are described With reference to FIGS. 3B and
3C, beloW.

In step 202, the Web broWser displays representations of
the received one or more shipping URIs. Shipping URIs may
be represented in various Ways, such as links, buttons, or other
user-selectable controls. An example Web broWser displaying
links representing shipping URIs is described With reference
to FIG. 3A, beloW. In some embodiments, step 202 may be
omitted. For example, one or more shipping URIs may be
processed automatically, in a non-interactive manner, such as
by an SLPS that is con?gured to automatically produce ship
ping labels based on a received set of shipping URIs (e.g., an
SLPS operating in batch or “bulk” mode).

US 7,409,353 B1
5

In step 203, one of the shipping URIs is identi?ed. In
interactive embodiments, the shipping URI may be identi?ed
by a user selection of a corresponding control (e.g., a link, a
button, etc.) displayed by the Web broWser. In response to
such a user selection, the Web broWser may initiate execution
of an SLPS, and provide the scheme data, including the ship
ment information and the post-back information, of the ship
ping URI to the SLPS. An example SLPS is described With
reference to FIG. 3D, beloW. In a non-interactive embodi
ment, the shipping URI may be identi?ed as the next URI of
the received one or more shipping URIs, such as When the
received URIs are consecutively processed in a loop by the
SLPS.

In step 204, the SLPS initiates output of a shipping label
based on the shipment information. An example shipping
label is described With reference to FIG. 3E, beloW. Initiating
output of a shipping label may include generating a shipping
label, such as by creating, updating, or otherWise managing
data structures and/or indicators of information about a par
ticular shipment, such as may be stored by a data repository
such as a database or ?le system. In some embodiments,
generating the shipping label may include determining a des
tination shipping address, such as by direct reference to the
shipment information (e.g., When the shipment information
encodes the address). In other embodiments, the destination
shipping address may be determined by interacting With a
code module that is con?gured to provide the destination
shipping address (e.g., the address management engine 106 of
FIG. 1), or by any other technique for “discovering” an asso
ciated destination shipping address. For example, the ship
ment information may include a URI that identi?es a Web
server con?gured to provide a destination shipping address in
response to an order number or other identi?er. Outputting a
shipping label may further include printing (e.g., to a laser
printer), presenting (e.g., displaying), communicating (e.g.,
sending, transmitting, etc.), or otherWise forWarding the ship
ping label.

In step 205, the SLPS automatically posts information
about the shipping label production to a code module identi
?ed by the post-back information. The code module may be a
shipment information data engine 107 provided by a remote
Web server, as described With reference to FIG. 1. Posting
information about the shipping label production may include
notifying the code module that the shipping label has or has
not been successfully produced. For example, When a printer
communicatively coupled to the SLSP successfully prints the
shipping label, the SLSP may notify the code module of
various aspects of the shipping label production, for example
a tracking number, a shipment identi?er, date and/or time
(e. g., of printing), parcel dimensions and/ or Weight, etc.

After step 205, the process ends, or optionally returns to
step 201, such as When the SLPS is operating in a batch mode
Where it processes multiple shipping URIs automatically.

FIGS. 3A-3F are example diagrams illustrating aspects of
an example shipping label production process. In particular,
FIGS. 3A-3F illustrate a scenario in Which a user operates a
Web broWser to select a shipping URI, along With the corre
sponding production of a shipping label via a Shipping Label
Production System. In the example of FIGS. 3A-3F, the pro
duction of a shipping label is described in the context of an
online, electronic commerce application, such as an auction
Web site. In particular, shipping URIs and an SLPS are used
to print a shipping label that is to be used to send to a recipient
an item ordered by a customer. This example is not intended
to limit the described techniques to the production of shipping
labels for items ordered in the context of electronic commerce
transactions. In particular, the described techniques may be

20

25

30

35

40

45

50

55

60

65

6
used to produce shipping labels for other purposes, such as
communication (e.g., sending a letter or other communica
tion to a person or other entity), advertising (e. g., direct mail
marketing), sales force automation, customer relationship
management, etc.

FIG. 3A depicts a Web broWser displaying an example
order management application provided by a Web server. In
particular, the Web broWser 300 is illustrated displaying an
order management application 301 that may be used by, for
example, a user or other entity that sells items to remote
customers, such as via an online marketplace, an auction Web
site, etc. When a customer purchases an item, it may be
recorded as an order that is managed by the order manage
ment application 301. Managing orders may include query
ing, shipping, tracking, or otherWise administering the pro
cess of transferring possession of ordered items to recipients.

In the illustrated example, the order management applica
tion 301 displays a table 302 of recent orders that have been
placed by various customers. The table is organiZed into roWs
304a-304f that each represent one order. Each roW includes
?elds 303a-303e that each contain information about one
aspect of the associated order. In particular, each order
includes an order number 30311, an order status 303b, a recipi
ent 3030, and one or more actions 303d. The actions listed in
?eld 303d may be presented as user-selectable controls (e. g.,
links, buttons, etc.), such that a user may invoke associated
functionality to perform the action. Field 303e indicates that
in other embodiments, orders may have a greater or lesser
number of associated ?elds.

For example, ?elds (columns) 303a-303d of order (roW)
3 0411 indicate that the illustrated order has an order number of
00298, that the order has been purchased and is to be shipped
to Mr. Buyer, and that the order may be shipped by selecting
(e.g., clicking on) a link 305 named “ship” in ?eld 303d. In the
illustrated example, the user selects the link 305, and in
response, the Web broWser 300 initiates execution of an
SLPS, as described With reference to FIG. 3D, beloW.

FIGS. 3B-3C depict example shipping URIs. One of the
illustrated shipping URIs may be, for example, presented as
the link 305 described With reference to FIG. 3A. A shipping
URI speci?es actions and/or properties With respect to a par
ticular item shipment, as de?ned by a shipping protocol
implemented by the SLPS. An example shipping protocol is
described in detail With respect to Tables l-3, beloW.

FIG. 3B depicts an example shipping URI. Shipping URI
310 comprises a scheme name 311 and scheme data 312. The
scheme name 312 identi?es a shipping protocol and is con
?gured to cause a Web broWser or other client application to
initiate execution and/or provide the scheme data 312 to an
SLPS. The SLPS, in turn, produces a shipping label based on
the information contained in the scheme data 312, as
described With reference to FIG. 3D, beloW.
The scheme data 312 of FIG. 3B comprises shipment infor

mation 313 and post-back information 314. The shipment
information 313 includes a URI 315 that may be used by the
SLPS to obtain a destination shipping address. The URI 315
may identify a code module, such as the address management
engine 106 (FIG. 1), that is con?gured to provide a destina
tion shipping address in response to a received address iden
ti?er. In the illustrated example, the URI 315 includes an
order identi?er (“00298”) that corresponds to the order num
ber of ?eld 30311 of order 30411 of FIG. 3A. The SLPS may
utiliZe the URI 315 to obtain, for example via HTTP (“Hyper
Text Transport Protocol”), a destination shipping address cor
responding to or otherWise associated With order number
00298. The obtained destination shipping address may then
be used to generate a corresponding shipping label for the

US 7,409,353 B1
7

associated order. In other embodiments, the URI 315 may be
used to obtain other kinds of information about a pending
item shipment. For example, the SLPS may utilize the URI
315 to verify the correctness of a destination shipping
address.

The post-back information 314 includes a URI 316 that
may be used by the SLPS to provide information about the
shipping label production to a code module, such as the
shipment information data engine 107 (FIG. 1), that is con
?gured to track or otherWise record information about ship
ments that have been processed by the SLPS. In the illustrated
example, the URI 316 includes the same order identi?er
described With respect to URI 315. The SLPS may utiliZe the
URI 316 to provide, for example via HTTP, information about
the shipping label production to the shipment information
data engine. For example, it may provide an indication that
the shipment corresponding to order 00298 has been shipped,
an indication that a shipping label for the order has been
produced, etc.

FIG. 3C depicts another shipping URI. Shipping URI 320
comprises a scheme name 321 and scheme data 322. The
scheme data 322 comprises shipment information 323 and
post-back information 324. The shipment information 323
differs from the shipment information 313 of FIG. 3B in that
the shipment information 323 includes a destination shipping
address 325 formatted as an XML string. Accordingly, in this
example, the SLPS may obtain the destination shipping
address 325 directly from the shipment information 323,
Without making a request to a code module as described With
reference to FIG. 3B, above.

In some embodiments, post-back information may include
indications of one or more data items that are to be provided
by the SLPS to the shipment information data engine. In the
illustrated example of FIG. 3C, the post-back information
324 includes a URI 326 that includes an indication that the
SLPS is to provide a tracking number associated With the item
shipment and/or shipping label. In this example, data items
that are to be provided by the SLPS are speci?ed as ?eld
names surrounded by “%” characters (e.g., “%Track
ingNo%”). When the SLPS processes the URI 326, prior to
interacting With the shipment information data engine, the
SLPS replaces indicated ?elds With corresponding data items
that are associated With the item shipment. Additional data
items that may be speci?ed are described With reference to
Table 3, beloW.

FIG. 3D depicts a user interface of an example Shipping
Label Production System. As discussed above, the Shipping
Label Production System (“SLPS”) 330 may be executed by
a Web broWser upon user selection of a link representing a
shipping URI, such as shipping URI 310 discussed With ref
erence to FIG. 3B. The Web broWser may be con?gured to
execute the SLPS 330 as a protocol handler for a shipping
protocol identi?ed by the scheme name of a shipping URL.
Although the SLPS 330 is here illustrated as an executable
that is independent from the Web broWser, in other embodi
ments it may be implemented as a “plug-in” module execut
ing Within the context of the Web broWser.

The SLPS 330 includes user-selectable controls (e.g., text
?elds, drop doWn menus, checkboxes, etc.) for specifying
various information related to a particular item shipment,
such as sender information 331, recipient information 332,
and package information 333. The SLPS 330 may automati
cally populate at least some of the controls based on shipment
information received as part of a shipping URI. In one
example embodiment, based on a URI (e.g., the URI 315)
received by the SLPS 330 as part of the shipment information
(e.g., shipment information 312), the SLPS 330 requests a

20

25

30

35

40

45

50

55

60

65

8
destination shipping address from an address management
engine. Upon receiving the destination shipping address, the
SLPS 330 then populates (e.g., ?lls in) one or more of the
?elds of the recipient information 332. The SLPS 330 may
also automatically populate other ?elds, such as those in the
sender information 33 1, such as based on previously recorded
user preferences and/or settings. In the illustrated embodi
ment, the user of the SLPS 330 may provide additional infor
mation about the shipment, such as parcel information 333
(e.g., shipping Weight, value, etc.).
The SLPS 330 also includes a ship control 334 that may be

selected by a user to initiate the output of a shipping label
corresponding to the speci?ed item shipment. In some
embodiments, the output of the shipping label may be delayed
until a later time, such as the end of a Workday, so that
multiple shipping labels may be output in a batch manner.

FIG. 3E depicts an example shipping label produced by an
example Shipping Label Production System. The shipping
label 340 includes a sender information portion 341, a recipi
ent information portion 342, along With various other ele
ments, such as a machine readable indicator 343. The recipi
ent information portion 342 includes text corresponding to
the recipient information 332 described With respect to FIG.
3D.

FIG. 3F depicts the user interface of an example order
management application after the shipping label shoWn in
FIG. 3E has been produced. The Web broWser 300 is illus
trated displaying the example order management application
301 described With reference to FIG. 3A. Here, the order
management application 301 displays the table 302 in an
updated state, after a shipping label for the order of roW 30411
has been produced, as described With reference to FIGS.
3A-3E, above. Inpar‘ticular, the “ship” link 305 shoWn in FIG.
3Ahas here been replaced With a “track” link 351, because the
SLPS has posted information about the item shipment back to
the order management application 301, such as the printing of
the shipping label, a parcel tracking number, etc.

In the illustrated embodiment, the order management
application 301 has been displayed in an updated state, for
example, in response to a user request (e.g., a page reload) to
a Web server that provides the order management application
301. HoWever, in other embodiments, the Web server may
automatically update or refresh the order management appli
cation 301, for example in response to a posting of informa
tion about the item shipment received from the SLPS.

Although certain terms are used primarily herein, other
terms could be used interchangeably to yield equivalent
embodiments and examples. For example, it is Well-knoWn
that equivalent terms in the shipping ?eld and in other similar
?elds could be substituted for many of the terms used here.
Speci?cally, the term “shipping label” can be used inter
changeably With “ship label,” “address label,” “mailing
label,” etc. LikeWise, the term “label” can be used inter
changeably With “indicia,” “marker,” “tag,” etc. Furthermore,
the term “Uniform Resource Identi?er” can be used inter
changeably With “Uniform Resource Locator.” In addition,
terms may have alternate spellings Which may or may not be
explicitly mentioned, and all such variations of terms are
intended to be included.
Example embodiments described herein provide applica

tions, tools, data structures and other support to implement a
Shipping Label Production System to be used for producing
shipping labels. Other embodiments of the described tech
niques may be used for other purposes. For example, many
applications could incorporate the technique of using a URI
to cause a Web broWser or other code module to initiate an

action (e. g., loading of a ?le, output of a graphic, transmission

US 7,409,353 B1
9

of a data item, etc.) and perform a corresponding post back of
information about performance of the action. Some example
applications and/or uses include link tracking, report genera
tion, address book management, contact management, etc. In
general, these techniques are applicable to any application
that could bene?t from performing a designated action fol
loWed by a post-back of information about the performed
action.

In the folloWing description, numerous speci?c details are
set forth, such as data formats and code sequences, etc., in
order to provide a thorough understanding of the described
techniques. The embodiments described also can be practiced
Without some of the speci?c details described herein, or With
other speci?c details, such as changes With respect to the
ordering of the code How, different code ?oWs, etc. Thus, the
scope of the techniques and/or functions described are not
limited by the particular order, selection, or decomposition of
steps described With reference to any particular routine.

FIG. 4 is an example block diagram of a computing system
for practicing embodiments of a Shipping Label Production
System. Note that a general purpose or a special purpose
computing system may be used to implement an SLPS. Fur
ther, the SLPS may be implemented in softWare, hardWare,
?r'mWare, or in some combination to achieve the capabilities
described herein.

The computing system 400 may comprise one or more
server and/or client computing systems and may span distrib
uted locations. In addition, each block shoWn may represent
one or more such blocks as appropriate to a speci?c embodi
ment or may be combined With other blocks. Moreover, the
various blocks of the SLPS 410 may physically reside on one
or more machines, Which use standard (e.g., TCP/IP) or pro
prietary interprocess communication mechanisms to commu
nicate With each other.

In the embodiment shoWn, computer system 400 com
prises a computer memory (“memory”) 401, a display 402,
one or more Central Processing Units (“CPU”) 403, Input/
Output devices 404 (e.g., keyboard, mouse, CRT or LCD
display, etc.), other computer-readable media 405, and net
Work connections 406. The SLPS 410 is shoWn residing in
memory 401. In other embodiments, some portion of the
contents, some of, or all of the components of the SLPS 410
may be stored on or transmitted over the other computer
readable media 405. The components of the SLPS 410 pref
erably execute on one or more CPUs 403 and manage the
production of shipping labels, as described herein. Other code
or programs 430 (e.g., a Web broWser) and potentially other
data repositories, such as data repository 420, also reside in
the memory 410, and preferably execute on one or more
CPUs 403. Of note, one or more of the components in FIG. 4
may not be present in any speci?c implementation. For
example, some embodiments embedded in other softWare
many not provide means for user input or display.

In a typical embodiment, the SLPS 410 includes a label
generation engine 411, a user interface engine 412, a shipping
label production application program interface (“SLP API”)
413, and a shipping label production data repository 415.
Other and/ or different modules may be implemented. In addi
tion, the SLPS 410 may interact via a netWork 450 With a
shipment management system 455, commerce computing
systems 465, and other computing systems 460.Also, the SLP
data repository 415 may be provided external to the SLPS 410
as Well, for example via a Web server or other access provider
(not shoWn) executing on one of the other computing systems
460, accessible over the netWork 450.

The label generation engine 411 manages the generation of
shipping labels. Generating shipping labels may include

20

25

30

35

40

45

50

55

60

65

10
obtaining information about a particular shipment (e. g., a
destination shipping address), and creating and/ or managing
data structures or other information used to facilitate, track, or
otherWise represent the shipment. Generating shipping labels
may also include determining and/ or generating a represen
tation of a shipping label (e. g., a bit map, a printer de?nition
language ?le, an image ?le, etc.) and providing such a repre
sentation to some output device (e.g., a printer, a netWork
interface, etc.). The label generation engine 411 may further
provide information about generated shipping labels to other
modules, such as the shipment management system 455.
The user interface engine 412 provides a vieW and a con

troller that facilitates user interaction With the SLPS 410. The
user interface engine 412 may, for example, provide an inter
active graphical user interface such as the one described With
reference to FIG. 3D. In other embodiments, such as When the
SLPS 410 is deployed as a server-based application, the user
interface engine 412 may provide a Web interface that may be
accessed by remote client computing systems executing Web
broWsers.

The SLP API 413 provides programmatic access to one or
more functions of the SLPS 410. For example, the SLP API
413 may provide an interface that provides one or more func
tions that may be called by one of the other programs 430 in
order to produce a shipping label in an automated or semi
automated manner.

The SLP data repository 415 records information about
shipments made via the SLPS 410, as Well as information
related to the operation of the SLPS 410 generally. Such
information may include shipping records, user preferences,
application settings (e.g., shipper return address, default car
rier, etc.), account information (e.g., shipper accounts With
one or more carriers), etc.

In an example embodiment, components/modules of the
SLPS 410 are implemented using standard programming
techniques. For example, the SLPS 410 may be implemented
as a “native” executable running on the CPU 403, along With
one or more static or dynamic libraries. In other embodi
ments, the SLPS 410 may be implemented as instructions
processed by virtual machine that executes as one of the other
programs 430. In general, a range of programming languages
knoWn in the art may be employed for implementing such
example embodiments, including representative implemen
tations of various programming language paradigms, includ
ing but not limited to, object-oriented (e.g., Java, C++, C#,
Smalltalk, etc.), functional (e.g., ML, Lisp, Scheme, etc.),
procedural (e.g., C, Pascal,Ada, Modula, etc.), scripting (e. g.,
Perl, Ruby, Python, JavaScript, VBScript, etc.), declarative
(e.g., SQL, Prolog, etc.), etc.
The embodiments described above may also use Well

knoWn or proprietary synchronous or asynchronous client
sever computing techniques. HoWever, the various compo
nents may be implemented using more monolithic
programming techniques as Well, for example, as an execut
able running on a single CPU computer system, or alternately
decomposed using a variety of structuring techniques knoWn
in the art, including but not limited to, multiprogramming,
multithreading, client-server, or peer-to-peer, running on one
or more computer systems each having one or more CPUs.
Some embodiments are illustrated as executing concurrently
and asynchronously and communicating using message pass
ing techniques. Equivalent synchronous embodiments are
also supported by an SLPS implementation. Also, other steps
could be implemented for each routine, and in different
orders, and in different routines, yet still achieve the functions
of the SLPS.

US 7,409,353 B1
11

In addition, programming interfaces to the data stored as
part ofthe SLPS 410 (e.g., in the data repository 415) can be
available by standard means such as through C, C++, C#, and
Java APIs; libraries for accessing ?les, databases, or other
data repositories; through scripting languages such as XML;
or through Web servers, FTP servers, or other types of servers
providing access to stored data. The data repository 415 may
be implemented as one or more database systems, ?le sys
tems, or any other method knoWn in the art for storing such
information, or any combination of the above, including
implementation using distributed computing techniques.

Also the example SLPS 410 may be implemented in a
distributed environment comprising multiple, even hetero ge
neous, computer systems and netWorks. For example, in one
embodiment, the label generation engine 411, the user inter
face engine 412, the SLP API 413, and the SLP data reposi
tory 415 are all located in physically different computer sys
tems. In another embodiment, various modules of the SLPS
410 are hosted each on a separate server machine and may be
remotely located from the tables Which are stored in the SLPS
data repository 415. Also, one or more of the modules may
themselves be distributed, pooled or otherWise grouped, such
as for load balancing, reliability or security reasons. Different
con?gurations and locations of programs and data are con
templated for use With techniques of described herein. A
variety of distributed computing techniques are appropriate
for implementing the components of the illustrated embodi
ments in a distributed manner including but not limited to
TCP/IP sockets, RPC, RMI, HTTP, Web Services (XML
RPC, JAX-RPC, SOAP, etc.). Other variations are possible.
Also, other functionality could be provided by each compo
nent/module, or existing functionality could be distributed
amongst the components/modules in different Ways, yet still
achieve the functions of an SLPS.

Furthermore, in some embodiments, some or all of the
components of the SLPS may be implemented or provided in
other manners, such as at least partially in ?rmWare and/or
hardWare, including, but not limited to one or more applica
tion-speci?c integrated circuits (ASICs), standard integrated
circuits, controllers (e.g., by executing appropriate instruc
tions, and including microcontrollers and/ or embedded con
trollers), ?eld-programmable gate arrays (FPGAs), complex
programmable logic devices (CPLDs), etc. Some or all of the
system components and/or data structures may also be stored
(e.g., as softWare instructions or structured data) on a com
puter-readable medium, such as a hard disk, a memory, a
network, or a portable media article to be read by an appro
priate drive or via an appropriate connection. The system
components and data structures may also be transmitted via
generated data signals (e.g., as part of a carrier Wave or other
analog or digital propagated signal) on a variety of computer
readable transmission mediums, such as media 405, includ
ing Wireless-based and Wired/cable-based mediums, and may
take a variety of forms (e. g., as part of a single or multiplexed
analog signal, or as multiple discrete digital packets or
frames). Such computer program products may also take
other forms in other embodiments. Accordingly, embodi
ments of this disclosure may be practiced With other com
puter system con?gurations.

FIG. 5 is an example How diagram of an example shipping
label production routine provided by an example embodi
ment of a Shipping Label Production System. The illustrated
routine may be performed by the SLPS 104, described With
reference to FIG. 1 to produce, for example, the shipping label
described With reference to FIG. 3E. The illustrated process
demonstrates production of a shipping label based on ship

20

25

30

35

40

45

50

55

60

65

12
ment information received in a shipping URL by, for
example, a Web broWser executing on a client computing
system.
More speci?cally, at step 501, the routine receives scheme

data including shipment information and post-back informa
tion. In one embodiment, the routine may receive the scheme
data from a Web broWser con?gured to execute the routine in
response to a user selection of a link or other user interface
control that represents a shipping URI. In another embodi
ment, the routine may receive the scheme data from a ?le or
other data source, such as When the routine is part of an SLPS
con?gured to automatically produce multiple shipping labels
in batch mode. In a further embodiment, a shipping URI may
be used to indicate a ?le that contains shipment information,
post-back information, and/ or other shipping URIs that are to
be processed.

In step 502, the routine determines Whether the shipment
information includes a URI (an embedded URI), and if not
proceeds to step 503, else proceeds to step 504. In step 503,
the routine obtains a destination shipping address from the
shipment information. For example, the destination shipping
address may be embedded directly in the scheme data
received in step 501, as illustrated in FIG. 3C.

In step 504, the routine communicates With a code module
identi?ed by the included URI to obtain a destination ship
ping address. The code module may be, for example, an
address management engine, as described With reference to
FIG. 1. The code module may reside in various places and
execute under the control of various parties. For example, the
code module may execute on a remote computing system,
such as a remote Web server executing an electronic com

merce application (e.g., an online store, an auction Web site,
etc.). In other embodiments, the code module may execute on
the same client system that executes the routine, such as a
local contact manager application.

In step 505, the routine generates a shipping data structure
based on the destination shipping address obtained in steps
503 or 504. Generating a shipping data structure may include
creating, determining, updating, or otherWise managing data
structures, records, and/or indicators of information about a
particular shipment, such as updating one or more records in
the SLP data repository 415, described With reference to FIG.
4. Generating the shipping data structure may also include
processing the obtained destination shipping address in vari
ous Ways, such as by applying one or more style sheets
con?gured to transform an XML representation of the desti
nation shipping address into a printable form. In some
embodiments, step 505 may be optional, in that an explicit
shipping data structure may not be generated and/or con
structed. Instead, a previously generated shipping data struc
ture stored in a data repository may simply be referenced.
Alternatively, at least some of the functions discussed With
reference to step 505 may be performed in the context of steps
506 and/or 507, beloW, possibly Without reference to a ship
ping data structure, explicit or implicit.

In step 506, the routine initiates output of a shipping label
based at least in part on the generated shipping data structure.
Outputting the shipping label may include generating a digi
tal representation of the shipping label (e.g., a bit map, an
image ?le, etc.), printing the shipping label, sending the ship
ping label (e.g., via email), recording the shipping label (e. g.,
in a data repository), etc.

In step 507, the routine posts information about the ship
ping label production to a code module identi?ed by the
post-back information. As discussed above, the post-back
information may include a URI that identi?es a code module,
such as the shipment information data engine 107 described

US 7,409,353 B1
13

With reference to FIG. 1. In some embodiments, the post-back
information may include multiple URIs that are each used for
different purposes. For example, the post-back information
may include a ?rst URI that is used to provide information to
one code module When the shipping label has been success
fully produced, and a second URI that is used to provide
information to another code module When an error condition
occurs, such as When the shipping label is not successfully
produced (e.g., a printer error, a shipping account is invalid,
an address cannot be veri?ed, etc).

In addition, the post-back information may include or oth
erWise specify one or more ?elds, parameters, or other iden
ti?ers of data items that are to be reported to the code module,
such as aspects of the generated shipping data structure and/
or the produced shipping label (e.g., a tracking number, a
date, a shipping cost, etc.). In some embodiments, the post
back information may not include a URI or other identi?er of
a code module. Instead, the identity of the code module may
be determined in other Ways, such as implicitly, based on the
identity of a server that provided the initial shipping URI that
caused the execution of the routine. Alternatively, the identity
of the code module may be recorded as a setting or preference
of the SLPS itself. Such a setting may be used as a default
(e.g., When the shipping URI does not identify a shipment
information data engine) or an override (e.g., a shipment
information data engine to use regardless of any shipment
information data engine identi?ed by the shipping URI).
After step 507, the routine ends.

FIG. 6 is an example block diagram of a computing system
for practicing embodiments of a Shipment Management Sys
tem. Note that a general purpose or a special purpose com
puting system may be used to implement an SMS. Further, the
SMS may be implemented in softWare, hardWare, ?rmWare,
or in some combination to achieve the capabilities described
herein.

The computing system 600 may comprise one or more
server and/or client computing systems and may span distrib
uted locations. In addition, each block shoWn may represent
one or more such blocks as appropriate to a speci?c embodi
ment or may be combined With other blocks. Moreover, the
various blocks of the SMS 610 may physically reside on one
or more machines, Which use standard (e.g., TCP/IP) or pro
prietary interprocess communication mechanisms to commu
nicate With each other.

In the embodiment shoWn, computer system 600 com
prises a computer memory (“memory”) 601, a display 602,
one or more Central Processing Units (“CPU”) 603, Input/
Output devices 604 (e. g., keyboard, mouse, CRT or LCD
display, etc.), other computer-readable media 605, and net
Work connections 606. The SMS 610 is shoWn residing in
memory 601. In other embodiments, some portion of the
contents, some of, or all of the components of the SMS 610
may be stored on or transmitted over the other computer
readable media 605. The components of the SMS 610 pref
erably execute on one or more CPUs 603 and manage the
production of shipping labels, as described herein. Other code
or programs 630 and potentially other data repositories, such
as data repository 620, also reside in the memory 610, and
preferably execute on one or more CPUs 603. Of note, one or

more of the components in FIG. 6 may not be present in any
speci?c implementation. For example, some embodiments
embedded in other softWare many not provide means for user
input or display.

In a typical embodiment, the SMS 610 includes URI gen
eration engine 611, an address management engine 612, a
shipment information data engine 613, a shipment manage
ment system application program interface (“SMS API”)
614, and a shipment management system data repository 615.

25

30

35

40

45

50

55

60

65

14
Other and/ or different modules may be implemented. In addi
tion, the SMS 610 may interact via a netWork 650 With a client
computing system 655, commerce computing systems 665,
and other computing systems 660. The client computing sys
tem 655 may, for example, execute an SLPS as described With
reference to FIG. 4. The SMS 610 may interact With an SLPS
on the client computing system 655 via a Web server execut
ing as one of the other programs 630. Also, the SMS data
repository 615 may be provided external to the SMS 610 as
Well, for example via a Web server or other access provider
(not shoWn) executing on one of the other computing systems
660, accessible over the netWork 650.

The URI generation engine 611, the address management
engine 612, and the shipment information data engine 613
respectively correspond to the URI generation engine 105,
the address management engine 106, and the shipment infor
mation data engine 107, described With respect to FIG. 1.
As discussed With reference to the SLPS of FIG. 4, the

SMS 610 may similarly be implemented in various Ways
and/or using various knoWn or proprietary techniques. In
particular, the SMS 610 may be implemented in hardWare,
softWare, and/or ?rmware. Software portions of the SMS 610
may be implemented using one or more programming lan
guages and associated tools (e.g., compilers, interpreters,
linkers, etc.) to generate code portions (e.g., instruction
sequences) that may be processed by hardWare components
(e.g., a CPU) and/or softWare components (e.g., a virtual
machine). In addition, the SMS 610 may be decomposed, if at
all, using various techniques, including client-server archi
tectures, N-tier architectures, Web Services (e.g., SOAP),
classes, libraries, archives, etc.

FIG. 7 is an example How diagram of an example shipment
management routine provided by an example embodiment of
a Shipment Management System. The illustrated routine may
be performed by the SMS 102, described With reference to
FIG. 1 to provide shipment management functionality to one
or more SLPSs, such as URI generation, address manage
ment, and/ or shipment tracking. In steps 701-709, the routine
performs a loop in Which it repeatedly processes received
requests or information related to shipments.
More speci?cally, at step 701, the routine receives a request

or information related to a shipment. The request or informa
tion may be received from, for example, a Web broWser or an
SLPS. The shipment may be identi?ed in various Ways, such
as by an order identi?er, a recipient identi?er, an item iden
ti?er, etc. In some embodiments, the routine may execute one
or more access control techniques at this point, such as check
ing Whether the received request or information Was accom
panied by one or more tokens (e.g., cookie, passWord, pass
key, username, etc.) con?gured to enable access to the
functionality provided by the routine.

In step 702, the routine determines Whether a request for a
shipping URI Was received, and if so, proceeds to step 703,
else proceeds to step 704. In step 703, the routine generates
and provides a shipping URI for a shipment that corresponds
to the request. Generating the shipping URI may include
dynamically generating the shipping URI based on various
factors, such as the identity of the party making the request,
the identity of the recipient of the item, a shipment identi?er,
the capabilities of a particular SLPS, etc. The routine then
proceeds to step 709.

In step 704, the routine determines Whether a request for a
destination shipping address Was received, and if so, proceeds
to step 705, else proceeds to step 706. In step 705, the routine
provides a destination shipping address for the shipment that
corresponds to the request. The destination shipping address

