
United States Patent 1191 
Hanif et a1. 

US005796954A 

[54] METHOD AND SYSTEM FOR MAXIMIZING 
THE USE OF THREADS IN A FILE SERVER 
FOR PROCESSING NETWORK REQUESTS 

[75] Inventors: Mohammad Hanif. Fremont; Kazuhisa 
Yanagiham. Santa Cruz. both of Calif. 

[73] Assignee: Apple Computer, Inc.. Cupertino. 
Calif. 

[21] Appl. No; 542,836 

[11] Patent Number: 5,796,954 
[45] Date of Patent: Aug. 18, 1998 

5.517.656 5/1996 Shi ......................................... . 395/800 

5.524247 6/1996 M11666 . 395/726 
5.553.305 9/1996 Gregor eta]. 395/826 
5.600.596 2/1997 Shirakihara ..... .. 365/189 01 

5.613071 3/1997 Rankin et a1. . 

5.613.155 3/1997 Baldjga et a]. 395/825 
5623.688 4/ 1997 lkeda et a1. ......... .. 395/800 

5.627.329 5/1997 Gleeson et al. 370/230 

OTHER PUBLICATIONS 

Modern Operating Systems. A. Tanenbaum: Prentice Hall 
Pub. Co.. 1992 Chapter 12. Processes and Processors in 
Distributed Systems: pp. 507-511 [22] Filed: Oct. 13, 1995 
Primarw Examiner-Mehmet B Geckil 

[51] Int. Cl.6 ...................................................... .. G06F 9/00 - . . 
‘ m—S t [52] us. c1. ................................ .. 395720061; 395/2006; Mame)’ Agent‘ 0'” My“ 8‘ Assoc'aes 

395/674 [57] ABSTRACT 
[58] Field of Search ............................. .. 395/20001. 650. . . . . 

395/700 872. 670- 840‘ 874‘ 876. 200.6‘ A system and method for maximizing the use of threads in 
200 61 674 a ?le server process for processing requests received from 

' ‘ entities on a network. The ?le server process includes a ?rst 

[56] References Cited socket and a plurality of second sockets for receiving 
requests from entities on a network The ?le server process 

U.S. PATENT DOCUMENTS comprises a ?rst queue for storing requests received from 
. the ?rst socket. and a second queue for storing requests 

""""""""" " received from the plurality of second sockets. The ?le server 

5,319,732 6/1994 Goldberg 6161. .I: 395/650 Proctsscs “16 “clues” in the ?rst qucuc with a ?rs‘ 5'3‘ of 
5333213 2/1995 oppenhdmer el al_ 395/200 threads. and processes the requests in the second queue with 
5,430,850 7/1995 Papadopoulos et a1. 395/375 11 second set of threads. 
5,485,626 1/1996 Lawlor et a]. ....... .. 395/650 

5,504,898 4/1996 Klein ..................................... .. 395/650 12 Claims, 6 Drawing Sheets 

14 l 30 

F) J /- 170 
1 / ,- 180 ‘— 

ASP 4 SESSESlON-OPENING REG. <--— 
(____ ENTITIES 12 
<— 

REG. 
1 sss ‘ ENTITY 1 

HEQ. 
2 SSS ‘ ENTITY 2 
o o 0 

o o o 

o o o 

REQ. 
N SSS ENTITY N 



US. Patent Aug. 18, 1998 Sheet 1 0f 6 5,796,954 

1211 

u O\‘ bi a“ m 
Router // 

: Router ‘=l 



US. Patent Aug. 13, 1998 Sheet 2 of 6 5,796,954 

K14 
K24 

File Server 
Software 

r22 
08. 

A 

20 

* Processor 

1 

21\ y ‘ K18 
Memory 

Hard 
Disk 

FILE SERVER 

FIG. 2 



US. Patent Aug. 18, 1998 Sheet 3 of 6 5,796,954 

l _____________________________ “i 

7. Application ‘A: 140 x i 
1o0L ________________ __ - a J 

I. ________________ _ _ Appletalk _ _ Postscript j 

I Filing I 
6. Presentation ' Protoco' (APP) I 

I,’ } I 
90L ___________________ _______________1 

130 
l- _ _ — _ _ _ _ _ _ _ _ — w — _ _ "'_\_______—_____"| 

_ ' Appletalk Zone_ A pietalk Printer : 
5. 888810" I‘ Data Stream information ession Access I 

I" I Protocol (ADSP) Protocol (ZIP) Protocol (ASP) Protocol (PAP) I 
80 L______J[_____l____ _____i_____ ________i 

F _ _ _ _ _ _ _ — ' _ _ _ _ _ _ _ _ _ "" — — "’ _ _ _ _ _ _ — ”" _' ‘l 

I Routing Table ApgleTalk Apple-Talk Name I 
4- Transport I Maintenance cho Transaction Binding I 

I" I Protocol (RTMP) Protocol (AEP) Protocol (ATP) Protocol ( BP) I 
70 |_ ____ __._____________ __ _________ ___| 120 J1 

l’ _ _ _ — _ '_ _ "' — - _ _ _ _ _ _ _ _ _ — _ . _ _ _ _ _ _ _ _ _ ‘I 

| l 

3- Neiwolk II Datagram Delivery Protocol (DDP) : 
I" I | 
60 |_ _______________________________ __ _ J 

r ------------------------------- — — "1 

_ I TokenTalk EtherTalk LocalTalk : 
2- Data Link I Link Access Link Access Link Access I 

I" I Protocol (T LAP) Protocol (ELAP) Protocol (LLAP) I 
50 l. _______________________________ _ _ .1 

F ______________________________ “i 

1_ physIcaI l TIgI‘fIe" Ethernet LocalTalk | 
{Al Hardmgare Hardware Hardware I 

40 |_ ______________________________ _ _ .J 



US. Patent Aug. 18, 1998 Sheet 4 of 6 5,796,954 

{550 D54 1/58 156 p52 
REQUESTING REQ' : RESPONDING 

CLIENT CLIENT 
4 REP. (SERVER) 

160 

14 130 170 

H H [C180 +___ 

ASP SESSESlON-OPENING REG. ENTmES 12 
‘_— 

1 sss ‘ HEQ' ENTITY 1 

2 | 855 ‘= REQ' ENTITY 2 

N sss ‘ REQ' ENTITY N 

FIG. 5 



US. Patent Aug. 18, 1998 Sheet 5 0f 6 5,796,954 

3 
SLS sss sss ~ - - sss 

H 1 2 H N 
170 180 

LOCAL GLOBAL 
QUEUE “190 QUEUE “200 

GLOBAL 
THREADS 

LOCAL 
THREADS 204 202 

FIG. 6 

INITIALIZATION PHASE 

INIT. QUEUES @250 

BLOCK THREADS m 252 

I 

ALLOCATE MEMORY FOR N REQUESTS @254 

V 

FIG. 7 MAKE N GET REQ. CALLS "M256 



US. Patent Aug. 18, 1998 

REC. REQ. 
FROM SLS “270 

V 

STORE REQ. 
IN LOCAL QUEUE “272 

ASSIGN REQUEST 
TO LOCAL THREAD “274 

3) FIG. 8A 
TO GLOBAL THREAD 

Sheet 6 of 6 5,796,954 

REC. REQ. 
FROM SSS “276 

STORE REQ. 
IN GLOBAL QUEUE “278 

\ 

ASSIGN REQUEST @280 

cg FIG. 8B 

300 Q‘ REMOVE REQ. FROM QUEUE 

302 

I 

REQ. 

USER BYTES 
? 

CONTAINS ONLY 

PROCESS EXTRACT 
HEQ. a’ 306 304 ‘R USER BYTES 

V 

SEND REQ. 
TO AFP “308 

\ 

310 w SPGetRequest FIG. 9 



5.796.954 
1 

METHOD AND SYSTEM FOR MAXIMIZING 
THE USE OF THREADS IN A FILE SERVER 
FOR PROCESSING NETWORK REQUESTS 

CROSS'REFERENCE TO RELATED 
APPLICATIONS 

The present application is related to applications Ser. No. 
08/542944. entitled “A METHOD AND SYSTEM FOR 
INCREASING THE NUMBER OF ENTII‘IES THAT CAN 
BE SERVICED BY A FILE SERVER" and Ser. No. 08/542. 
834. entitled “A METHOD AND SYSTEM FOR ASSIGN 
ING THREADS TO ACI'IVE SESSIONS.” ?led on the 
same date as the present application and assigned to the 
assignee of the present application. 

FIELD OF THE INVENTION 

The present invention relates to a method and system for 
transferring data between a source and a plurality of network 
entities. and more particularly to a method and system for 
maximizing the use of threads in a multithreaded ?le server 
for processing network requests. 

BACKGROUND OF THE INVENTION 

In the computing industry. it is quite common to transfer 
data and commands between a plurality of data processing 
devices. such as computers. printers. displays. terminals. and 
other network resources. Local Area Networks (LAN s) 
allow the transfer of data between a localized set of com 
puting and peripheral devices. typically in the same geo 
graphical area such as one building or a plurality of build 
ings closely situated together. Examples of such LAN s may 
be found in US. Pat. Nos. 4.063.220. 4.661.902. and 4.689. 
786. 

In the AppleTalk (R) (a trademark of Apple Computer. 
Inc.) network system. each “node” or computer. printer. 
peripheral. and other network resources share resources with 
a ?le server. The ?le server includes two main AppleTalk 
protocols cz?led the AppleTalk Filing Protocol (AFP). 
AppleTalk Session Protocol (ASP). and the operating sys 
tem of the ?le server includes the AppleTalk Transaction 
Protocol (ATP). The AFP is a protocol dealing with issues 
that are ?le system related. The AFP uses ASP to receive ?le 
system requests from a client and to send responses back to 
the network entities. The request and responses may be 
partitioned into smaller data packets and ASP uses ATP to 
send and receive these data packets on the network 
The ASP is a protocol for maintaining network sessions 

between the ?le server and the network entities. The ASP 
opens multiple ATP sockets that are network visible entities 
and are associated with processes within a network entity. 
The ASP classi?es the ATP sockets into two di?‘erent cat 
egories. One is a Server Listening Socket (SLS) and another 
is a Server Session Socket (SSS). Incoming network 
requests are received at these two types of sockets. 

The incoming network requests are traditionally handled 
by using 1/0 completion routine chaining. In ?tis approach. 
when an incoming request is received at a socket. the AII'P 
places the requests into memory for processing by the ?le 
server. While the request is being processed. this memory is 
unavailable for further listening of incoming requests and 
any subsequent requests are lost. resulting in a poor network 
performance. 
The ?le server includes ?le server software that is imple 

mented as a multithreaded process. Network tasks are bro 
ken into sub-tasks and assigned to individual threads for 

IO 

15 

20 

25 

30 

35 

45 

50 

55 

65 

2 
further processing. Although conventional ?le server soft 
ware include multiple threads of execution. the use of the 
threads is ine?icient. requires too many threads which waste 
system resources. and does not guarantee that all incoming 
requests will be received by the ?le server. 

What is needed therefore is a method for increasing the 
use of the threads so that loss of network requests is 
minimized. The present invention addresses such a need. 

SUMMARY OF THE INVENTION 

The present invention provides a method and system for 
maximizing the use of threads in a ?le server process for 
processing requests received from entities on a network. The 
?le server process includes a ?rst socket and a plurality of 
second sockets for receiving requests from entities on a 
network. The ?le server process comprises a first queue for 
storing requests received from the ?rst socket. and a second 
queue for storing requests received from the plurality of 
second sockets. The ?le server processes the requests in the 
?rst queue with a ?rst set of threads. and processes the 
requests in the second queue with a second set of threads. 

According to the system and method disclosed herein. the 
present invention enables the ?le server to receive a greater 
number of network requests with minimal loss even though 
there is a lesser number of threads available for processing. 
thereby increasing overall system perfon'nance. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram illustrating a computer network 
system. 

FIG. 2 is a block diagram of a server 14 in which the 
present invention is implemented. 

FIG. 3 is a diagram illustrating the AppleTalk protocol 
architecture within the framework of the Open Systems 
Interconnection (OSI) reference model. 

FIG. 4 is a block diagram illustrating the basic structure 
of a transaction between a requesting client and a responding 
server. 

FIG. 5 is a block diagram illustrating the two dilferent 
types of sockets utilized by the ASP. 

FIG. 6 is a block diagram on a preferred implementation 
of the requests processing method and system of the present 
invention. 

FIG. 7 is a ?ow chart depicting the steps taken during the 
initialization phase of the present invention. 

FIGS. 8A and 8B are flow charts depicting the steps taken 
during the queuing phase of the present invention. 

FIG. 9 is a ?ow chart depicting the steps taken by both a 
local thread and a global thread when executed. 

DESCRIPTION OF TIIE INVENTION 

The present invention relates to an improvement in a 
server utilized in a network. The following description is 
presented to enable one of ordinary skill in the art to make 
and use the invention and is provided in the context of a 
patent application and its requirements. Various modi?ca 
tions to the preferred embodiment will be readily apparent to 
those skilled in the art and the generic principles herein may 
be applied to other embodiments. Thus. the present inven 
tion is not intended to be limited to the embodiment shown 
but is to be accorded the widest scope consistent with the 
principles and features described herein. 

FIG. 1 is a block diagram illustrating a computer network 
environment in which the present invention resides. The 



5.796.954 
3 

network 10 may include a plurality of computers. such as 
personal computers 12a. rninicomputers 12b. and main 
frames l2c. and server devices 14. such as a ?le and printer 
servers. For the purposes of this speci?cation. all data 
processing and peripheral devices which are coupled to the 
network are collectively referred to as entities 12. The 
entities 12 may be connected through a variety of network 
connection devices 16 such as cables 16a and routers 16b. 
for example. The purpose of the network 10 is to eliminate 
access barriers resulting from physical separation between 
the various entities 12 and to share the resources the entities 
12 contain. 

FIG. 2 is a block diagram of a server 14 in which the 
present invention is implemented. The server includes one or 
more hard disk drives 18. a processor 20. memory 21. an 
operating system 22. and ?le server software 24. The ?le 
sewer software 24 enables a computer to become a ?le 
server 14 for one or more entities 12. on the network. 

In a preferred embodiment. the ?le server software 24 is 
Appleshare File Server software. which utilizes a protocol 
architecture called AppleTalk. Both Appleshare and Apple 
Talk were designed and developed by Apple Computer. 
Cupertino. Calif. Also in a preferred embodiment. the pro 
cessor 20 is a PowerPC manufactured by Motorola and. the 
operating system 22 is a Macintosh Operating System. such 
as System 7.5. for example. 

Referring to FIG. 3. the AppleTalk protocol architecture is 
shown within the framework of the Open Systems Intercon 
nection (OSI) reference model developed by the Interna 
tional Standards Organization (ISO). The OSI model de?nes 
the concepts of a protocol and a service interface that 
includes seven layers: Physical 40. Data Link 50. Network 
60. Transport 70. Session 80. Presentation 90. and Applica 
tion 100. The layers allow data packets to be transmitted 
from a variety of hardware to another. and from one process 
(socket) to another. Each layer functions as a separate 
process or ?lter that either appends protocol information 
onto existing data packets transmitted in the network 10. or 
routes appropriate data packets through the network 10 
depending on the type of packet and the particular layer in 
which the packet resides. 

Referring to both FIGS. 1 and 3. the higher-level network 
services in both OSI and AppleTalk are built using the model 
of a entity 12 issuing a sequence of commands to a server 14. 
The server 14 carries out the commands and then reports the 
results to the entity 12. The present invention relates to the 
interaction between the following higher-level AppleTalk 
protocols: the AppleTalk Transaction Protocol (ATP) 120. 
the AppleTalk Session Protocol (ASP) 130. and the Apple 
Talk Filing Protocol (AFP) 140. The AppleTalk protocol is 
described in further detail in Inside AppleTalk (R). by 
Gursharan Sidhu. Richard F. Andrews. and Alan B. Oppen 
heimer (2d Ed. 1990). published by Addision-Wesley. which 
is herein incorporated by reference. 
The purpose of the AFP 140 is to allow the server to share 

?les with the entities 12 on the network 10 through network 
commands. The ASP 130 serves the AFP 140 and is used to 
establish a connection. called a session. between an entity 12 
and the server 14. A command from an entity 12 to a server 
14 may require several data packets to be sent across the 
network 10. The ATP 120 provides the ASP 130 with a 
transaction service for sending and receiving packets across 
the network 10. 

Typically. packets are sent and received between an entity 
12 and the server 14. but packets may also be sent and 
received between software processes. Each entity 12 in the 

20 

25 

35 

45 

55 

65 

4 
network 10 may include one or more software processes. 
One software process can request that another software 
process perform a higher-level function and then report the 
outcome. A software process that makes use of the services 
of another software process is called a client. This interac 
tion between a requesting client and a responding client is 
called a transaction. and is handled by the ATP 120. For 
purposes of this discussion. when an entity 12 on the 
network initiates a transaction with the ?le server 14. the 
entity 12 is the requesting client and the ?le server 14 the 
responding client. 

FIG. 4 is a block diagram illustrating the basic structure 
of a transaction between a requesting client 150 and a 
responding server 152. In order to send and receive 
transactions. a client must ?rst create an addressable entity 
on the network called a socket. This is accomplished by both 
the requesting client 150 and the responding server 152 
making a call to the ATP 120 to open a respective socket 154 
and 156. The socket opened at the responding entity is called 
a transaction listening socket. Both the requesting client 150 
and the responding server 152 can have multiple sockets for 
receiving/transmitting transactions. where each socket is 
identi?ed by a unique 8-bit socket‘number. 
The requesting client 1S0 initiates a transaction by issuing 

a call to the ATP 120 and supplying the parameters of the 
request. Once the transaction request packet 158 is received 
by the socket 156 of the responding server 152. the trans 
action request is serviced and the responding server 152 
returns a transaction response packet 160 reporting the 
transaction outcome. 

Before an entity 12 can send transaction requests to a 
server 14. a session must be established between them. 
Whereas the ATP 120 handles individual transactions. the 
ASP 130 establishes and maintains sessions between each 
entity 12 and the server 14. For the duration of the session. 
the entity 12 can send a sequence of commands to the server 
14. The ASP 130 ensures that the commands are delivered 
without duplication in the same order as they were sent. and 
sends the results of the commands back to the entity 12. In 
order to open and then maintain sessions. the ASP 130 
utilizes two different types of sockets for receiving two 
different types of requests. 

FIG. 5 is a block diagram illustrating the two di?erent 
types of sockets utilized by the ASP 130. In order to make 
itself known on the network 10 to other entities. the ASP 130 
calls the ATP 120 (FIG. 3) to open an ATP responding 
socket. known as the session listening socket (SLS) 170. The 
SLS is used to listen for session-opening requests from the 
entities 12 on the network 10. 
Once a session is established between an entity 12 and the 

server 14. a server session socket (SSS) 180 is used to listen 
for network requests from a particular entity 12 in all further 
communication during that session. Thus. for every open 
session between an entity 12 and the server 14. there is a 
corresponding network addressable SSS in which the entity 
12 sends all future requests. 
Once an entity 12 sends a session-opening request to the 

server 14 and a session is established. a session object is 
created in the server 14 in which all information about the 
entity 12 is kept. In addition. a corresponding session is 
opened in the AFP 140 for that entity 12 with di?terent 
information. Therefore. if there are N ASP sessions there are 
N AFP sessions. When the ASP 130 receives an ASP request 
from an SSS 180. the ASP 130 passes the request to the AFP 
140. 
When either a session-type request is received at the SL5 

170 or a command-type request is received at each SSS 180. 



5.796.954 
5 

the requests must be processed by the ASP 130. Referring 
again to FIG. 2. ASP requests are traditionally handled by 
using I/O completion routine chaining. In this approach. the 
ASP 130 allocates an amount of memory 21 to make N 
number of ATP calls to listen to N number of requests. This 
means that when a request from the network arrives at the 
server 14. the ATP 120 places die incoming request into 
memory 21. and this memory 21 is unavailable for further 
listening of incoming requests until the ?le server software 
14 processes and sends a response to the request. 
Furthermore. not having a call pending to listen for incom 
ing requests means that any subsequent requests are lost. 
resulting in a poor network performance. 

According to the present invention. the task of processing 
network requests is partitioned into two levels wherein the 
requests are ?rst queued and then processed through mul 
tiple threads of execution such that subsequent requests are 
not lost and the use of all the threads is maximized. 

To more particularly illustrate the request processing 
method and system of the present invention. refer now to 
FIG. 6 depicting a block diagram of one implementation of 
such a system. The ?le server software 24' of the present 
invention includes a local queue 190 for storing requests 
received at the SL8 170. and a global queue 200 for storing 
requests received at the SSS’s 180. As stated above. the ?le 
server software 24' opens only one SLS 170 and N SSS’s 
180. 

One aspect of the present invention is to increase the 
throughput of the ?le server software 24' using multiple 
threads of execution. According to the present invention. a 
plurality of local threads 202 is assigned to the local queue 
190 for processing session-type requests. and a second 
plurality of global threads 204 is assigned to the global 
queue 200 for processing command-type requests. ‘Threads 
in general are sometimes referred to as mini-processes. 
Referring to both FIGS. 2 and 6. the threads 202 and 204 
share both address space and resources. and since typical ?le 
servers 14. only have one processor 20. the threads 202 and 
204 are time-sliced on the processor 20. 

Since each of one of the threads in threads 202 and 204 
require a signi?cant amount of memory 21. the number of 
threads utilized is minimized such that the total number of 
threads 2112 and 204 is signi?cantly less than the total 
number of sessions supported by the server 14. Similar to 
traditional processes (i.e.. processes with only one thread of 
execution). each of the threads 202 and 204 can be in any 
one of several states: running. blocked. and ready. Arunning 
thread is currently being executed by the processor 20 and 
processing a request. Ablocked thread is blocked on a queue 
waiting for a request to process. and while blocked. another 
thread in the same process can run. And a ready thread is 
scheduled to be executed by the processor 20. 

According to the present invention. the local threads 202 
are blocked on the local queue 190. while the global threads 
202 are blocked on the global queue 200. With the local 
queue 190. the local threads 202 are associated with one SLS 
170. Request packets are read into the local queue 190 only 
from the SL8 170. Since the ?le server software 24' can only 
have a limited number of threads as threads require more 
memory. this method proves to be very e?icient. Using this 
method. less number of threads achieves higher perfor 
mance. 

With the global queue 200. the global threads 204 are not 
associated with a speci?c SSS 180. Since the global threads 
204 block only on the global queue 200. each one of the 
global threads 204 is available to process requests regardless 

15 

25 

30 

35 

45 

55 

65 

6 
on which socket a request is received. According to the 
present invention. maximum utilization of the all the global 
threads 204 is achieved even when only one entity 12 is 
logged on to the ?le server 14. Le. low load cases. 

After the sockets 170 and 180 have been opened by the 
ASP 130. the ATP 120 noti?es the ASP 130 when a request 
arrives. In order to receive the request from the ATP 120. the 
ASP 130 must issue what is called SPGetRequest calls to 
provide bu?‘er space (memory) for the receipt of the 
requests. When a request has been received. the SPGetRe 
quest call completes and identi?es the type of ASP request. 

According to the present invention. the work of process 
ing requests is divided into two phases. initialization and 
queuing. to further improve performance. The initialization 
phase takes place when the server 14 is initialized and the 
queuing phase occurs when request are received. 

FIG. 7 is a flow chart depicting the steps taken during the 
initialization phase after the sockets 170 and 180 have been 
opened. Referring to FIGS. 6 and 7. the ?le server software 
24' initializes the local queue 190 and the global queue 200 
to receive incoming requests in step 250. The local threads 
202 are set to block on the local queue 190 and the global 
threads 204 are set to block on the global queue 200 in step 
252. An amount of memory 21 su?icient to make the N 
number of SPGetRequest calls is allocated in step 254. The 
last step 756 in the initialization phase is to make N number 
of SPGetRequest calls to the ATP to initiate the listening of 
requests. 

FIG. 8A is a flow chart depicting the steps taken during 
the queuing phase when a request arrives at the SL8 170. 
Referring to FIGS. 6 and 8A. the ATP 120 receives the 
request from the SL5 170 in step 270. and then the ASP 130 
places the request into the local queue 190 for processing in 
step 272. As stated above. the local threads 202 are blocked 
on the local queue 190. waiting for requests to arrive. When 
a request becomes available. it is assigned to the ?rst 
available local thread for processing in step 274. 

FIG. 8B is a ?ow chart depicting the steps taken during 
the queuing phase when a request arrives at an SSS 180. The 
ATP 120 receives the request from the SSS 180 in step 276. 
and then the ASP 130 places the request into the global 
queue 200 for processing in step 278. As stated above. the 
global threads 204 are blocked on the global queue 200. 
waiting for requests to arrive. When a request becomes 
available. it is assigned to the ?rst available global thread for 
processing in step 280. 

FIG. 9 is a ?ow chart depicting the steps taken by both a 
local thread 202 and a global thread 204 when executed 
First the thread removes the incoming request from its 
respective queue in step 300. Requests received over the 
SIS 170 are session-opening. session maintenance. and 
control commands that only contain ATP user bytes (4 
bytes). Request received over an SSS 180 contains both ATP 
user bytes and ATP data bytes (0-578 bytes). If its deter 
mined that the request only contains ATP user bytes in step 
302. then the thread extracts the user bytes and processes the 
session-type command in step 304. If the request contains 
ATP data bytes. then the thread processes the request in step 
306. and sends the request to the AFP 130 forAFP process 
ing in step 308. The ?nal step is for the thread to initiate an 
SPGetRequest call to allow a socket to receive another 
request in step 310. 
The two phase processing and the use of queues of the 

present invention allows the ASP 130 to initiate an inde 
pendent number of SPGetRequest calls for receiving request 
even though there is a lesser number of threads available for 



5.796.954 
7 

processing. The ability to make many SPGetRequest calls 
means that even during heavy network tra?ic. all incoming 
requests are received. while a smaller number of threads 
means less use of system resources. 

Another approach to this problem would be to bind one 
thread to one socket. This approach is unsatisfactory. If 
requests arrive at only a few sockets. then only those threads 
associated with those sockets are busy. The threads associ 
ated with the other sockets remain idle. In the present 
invention. a thread is bound to a queue. rather than a 
particular socket. where the use of the thread is maximized. 
Therefore. the present invention ensure that all threads are in 
use whether requests arrive from only one network entity or 
multiple entities. 
A method and system for maximizing the use of threads 

for processing request in a network protocol layer has been 
disclosed. One with ordinary skill in the an will recognize 
that the present invention is not limited to the AppleTalk 
protocol or the Macintosh ?le system. but rather can be 
implemented with any type of network protocol and any 
type of ?le system. Software written according the present 
invention is intended to reside in some form of computer 
readable medium. such as memory or disk or communicated 
via a network. and compiled and executed by a processor. 

Although the present invention has been described in 
accordance with the embodiments shown. one of ordinary 
skill in the art will readily recognize that there could be 
variations to the embodiments and those variations would be 
within the spirit and scope of the present invention. 
Accordingly. many modi?cations may be made by one of 
ordinary skill in the art without departing from the spirit and 
scope of the appended claims. 
What is claimed is: 
l. A method for maximizing the use of threads in a ?le 

server process for processing requests received from entities 
on a network. the ?le server process including a ?st socket 
and a plurality of second sockets for receiving requests from 
entities on a network. the method comprising the steps of: 

(a) providing a ?rst queue for storing requests received 
from the ?rst socket. the requests received from the ?rst 
socket including a ?rst type of request for opening a 
session; 

(b) providing a second queue for storing requests received 
form the plurality of second sockets. the requests 
received from the plurality of second sockets being a 
second type of request; 

(c) processing the ?rst type of request in the ?rst queue 
with a ?rst set of threads‘. and 

(d) processing the second type of request in the second 
queue with a second set of threads. 

2. A method as in claim 1 wherein step (a) includes the 
step of: 

(a l) allocating memory for receiving the requests from 
the ?rst socket and from the plurality of second sockets. 

3. Amethod as in claim 2 wherein the ?le server software 
resides in a ?le server including a network protocol having 
an AppleTalk Session Protocol (“ASP”) layer and an Apple 
Talk Transaction Protocol (“ATP”) layer. wherein step (c) 
further includes the step of: 

(c1) issuing N number of get request calls from the ASP 
layer to the ATP layer to receive the requests from the 
network. 

4. A ?le server having a ?le server process for processing 
request received from entities on a network. the ?le server 
comprising: 

a ?rst queue for storing a ?rst type of request for opening 
a session received over the network‘. 

15 

20 

25 

30 

35 

45 

55 

8 
a second queue for storing a second type of request 

received over the network: 

means for processing the ?rst type of request in the ?rst 
queue with a ?rst set of threads: and 

means for processing the second type of request in the 
second queue with a second set of threads. wherein the 
use of the threads in the ?le server process is maxi 
mized. 

5. A ?le server as in claim 4 further including: 

a ?rst socket for receiving the ?rst type of request: and 
a plurality of second sockets for receiving the second type 

of request. 
6. A ?le server as in claim 5 further including a network 

protocol having an AppleTalk Session Protocol (“ASP") 
layer and an AppleTalk Transaction Protocol (“ATP”) layer. 
wherein the ?rst and second types of request are passed from 
the ATP layer to the ASP layer upon receipt. 

7. A method for maximizing the use of threads in a ?le 
server process for processing requests received from entities 
on a network. the ?le server process including a ?rst socket 
for receiving a ?rst type of request from entities on a 
network and a plurality of second sockets for receiving a 
second type of request from the entities. the method com 
prising the steps of: 

(a) initializing a ?rst queue; 
(b) initializing a second queue; 
(c) allocating memory for receiving requests from me ?rst 

socket and from the plurality of second sockets; 
(d) storing the ?rst type of request received from the ?rst 

socket in the ?rst queue. the ?rst type of request for 
opening a session; 

(e) storing the second type of request received from the 
plurality of second sockets in the second queue: 

(f) processing the ?rst type of request in the ?rst queue 
with a ?rst set of threads; 

(g) processing the second type of request in the second 
queue with a second set of threads. 

8. A method as in claim 7 wherein the ?le server software 
resides in a ?le sm'ver including a network protocol having 
an AppleTalk Session Protocol (“ASP”) layer and an Apple 
Talk Transaction Protocol (“ATP”) layer. wherein step (c) 
further includes the step of: 

(cl) issuing N number of get request calls ?om the ASP 
layer to the ATP layer to receive the requests from the 
network. 

9. A method as in claim 8 wherein N is equal to the 
number of plurality of second sockets. 

10. A computer-readable medium for use in a system that 
includes a processor capable of accessing data stored by the 
computer-readable medium. the computer readable medium 
containing a program for maximizing the use of threads in 
a ?le server process for processing requests received from 
entities on a network. the ?le server process including a ?rst 
socket and a plurality of second sockets for receiving 
requests from entities on a network. the program compris 
mg: 

providing a ?rst queue for storing a ?rst type of request 
received from the ?rst socket. the ?rst type of request 
socket for opening a session: 

providing a second queue for storing a second type of 
request received from the plurality of second sockets: 

processing the requests in the ?rst queue with a ?rst set of 
threads; and processing the requests in the second 
queue with a second set of threads. 



5.796.954 

11. A computer-readable medium as in claim 10 wherein 
the program further comprises: 

allocating memory for receiving the requests from the ?rst 
socket and plurality of second sockets. 

12. A computer readable medium as in claim 11 wherein 
the program includes a network protocol having an Apple 
Talk Session Protocol (“ASP”) layer and the ?le server 

5 

10 
includes an AppleTalk Transaction Protocol (“ATP”) layer. 
and wherein the program further comprises: 

issuing N number of get request calls from the ASP layer 
to the ATP layer to receive the requests from the 
network. 


