
HathiTrust Data API - version 2

0.1 Aug. 15, 2013 pfarber
Revised from version 1 documentation. As of November 1, 2013, version 2 of the API supersedes version 1 and

access to version 1 will terminate.
0.2 Oct. 1, 2014 pfarber
Revised to update access authorization model to support access profiles in the rights database.

Introduction

Related Applications

Overview

Description

Uses

API Details

URL scheme

Resource types

Common

Volume-type resources

Article-type resources [in development]

Meta-resource

Metadata Schema, Extension Elements and Values

Extension Elements

Programmatic Access

Functional Elements

Making a Signed API Request

Data API Response Codes

Client Implementation Details

Signing

Sample Client and Server

Appendices

Appendix A: Data API Sample Client

Appendix B: Items Determined to be in the Public Domain only in the U.S. or only

outside the U.S.

Appendix C: Access and Authorization

Introduction

This document describes a RESTful API that provides access to HathiTrust repository data and

metadata resources. The HathiTrust Repository Data API is referred to simply as “API” in this

document.

Related Applications

● API web client at http://babel.hathitrust.org/cgi/htdc

● Key Generation Service (KGS) at
http://babel.hathitrust.org/cgi/kgs/request

Please refer to companion documentation at http://www.hathitrust.org/data_api for

details on these applications.

Overview

Description

The API provides extensible, efficient and secure access to the data and metadata resources of

the HathiTrust Repository. Access to the API is available either through a web client or

programmatically.

The design is intended to support client applications that already have an item identifier and

simply need the corresponding data (or metadata). It should make services and uses possible

beyond those available through current applications. Examples of current applications are the

HathiTrust Collection Builder and Pageturner.

The API accepts one ID per request. Applications that need a number of metadata records or

data sets must request them one at a time. Another option is to have a dataset created. See

http://www.hathitrust.org/datasets for details.

The repository resources consist primarily of digitized print or born-digital volumes composed of

page images and OCR text and corresponding structural and administrative metadata. Other

APIs and downloadable files provide sources of identifiers and bibliographic metadata.

Examples include:

● Files of HathiTrust volume identifiers which can be downloaded.

● OAI at the University of Michigan

● HathiTrust Bibliographic API

The API accepts a request for a resource and returns XML, JSON or binary representations of

the resource. The available representations depend on the resource in question.

The resources served by the API are partitioned into classes that have varying access policies

and to which throttling applies by default. Refer to the section on resources for full details.

● Metadata resources - Accessible without restriction.

○ Examples: type, article/meta, volume/pagemeta, structure

● Data (content) resources - Access varies.

○ Examples: article, volume/pageimage, aggregate. Unrestricted data,

such as public domain volumes digitized by Internet Archive, are available to

download.

○ Some forms of data are available for download only from an IP address approved

by HathiTrust for access. Example: Google-digitized public domain volumes.

○ In-copyright data is only available through the API under special contract.

Uses

The API is meant for burst activities and not large-scale retrieval of content (e.g., for datasets).

Retrieval of volume metadata and content subject to throttling can serve a variety of general

purposes.

 It is also possible to use the API for extended purposes that require an agreement with

HathiTrust. Please contact us to determine the suitability of the API for intended uses.

Partners have expressed the desire, and HathiTrust wishes to support, additional options that

facilitate extended activities. Some examples of these activities include the following:

Preservation uses of in-copyright content:

1. A partner retrieves single pages of an in-copyright volume to insert into a physical

volume

2. A partner retrieves a whole volume in order to make a print replacement copy

Validation of public domain and in-copyright content

1. A partner performs external validation of in-copyright and public domain archival

packages (the full package for some, e.g., Google-digitized, content is not currently

available through the API)

Development and some data retrieval purposes for publicly available content

1. Building and testing new interfaces to content

2. Identifying materials from a particular scanning source

3. Enabling "crawling" or other means of indexing the full-text of all or a large subset of

public domain materials

API Details

URL scheme

This section describes the basic form of the API URL.

http[s]://babel.hathitrust.org/cgi/htd/:RESOURCE/:ID[/:FILEID|:SEQ]

[?:QUERY_STRING]

The values of :RESOURCE (and supported format values based on the given resource) are

listed below.

The :ID ranges over the all namespace-qualified barcodes or other logical identifiers for

repository objects. Examples of namespaces are mdp, miun, wu.

The :SEQ variable is an integer starting at 1 and ranges up to the number of page images in a

volume-type resource or supporting assets in an article-type resource. The :FILEID is an

alternative to the :SEQ and can be obtained from the structure resource if not available

out-of-band.

The :QUERY_STRING parameters are as follows.

N.B. This list does not include the OAuth URL parameters required when writing a program to

access the API . Also, programmatic clients must specify the query parameter v=2 in their

request URL. The version 1 alt query parameter is replaced in version 2 by format=json.

● v - API version. required. currently only v=2 is valid

● format - as indicated below by resource. optional.

● width - width in pixels for image derivatives. optional.

● height - height in pixels for image derivatives. optional.

○ Either width or height is sufficient. If both are supplied, the best fit is returned;

the aspect ratio is not altered.

● res - alternative to width or height. optional. 0,2,4,8 where 0=largest. default 0.

● size - alternative to width or height. optional. a percentage of the maximum size.

● watermark - watermark the derivative. optional. 0 | 1. default 1.

The width, height, size and res query parameters are alternate ways of expressing the

required size for a derivative page image. If none of these parameters are supplied, the default

size=100 is delivered. width and height are in pixels. res is the power of 2 resolution to

extract from a jp2. Zero (0) is the highest resolution. Sizes for archival images in tiff or

jpeg format are generated by emulating power of 2 resolution for jp2 extraction. size is a

percentage of the size of the maximum resolution available for the image.

When application/xml mimetype applies to a response, format=json requests the

response in JSON.

Resource types

This section lists the resources currently available through both the API and API web client.

Documentation for the web client is available in the API companion document on the API page

at http://www.hathitrust.org/data_api.

The resources listed below can be retrieved from the API through your browser using the web

client at http://babel.hathitrust.org/cgi/htdc.

N.B. The following API example URLs do not show the required additional OAuth URL

parameters that a client program must supply. Refer to the section on writing a program to

access the API for more information.

Common

The volume-type and article-type resources have these resources available in common.

● aggregate (zip file)

○ format: none

○ example

■ http[s]://babel.hathitrust.org/cgi/htd/aggregate/:ID?v

=2

● structure (METS)

○ format: xml | json (default: xml)

○ example
■ http[s]://babel.hathitrust.org/cgi/htd/structure/:ID?f

ormat=xml&v=2

Volume-type resources

This resource type can be characterized as a bound volume like a monograph or multi-part work

that has been digitized, consisting of page images and OCR text.

● volume

○ format: current: ebm, future: pdf | epub

○ (currently restricted to the Espressnet project, format=ebm)

○ example

■ http[s]://babel.hathitrust.org/cgi/htd/volume/:ID?form

at=ebm&v=2

● volume/meta

○ format: xml | json (default: xml)

○ example
■ http[s]://babel.hathitrust.org/cgi/htd/volume/meta/:ID

?format=json&v=2

● volume/pagemeta

○ format: xml | json (default: xml)

○ example

■ http[s]://babel.hathitrust.org/cgi/htd/volume/pagemeta

/:ID/123?v=2

● volume/pageimage

○ format: raw | png | jpeg

○ A watermarked derivative is the default volume/pageimage resource in either

png or jpeg format derived from tiff or jp2 archival images. The raw

format requires higher authorization.

○ example (for :SEQ = 4)

■ http[s]://babel.hathitrust.org/htd/volume/pageimage/:I

D/4?format=jpeg&watermark=0&v=2

● volume/pageocr

○ format: none

○ example (for :SEQ = 7)

■ http[s]://babel.hathitrust.org/htd/volume/pageocr/:ID/

7?v=2

● volume/pagecoordocr

○ format: none

○ example (for :SEQ = 42)

■ http[s]://babel.hathitrust.org/htd/volume/pagecoordocr

/:ID/42?v=2

Article-type resources [in development]

This resource type is characterized as a single, born-digital journal article in XML adhering to

the JATS DTD.

● article

○ format: current: xml, in development: pdf, epub

○ example
■ http[s]://babel.hathitrust.org/htd/article/:ID?format=

pdf&v=2 (default: xml)

● article/alternate

○ format: none

○ example

■ http[s]://babel.hathitrust.org/htd/article/alternate/:

ID/1?v=2

● article/assets/embedded

○ format: none

○ example
■ http[s]://babel.hathitrust.org/htd/article/assets/embe

dded/:ID/12?v=2

● article/assets/supplementary

○ format: none

○ example (using :FILEID obtained from the structure resource)

■ http[s]://babel.hathitrust.org/htd/article/assets/supp

lementary/:ID/ASSETIMG_I1566?v=2

Meta-resource

Version 2 syntax defines a meta-resource: type with the following syntax:

http[s]://babel.hathitrust.org/cgi/htd/type/:ID

● type

○ format: xml | json (default: xml)

○ the response to the request for the type resource is volume or article.

This meta-resource makes it possible for the API client to determine the resource type

associated with an :ID which may not be available through out-of-band knowledge. Knowing

the type is necessary to construct a valid resource request url, e.g. for resources such as

volume/pageimage or article/assets/embedded.

Metadata Schema, Extension Elements and Values

The schema for the API metadata resources (volume/meta, volume/pagemeta,

article/meta) is based on the Atom Syndication Format in the spirit of the response schema

for a volume from the Google Book Search Data API.

XML responses are formatted as atom:entry elements in the default atom namespace. The

required atom:id, atom:title, atom:updated elements are present. The API schema

extends the Atom schema by defining and using the htd namespace.

Note that the use of the atom:entry element is adopted in the context of access to data and

not of access to a feed.

The API is a data API that provides accompanying structural and administrative metadata. It is

not a bibliographic metadata API. The atom:title element contains text that describes the

entry and is not the title of the book. For example,

odesnippet
HathiTrust Repository Data API - single page metadata

The metadata schema employs a URI scheme for additional values of the atom:link[@rel]

attribute. For resource identifiers we have:

● http://schemas.hathitrust.org/htd/2009#volume_meta

● http://schemas.hathitrust.org/htd/2009#volume_pagemeta

● http://schemas.hathitrust.org/htd/2009#volume

● http://schemas.hathitrust.org/htd/2009#volume_pageimage

● http://schemas.hathitrust.org/htd/2009#volume_pageocr

● http://schemas.hathitrust.org/htd/2009#volume_pagecoordocr

● http://schemas.hathitrust.org/htd/2009#article_assets_embedded

● http://schemas.hathitrust.org/htd/2009#article_assets_supplementary

● http://schemas.hathitrust.org/htd/2009#article

● http://schemas.hathitrust.org/htd/2009#article_alternate

● http://schemas.hathitrust.org/htd/2009#structure

● http://schemas.hathitrust.org/htd/2009#aggregate

The optional element atom:link appears with the rel=alternate and rel=self attributes.

● link[@rel=”alternate”] - Generally taken to mean the permalink to the content

pointed to by the entry. Currently this includes a link to the HathiTrust pageturner which

is quasi-permanent and a link to the Handle Server for the given item. For example,

http://babel.hathitrust.org/cgi/pt?id=:ID[&seq=:SEQ] and

http://hdl.handle.net/2027/:ID

● link[@rel=”self”] - This is the preferred URI for retrieving the entry itself. This

value is important in scenarios where only the entry is available and not the location from

which the entry was retrieved.

Extension Elements

Extension elements are in the htd namespace and vary with response. That are:

● htd:version - the version number of the API generating the response

● htd:selected_seq - the page sequence number requested. (volume/pagemeta

resource only.)

● htd:numpages - the number of pages in a volume-type resource

● htd:num_embedded_assets - number of inline images in an article-type resource

● htd:num_supplementary_assets - number of associated external files for an

article-type resource

● htd:num_articles - number of articles in an article-type resource

● htd:num_article_alternates - number of alternative representations for and

article-type resource.

● htd:access_use_statement - the full text of the Access and Use statement stating

the permitted uses and rights to access this item as determined by the

htd:rights/htd:attr and htd:rights/htd:source values.

● htd:access_use - a URI equivalent to the htd:access_use_statement with one

of the following values. Please refer to the Access and Use page for explanations of

these values.

○ http://schemas.hathitrust.org/htd/2009#pd

○ http://schemas.hathitrust.org/htd/2009#pd-google

○ http://schemas.hathitrust.org/htd/2009#pd-us

○ http://schemas.hathitrust.org/htd/2009#pd-us-google

○ http://schemas.hathitrust.org/htd/2009#oa

○ http://schemas.hathitrust.org/htd/2009#oa-google

○ http://schemas.hathitrust.org/htd/2009#section108

○ http://schemas.hathitrust.org/htd/2009#ic

○ http://schemas.hathitrust.org/htd/2009#cc-by

○ http://schemas.hathitrust.org/htd/2009#cc-by-nd

○ http://schemas.hathitrust.org/htd/2009#cc-by-nc-nd

○ http://schemas.hathitrust.org/htd/2009#cc-by-nc

○ http://schemas.hathitrust.org/htd/2009#cc-by-nc-sa

○ http://schemas.hathitrust.org/htd/2009#cc-by-sa

○ http://schemas.hathitrust.org/htd/2009#cc-zero

○ http://schemas.hathitrust.org/htd/2009#und-world

● htd:access[@resource] - a URI that asserts the access level for downloading

images, XML, PDF, OCR and zipped data. Restricted downloading access does not

necessarily imply restricted viewability in certain contexts or via other HathiTrust web

applications such as the HathiTrust PageTurner.

○ http://schemas.hathitrust.org/htd/2009#open

○ http://schemas.hathitrust.org/htd/2009#restricted

● htd:rights - container element for rights metadata child elements populated directly

from the rights database. See HathiTrust rights database document: for documentation

on these database fields.

○ htd:namespace - the namespace of the :ID (where :ID is the dotted

concatenation of htd:namespace and htd:id values)

○ htd:id

○ htd:attr

○ htd:reason

○ htd:source

○ htd:user

○ htd:time

○ htd:note

● htd:pgmap - container element for page number to page sequence number map

○ htd:pg[@pgnum] - the mapping element. attribute is page number, content is

page sequence number. one for each page number.

● htd:seqmap - container element for map of page sequence number to page number,

feature, format.

○ htd:seq[@pseq] - attribute is the sequence number of the page, content is the

page number

○ htd:pnum - the page number either printed or implicit (if available)

○ htd:imgfmt - format of the archival page image: tiff or jp2 or jpeg

○ htd:pfeat - the page feature key (if available):

■ CHAPTER_START

■ COPYRIGHT

■ FIRST_CONTENT_CHAPTER_START

■ FRONT_COVER

■ INDEX

■ REFERENCES

■ TABLE_OF_CONTENTS

■ TITLE

Programmatic Access

This section describes the 2-legged OAuth mechanism that supports secure access to the API.

The mechanism provides API clients with credentials the API uses to authenticate the client’s

identity and authorize its access to repository resources. The Key Generation Service (KGS)

provides users with a registration point and OAuth key pair delivery. Refer to companion

documentation at http://www.hathitrust.org/data_api regarding KGS.

Functional Elements

The API security implementation consists of these elements:

● A specification that describes exactly how a client should generate a signed API request

URL.

● Generation and transmission of a public oauth_consumer_key (client ID / access key)

and a oauth_consumer_secret shared between the API and its client. The Key

Generation Service (KGS) supports the transmission of the keys to the user/developer.

● An authentication database that stores the oauth_consumer_key and

oauth_consumer_secret and assorted client data.

● An authorization database that associates oauth_consumer_key with authorization to

API resources.

● Logging, monitoring and reporting

Making a Signed API Request

The API client is required to sign the API request URL for all metadata and data resources.

Possessing a registered oauth_consumer_key and oauth_consumer_secret do not

automatically give greater access privileges. Greater privileges require a contractural

agreement to be negotiated with HathiTrust.

A signed API request involves the construction and signing of the request URI and its

authentication and authorization by the API.

The client program constructs a request URL from the basic request URL, adding the plain-text
oauth_consumer_key, oauth_signature, oauth_nonce, oauth_timestamp,

oauth_version and oauth_signature_method to the query parameters.

An example of a signed Data API resource request URI that obeys the OAuth 1.0 specification

follows. N.B. this is only an example intended to illustrate a signed URL. The oauth_*

parameter values are not valid for actual use.

http://babel.hathitrust.org/cgi/htd/volume/pagemeta/mdp.39015000000128

/12?oauth_consumer_key=23f9457e2&oauth_nonce=192ed4d53e27e5d2dcd1&oaut

h_signature=HIiQ13Vm0WuZeXKl6qxzgLqxmtI%3D&oauth_signature_method=HMAC

-SHA1&oauth_timestamp=1338838461&oauth_version=1.0

The good specification for constructing an OAuth 1.0 signed URL can be found at

http://oauth.googlecode.com/svn/spec/ext/consumer_request/1.0/drafts/1

/spec.html

The dialogue between client program and Data API proceeds as follows.

1. Client signs the constructed URL with the oauth_consumer_secret and adds the

oauth_signature to the query parameters.

2. API receives the signed request.

3. API looks up the client’s oauth_consumer_secret in the authorization database and

uses it to sign the plain-text URI as the oauth_signature.

4. API compares its oauth_signature with the oauth_signature carried by the

client’s API request URL.

a. If signatures match, API looks up the privileges associated with the

oauth_consumer_key in the authorization database.

i. If there is sufficient privilege for the requested resource it is delivered in

the API response.

ii. If insufficient privilege exists, API responds with authorization failure

status.

b. If signatures do not match, API responds with authentication failure status.

Data API Response Codes

Code Explanation

200 OK No error. The request to retrieve the resource

was successful.

400 BAD REQUEST Invalid request URI or HTTP header, or

unsupported parameter.

400 parameter_rejected One or more URL parameters in the

QUERY_STRING did not correspond to the

required OAuth parameter set or the optional

Data API parameter set.

303 SEE OTHER This redirect will be issued when a resource
is restricted and the request protocol is not
HTTPS. The redirect URL to repeat the
request is returned in the HTTP header. It
will not contain the required OAuth
parameters. These must be regenerated on
the client side based on the redirect URL.

401 UNAUTHORIZED This code will be returned when the OAuth

signature, timestamp or nonce are invalid or

when one or more required OAuth

parameters are missing.

403 FORBIDDEN This code will be returned when access key

(oauth_consumer_key) is not associated

with an authorization level sufficient to grant

access to the requested resource.

404 NOT FOUND Resource identified by :ID or

:ID/{:FILEID|:SEQ} not found.

500 INTERNAL SERVER ERROR Internal error. This is the default code that is

used for all unrecognized errors.

503 SERVICE UNAVAILABLE Quota exceeded.

Client Implementation Details

All resource request URLs must be signed. This is mandatory as of 1 October, 2012.

Following registration with KGS, the developer’s access key carries default authorization

allowing access to resources categorized by the open access type. All metadata resources are

categorized as open. See Appendix C regarding authorization levels.

The value of the htd:access[@resource=":RESOURCE"] element in the

{volume|article}/meta and volume/pagemeta resources for a given resource, indicates

the restrictions on that resource. Refer to Appendix C for details regarding these access values.

Values vary from item to item, and across resource types, most often depending on the

digitization source and limitations imposed on the distribution of data by the source. Example:

Google-digitized volumes in the aggregate form are always “restricted,” requiring special

authorization. However, in individual volume/pageimage form, they may be “open” not

requiring special authorization.

 htd:access URN value Explanation

http://schemas.hathitrust.org/htd/2009#restricted Higher level of

authorization is

required, established

through an out-of-band

contract negotiation.

http://schemas.hathitrust.org/htd/2009#open Open, default

authorization is

granted.

URLs requesting resources categorized as restricted values must use https protocol.

API clients that request restricted resources over http must be prepared to handle a 303

response code and regenerate a signed URL from the URL returned in the Location field of

the HTTP header. The simple approach is to always use https.

Signing

The signing code is based on Perl OAuth::Lite::Consumer available from CPAN at

http://search.cpan.org/dist/OAuth-Lite/. URL signing uses the Hash-based

Message Authentication Code HMAC-SHA1 algorithm. One source of code libraries in other

languages that implement OAuth using HMAC-SHA1 to sign URLs can be found at

http://code.google.com/p/oauth/. The key generation code is based on

OAuth::Lite::Util also available from CPAN as above.

Sample Client and Server

See Appendix A for a code sample that implements a Perl CGI client that will invoke our test

server. It will run out of the box after you install OAuth::Lite::Consumer and

OAuth::Lite::AuthMethod.

The sample client can be invoked on our servers as:

http://babel.hathitrust.org/cgi/htdc/dapiclient

A sample server that the dapiclient talks to by default can also be invoked by your own

client at this address:
http://babel.hathitrust.org/cgi/htdc/dapiserver

Appendices

Appendix A: Data API Sample Client

This is a sample client written in Perl that uses the OAuth::Lite package from CPAN. It can

be run on our servers as http://babel.hathitrust.org/cgi/htdc/dapiclient

or on your own server in a Perl environment with OAuth::Lite installed.

The sample client is provided only to suggest a model for developing a fully functional client. It

is not designed to function as a fully functional client out of the box nor is the dapiserver capable

of serving the resources available from the the full Data API server at

http://babel.hathitrust.org/cgi/htd.

To use the sample client to make requests to the full Data API (ratther than the sample

dapiserver), you would, minimally, edit the code to supply your actual key and secret, change

the $request_url to talk to the full Data API at http://babel.hathitrust.org/cgi/htd and append a

pathinfo string to specify the desired resource and its ID as documented in the body of this

document. Examples of alternative client development paths also appear in the Perl

OAuth::Lite CPAN package linked above.

[codesnippet]
#!/usr/bin/env perl

=head1 NAME

dapiclient

=head1 DESCRIPTION

This is an example perl 2-legged oauth client that shares the secret
key "PUBLIC_OAUTH_CONSUMER_SECRET" with dapiserver. It is intended to
aid development of a fully function Data API client in Perl or other
languages that implement HMAC_SHA1 OAuth libraries.

=head1 SYNOPSIS

For example:

http://yourhost/path_to_client/dapiclient

=head1 OUTPUT

[CLIENT] sent this URL to server:

http://babel.hathitrust.org/cgi/htd/dapiserver?hello=world&oauth_consumer_key=PUBLIC_OAUTH_CONSUM

ER_KEY&oauth_nonce=47b8186be439110b4f98&oauth_signature=2cQYAM%2BYek%2BiOexZKMObM%2B3B2w4%3D&oaut

h_signature_method=HMAC-SHA1&oauth_timestamp=1332184191&oauth_version=1.0

[CLIENT] received this HTTP response from server:
 200 OK

[CLIENT] received this content response from server:

 [SERVER] received client request. echoing request parameters:

 hello
 world
 oauth_consumer_key
 PUBLIC_OAUTH_CONSUMER_KEY
 oauth_nonce
 47b8186be439110b4f98
 oauth_signature
 2cQYAM+Yek+iOexZKMObM+3B2w4=
 oauth_signature_method
 HMAC-SHA1
 oauth_timestamp
 1332184191
 oauth_version
 1.0

=cut

use strict;
use warnings;

use CGI;
use OAuth::Lite::Consumer;
use OAuth::Lite::AuthMethod;

my $access_key = 'PUBLIC_OAUTH_CONSUMER_KEY';
my $secret_key = 'PUBLIC_OAUTH_CONSUMER_SECRET';

my $request_url = 'http://babel.hathitrust.org/cgi/htd/dapiserver';

my $consumer = OAuth::Lite::Consumer->new
 (
 consumer_key => $access_key,
 consumer_secret => $secret_key,
 auth_method => OAuth::Lite::AuthMethod::URL_QUERY,
);

my $response = $consumer->request
 (
 method => 'GET',
 url => $request_url,
 params => {
 'hello' => 'world',
 },
);

print CGI::header();

print "<p>[CLIENT] sent this URL to server:
";
print $consumer->oauth_request->uri;

print "<p>[CLIENT] received this HTTP response from server:
";
print $response->status_line;
if ($response->is_success) {
 print "
[CLIENT] received this content response from server:<blockquote>" .

$response->content . "</blockquote>";
}

exit 0;

Appendix B: Items Determined to be in the Public Domain only in the U.S. or only

outside the U.S.

Some data resources may be categorized as open because the item is in the public domain

only in the U.S. or only outside the U.S. The API determines access rights in such cases based

on the IP address of the requesting client. Clients should check the HTTP header for the X-

HathiTrust-Notice to be informed, and to inform third-party users, of obligations with regard

to these items under their local copyright law.

The text of the notice in the HTTP header in each of these cases is available at the following

links.

● Access and use policy statement for “Public Domain only in the U.S.”

● Access and use policy statement for “Public Domain only outside the U.S.”

Appendix C: Access and Authorization

The API provides access to repository data such as page images and to metadata resources

derived from the METS file describing the object. Access is categorized along two dimensions:

basic_access and extended_access.

There are two values along the basic_access dimension. They are a function of the rights

attribute (copyright, license) and access profile. Access profiles are a replacement for sources

and provide support for fine-grained access restrictions on certain items. See Database Layout

section of the rights database document.

● free

○ Data (content) with rights in public-domain (may vary by geo-location), world,

Creative Commons license, etc.

○ Metadata {volume|article}/meta, volume/pagemeta and structure

resources.

● nonfree

○ Data (content) in-copyright or otherwise not freely available.

Within the free value of basic_access, some data may, nonetheless, have various

restrictions. Example: Google-digitized volumes represented by the aggregate (zip package)

resource are restricted, requiring higher than default authorization for access. However,

individual page images represented by the volume/pageimage resource, may be open, not

requiring special authorization.

Access to restricted resources, regardless of whether basic_access is free or nonfree,

is modeled along a second dimension of values referred to as extended_access (refer also to

Appendix B regarding the geo-location of the request).

extended_access values, orthogonal to basic_basic, support specific authorization for

internal development, zip package download, un-watermarked Espresso Book Machine PDFs,

archival images and un-watermarked image derivatives.

● allow_pdf_ebm -- 1 = allow access to un-watermarked EBM PDF. Default = 0.

● allow_raw_archival_data -- 1 = allow access to raw archival image (TIFF,

JP2000). Default = 0.

● allow_unwatermarked_derivatives -- 1 = allow derived image without a

watermark. Default = 0.

● allow_zip -- 1 = allow download of Google zip. Default = 0.

● allow_nonfree -- allow access to basic_access=nonfree. Default = 0.

