US005796954A

United States Patent 9 (111 Patent Number: 5,796,954
Hanif et al. (451 Date of Patent: Aug. 18, 1998
[54] METHOD AND SYSTEM FOR MAXIMIZING 5517656 5/1996 Shi ccorvoicorrecrcerccncconrenneeen.. 395/800
THE USE OF THREADS IN A FILE SERVER 5524247 6/1996 Mizuno . . 3957726
FOR PROCESSING NETWORK REQUESTS 5.553.305 91996 Gregor et al. e 395/826
5,600,596 2/1997 Shirakihara 365/189.01
. H . . 5,613,071 3/1997 Rankin etal. 3951200.16
[75] Inventors: %‘:gg;’:;d ?;r;fcl:;ezmggfh lomf C“all'i‘?a 5,613.155 31997 Baldigaetal. ... coeenns 395/825
’ * A 5,623,688 4/1997 lIkedaetal. ... e 395/800
[73] Assignee: Apple Computer, Inc.. Cupertino, 5.627.829 5/1997 Gleeson et al.ocrvvneccrrene. 3707230
Calif. OTHER PUBLICATIONS
Modern Operating Systems. A. Tanenbaum: Prentice Hall
[21} Appl. No.: 542,836 Pub. Co.. 1992 Chapter 12. Processes and Processors in
[22] Filed: Oct. 13, 1995 Distributed Systcms: PP 507-511
6 Primary Examiner—Mehmet B Geckil
Eﬁ} gg% 395/200.61-?32/2(;{? Attorney, Agent, or Firm—Sawyer & Associates
395/674 [57] ABSTRACT
[58] Field of Search ..., 395/200.01. 650. s .
‘ A system and method for maximizing the use of threads in
395/100. 872. 670. 840, 874‘280%6'6 f02764 a file server process for processing requests recejved from
o entities on a network. The file server process includes a first
[56] References Cited socket and a plurality of second sockets for receiving

requests from entities on a network. The file server process

U.S. PATENT DOCUMENTS comprises a first queue for storing requests received from
5150464 9/1992 Sidhu et al. .ooooroooro, 395000 e first socket, and a second queue for storing requests
5282270 1/1994 Oppenheimer et al T 305200 received from the plural}ty of second sockctg The file server
5319782 6/1994 Goldberg et al. vooovereorrorcen. 395/650 processes the requests in the first queue with a first set of
5388213 2/1995 Oppenheimer et al. 395/200 threads. and processes the requests in the second queue with
5,430,850 7/1995 Papadopoulos et al. 395/375 a second set of threads.

5,485,626 1/1996 Lawlor et al. 395/650
5,504,898 4/1996 Klein 395/650 12 Claims, [Drawing Sheets
14 130 170
d H //,_ 180
ASP == SESSESIONOPENNGREG. T—— _ .
(—
1 [558 | REQ. ENTITY 1
A REQ. ENTITY 2
[] [] []
® ® []
N [Sss REQ. ENTITY N

U.S. Patent Aug. 18, 1998 Sheet 1 of 6 5,796,954

=T l6b

<:ﬁﬁ:‘> Router

+

Router

Router

tl

: Router =
. 12¢ \]'

FIG. 1

U.S. Patent Aug. 18, 1998 Sheet 2 of 6 5,796,954

KM

24

File Server
Software

f22

0.S.

4

20

Y

> Processor

4

21\ ' ‘ f18
Memory

Hard
Disk

FILE SERVER

FIG. 2

U.S. Patent Aug, 18, 1998 Sheet 3 of 6 5,796,954

C i
7. Application /J: 140 ~ i
1000 — —] N I
F——— e] Appletalk | | Postscript o
| Filing :
6. Presentation ! Protocol (AFP) :
;7 |
o - -] —_————] S |
130

F__"_—_’———-——"'-_—“_\‘—__— ----- - /"
_ | Appletalk Zone Appletalk Printer :
5. Session J' Data Stream Information ession Access |
1 |Protocol (ADSP)| |Protocol {ZIP){ |Protocol (ASP) | Protocol (PAP) |
0L — Jr—_——""‘“ _____ A] __1_ 1
r-F--"""""""T"1~"~"""""”""”"""— T T T T T T 7
: Routing Table ApEIeTalk AppleTalk Name :
4. Transport 1 Maintenance cho Transaction Bindinﬁ I
| Protacol (RTMP)|| | [Protocol (AEP); | Protocol (ATP)| |Protocol (NBP) |
TOL] NP I D N _ A

120 J)
=== - rM17T——"1T " " ~-—"——"—"—"""1"""""""7" "—"~""—""”"--]
| |
3. Network J' Datagram Delivery Protocol (DDP) :
e | |
6o 4 4 | _ i
r-—————f——"——————— = ——————— = ——— g
, : TokenTalk EtherTalk LocalTalk }
2.Datalink | Link Access Link Access Link Access ,
/7| | Protocol (TLAP) Protocol (ELAP) Protocol (LLAP) | |
o e o I __ 1 ____ J
—a—— — i
1. Physical | Token Ethemet LocalTalk |
/'JI H ard\n?are Hardware Hardware :
40 b —— -

U.S. Patent Aug. 18, 1998 Sheet 4 of 6 5,796,954

150 ,1J54 1(}58 156 152
REQ. .
REQUESTING RESPONDING
CLIENT CLIENT
- REP. (SERVER)
160

FIG. 4

170
d H //rlSO
l———
ASP s SESSESION-OPENING REG. [<— — -\ o .
P E—
1L sSSS r A ENTITY 1
2 [S8S |« REQ. ENTITY 2
N[sss I« REQ. ENTITY N

FIG. 5

U.S. Patent Aug. 18, 1998 Sheet 5 of 6 5,796,954

;
SLS SsS sss | ¢ ¢ - | sss
3 1 2 9 N
170 180
LOCAL GLOBAL
QuEue [—190 QUEUE [~200

GLOBAL
THREADS

LOCAL

THREADS 204

202

FIG. 6

INITIALIZATION PHASE

INIT. QUEUES ——250

\

BLOCK THREADS 252

/

ALLOCATE MEMORY FOR N REQUESTS |—~—254

Y

FIG. 7 MAKE N GET REQ. CALLS ——256

U.S. Patent Aug. 18, 1998 Sheet 6 of 6 5,796,954

R o B |
,
NLOGAL QUELE [—272 N GLOBAL QUEUE [278
‘
70 LOCAL THREAD [=274 70 GLOBAL THRSAD |28

5 FIG. SA <B FIG. SB

300 — REMOVE REQ. FROM QUEUE

302

REQ.

N CONTAINS ONLY Y
USER BYTES
?
y
PROCESS EXTRACT
REQ. 306 304~ USERBYTES

) 4

SEND REQ.
JOAFP [308

A

310 — SPGetRequest FIG 9

5.796.954

1

METHOD AND SYSTEM FOR MAXIMIZING
THE USE OF THREADS IN A FILE SERVER
FOR PROCESSING NETWORK REQUESTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to applications Ser. No.
08/542.944, entitled “A METHOD AND SYSTEM FOR
INCREASING THE NUMBER OF ENTITIES THAT CAN
BE SERVICED BY A FILE SERVER” and Ser. No. 08/542,
834. entitled “A METHOD AND SYSTEM FOR ASSIGN-
ING THREADS TO ACTIVE SESSIONS.” filed on the
same date as the present application and assigned to the
assignee of the present application.

FIELLD OF THE INVENTION

The present invention relates to a method and system for
transferring data between a source and a plurality of network
entities, and more particularly to a method and system for
maximizing the use of threads in a multithreaded file server
for processing network requests.

BACKGROUND OF THE INVENTION

In the computing industry, it is quite common to transfer
data and commands between a plurality of data processing
devices. such as computers. printers. displays. terminals. and
other network resources. Local Area Networks (LANs)
allow the transfer of data between a localized set of com-
puting and peripheral devices. typically in the same geo-
graphical area such as one building or a plurality of build-
ings closely situated together. Examples of such LANs may
be found in U.S. Pat. Nos. 4.063.220. 4.661.902. and 4.689.
786.

In the AppleTalk (R) (a trademark of Apple Computer,
Inc.) network system. each “node” or computer, printer,
peripheral. and other network resources share resources with
a file server. The file server includes two main AppleTalk
protocols called the AppleTalk Filing Protocol (AFP).
AppleTalk Session Protocol (ASP), and the operating sys-
tem of the file server includes the AppleTalk Transaction
Protocol (ATP). The AFP is a protocol dealing with issues
that are file system related. The AFP uses ASP to receive file
system requests from a client and to send responses back to
the metwork entitics. The request and responses may be
partitioned into smaller data packets and ASP uses ATP to
send and receive these data packets on the network.

The ASP is a protocol for maintaining network sessions
between the file server and the network entities. The ASP
opens multiple ATP sockets that are network visible entities
and are associated with processes within a network entity.
The ASP classifies the ATP sockets into two different cat-
egories. One is a Server Listening Socket (SLS) and another
is a Server Session Socket (SSS). Incoming network
requests are received at these two types of sockets.

The incoming network requests are traditionally handled
by using I/O completion routine chaining. In this approach,
when an incoming request is received at a socket, the ATP
places the requests into memory for processing by the file
server. While the request is being processed. this memory is
unavailable for further listening of incoming requests and
any subsequent requests are lost, resulting in a poor network
performance.

The file server includes file server software that is imple-
mented as a multithreaded process. Network tasks are bro-
ken into sub-tasks and assigned to individual threads for

10

15

20

25

30

35

45

50

55

65

2

further processing. Although conventional file server soft-
ware include multiple threads of execution. the use of the
threads is inefficient. requires too many threads which waste
system resources. and does not guarantee that all incoming
requests will be received by the file server.

What is needed therefore is a method for increasing the
use of the threads so that loss of network requests is
minimized. The present invention addresses such a need.

SUMMARY OF THE INVENTION

The present invention provides a method and system for
maximizing the use of threads in a file server process for
processing requests received from entities on a network. The
file server process includes a first socket and a plurality of
second sockets for receiving requests from entities on a
network. The file server process comprises a first queue for
storing requests received from the first socket. and a second
queue for storing requests received from the plurality of
second sockets. The file server processes the requests in the
first queue with a first set of threads, and processes the
requests in the second queue with a second set of threads.

According to the system and method disclosed herein, the
present invention enables the file server to receive a greater
number of network requests with minimal loss even though
there is a lesser number of threads available for processing.
thereby increasing overall system performance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a computer network
system.

FIG. 2 is a block diagram of a server 14 in which the
present invention is implemented.

FIG. 3 is a diagram ilustrating the AppleTalk protocol
architecture within the framework of the Open Systems
Interconnection (OSI) reference model.

FIG. 4 is a block diagram illustrating the basic structure
of a transaction between a requesting client and a responding
Server.

FIG. § is a block diagram illustrating the two different
types of sockets utilized by the ASP.

FIG. 6 is a block diagram on a preferred implementation
of the requests processing method and system of the present
invention.

FIG. 7 is a flow chart depicting the steps taken during the
initialization phase of the present invention.

FIGS. 8A and 8B are flow charts depicting the steps taken
during the queuing phase of the present invention.

FIG. 9 is a flow chart depicting the steps taken by both a
local thread and a global thread when executed.

DESCRIPTION OF THE INVENTION

The present invention relates to an improvement in a
server utilized in a network. The following description is
presented to enable one of ordinary skill in the art to make
and use the invention and is provided in the context of a
patent application and its requirements. Various modifica-
tions to the preferred embodiment will be readily apparent to
those skilled in the art and the generic principles herein may
be applied to other embodiments. Thus, the present inven-
tion is not intended to be limited to the embodiment shown
but is to be accorded the widest scope consistent with the
principles and features described herein.

FIG. 1 is a block diagram illustrating a computer network
environment in which the present invention resides. The

5.796.954

3

network 10 may include a plurality of computers, such as
personal computers 12¢. minicomputers 12b, and main-
frames 12c. and server devices 14. such as a file and printer
servers. For the purposes of this specification. all data
processing and peripheral devices which are coupled to the
network are collectively referred to as entities 12. The
entities 12 may be connected through a variety of network
connection devices 16 such as cables 16a and routers 165,
for example. The purpose of the network 10 is to eliminate
access barriers resulting from physical separation between
the various entities 12 and to share the resources the entities
12 contain.

FIG. 2 is a block diagram of a server 14 in which the
present invention is implemented. The server includes one or
more hard disk drives 18. a processor 20, memory 21. an
operating system 22, and file server software 24. The file
server software 24 enables a computer to become a file
server 14 for one or more entities 12. on the network.

In a preferred embodiment. the file server software 24 is
Appleshare File Server software. which utilizes a protocol
architecture called AppleTalk. Both Appleshare and Apple-
Talk were designed and developed by Apple Computer.
Cupertino, Calif. Also in a preferred embodiment, the pro-
cessor 20 is a PowerPC manufactured by Motorola and. the
operating system 22 is a Macintosh Operating System. such
as System 7.5. for example.

Referring to FIG. 3. the AppleTalk protocol architecture is
shown within the framework of the Open Systems Intercon-
nection (OSI) reference model developed by the Interna-
tional Standards Organization (ISO). The OSI model defines
the concepts of a protocol and a service interface that
includes seven layers: Physical 40, Data Link 50, Network
60. Transport 70, Session 80, Presentation 90. and Applica-
tion 100. The layers allow data packets to be transmitted
from a variety of hardware to another. and from one process
(socket) to another. Each layer functions as a separate
process or filter that either appends protocol information
onto existing data packets transmitted in the network 10. or
routes appropriate data packets through the network 10
depending on the type of packet and the particular layer in
which the packet resides.

Referring to both FIGS. 1 and 3. the higher-level network
services in both OSI and AppleTalk are built using the model
of a entity 12 issuing a sequence of commands to a server 14.
The server 14 carries out the commands and then reports the
results to the entity 12. The present invention relates to the
interaction between the following higher-level AppleTalk
protocols: the AppleTalk Transaction Protocol (ATP) 120,
the AppleTalk Session Protocol (ASP) 130. and the Apple-
Talk Filing Protocol (AFP) 140. The AppleTalk protocol is
described in further detail in Inside AppleTalk (R). by
Gursharan Sidhu, Richard F. Andrews. and Alan B. Oppen-
heimer (2d Ed. 1990). published by Addision-Wesley., which
is herein incorporated by reference.

The purpose of the AFP 140 is to allow the server to share
files with the entities 12 on the network 10 through network
commands. The ASP 130 serves the AFP 140 and is used to
establish a connection. called a session. between an entity 12
and the server 14. A command from an entity 12 to a server
14 may require several data packets to be sent across the
network 10. The ATP 120 provides the ASP 130 with a
transaction service for sending and receiving packets across
the network 10.

Typically, packets are sent and received between an entity
12 and the server 14. but packets may also be sent and
received between software processes. Each entity 12 in the

15

20

25

30

35

45

50

55

65

4

network 10 may include one or more software processes.
One software process can request that amother software
process perform a higher-level function and then report the
outcome. A software process that makes use of the services
of another software process is called a client. This interac-
tion between a requesting client and a responding client is
called a transaction. and is handled by the ATP 120. For
purposes of this discussion. when an entity 12 on the
network initiates a transaction with the file server 14. the
entity 12 is the requesting client and the file server 14 the
responding client.

FIG. 4 is a block diagram illustrating the basic structure
of a transaction between a requesting client 150 and a
responding server 152. In order to send and receive
transactions. a client must first create an addressable entity
on the network called a socket. This is accomplished by both
the requesting client 150 and the responding server 152
making a call to the ATP 120 to open a respective socket 154
and 156. The socket opened at the responding entity is called
a transaction listening socket. Both the requesting client 150
and the responding server 152 can have multiple sockets for
receiving/transmitting transactions. where each socket is
identified by a unique 8-bit socket number.

The requesting client 150 initiates a transaction by issuing
a call to the ATP 120 and supplying the parameters of the
request. Once the transaction request packet 158 is received
by the socket 156 of the responding server 152. the trans-
action request is serviced and the responding server 152
returns a transaction response packet 160 reporting the
transaction outcome.

Before an entity 12 can send transaction requests to a
server 14, a session must be established between them.
Whereas the ATP 120 handles individual transactions, the
ASP 130 establishes and maintains sessions between each
entity 12 and the server 14. For the duration of the session.
the entity 12 can send a sequence of commands to the server
14. The ASP 130 ensures that the commands are delivered
without duplication in the same order as they were sent. and
sends the results of the commands back to the entity 12. In
order to open and then maintain sessions. the ASP 130
utilizes two different types of sockets for receiving two
different types of requests.

FIG. 5 is a block diagram illustrating the two different
types of sockets utilized by the ASP 130. In order to make
itself known on the network 190 to other entities. the ASP 130
calls the ATP 120 (FIG. 3) to open an ATP responding
socket, known as the session listening socket (SLS) 170. The
SLS is used to listen for session-opening requests from the
entities 12 on the network 10.

Once a session is established between an entity 12 and the
server 14, a server session socket (SSS) 180 is used to listen
for network requests from a particular entity 12 in all further
communication during that session. Thus. for every open
session between an entity 12 and the server 14. there is a
corresponding network addressable SSS in which the entity
12 sends all future requests.

Once an entity 12 sends a session-opening request to the
server 14 and a session is established. a session object is
created in the server 14 in which all information about the
entity 12 is kept. In addition. a corresponding session is
opened in the AFP 140 for that entity 12 with different
information. Therefore, if there are N ASP sessions there are
N AFP sessions. When the ASP 130 receives an ASPrequest
from an SSS 180, the ASP 130 passes the request to the AFP
140.

When cither a session-type request is received at the SLS
170 or a command-type request is received at each SSS 180.

5.796.954

5

the requests must be processed by the ASP 130. Referring
again to FIG. 2. ASP requests are traditionally handled by
using YO completion routine chaining. In this approach. the
ASP 130 allocates an amount of memory 21 to make N
number of ATP calls to listen to N number of requests. This
means that when a request from the network arrives at the
server 14. the ATP 120 places the incoming request into
memory 21. and this memory 21 is unavailable for further
listening of incoming requests until the file server software
14 processes and sends a response to the request.
Furthermore. not having a call pending to listen for incom-
ing requests means that any subsequent requests are lost,
resulting in a poor network performance.

According to the present invention. the task of processing
network requests is partitioned into two levels wherein the
requests are first queued and then processed through mul-
tiple threads of execution such that subsequent requests are
not lost and the use of all the threads is maximized.

To more particularly illustrate the request processing
method and system of the present invention. refer now to
FIG. 6 depicting a block diagram of one implementation of
such a system. The file server software 24' of the present
invention includes a local queue 190 for storing requests
received at the SLS 170. and a global queue 200 for storing
requests received at the SSS°s 180. As stated above, the file
server software 24' opens only one SLS 170 and N SSS’s
180.

One aspect of the present invention is to increase the
throughput of the file server software 24’ using multiple
threads of execution. According to the present invention, a
plurality of local threads 202 is assigned to the local queue
190 for processing session-type requests, and a second
plurality of global threads 204 is assigned to the global
queue 200 for processing command-type requests. Threads
in general are sometimes referred to as mini-processes.
Referring to both FIGS. 2 and 6. the threads 202 and 204
share both address space and resources. and since typical file
servers 14. only have one processor 20, the threads 202 and
204 are time-sliced on the processor 20.

Since each of one of the threads in threads 202 and 204
require a significant amount of memory 21, the number of
threads utilized is minimized such that the total number of
threads 202 and 204 is significantly less than the total
number of sessions supported by the server 14. Similar to
traditional processes (i.e., processes with only one thread of
execution). each of the threads 202 and 204 can be in any
one of several states: running. blocked. and ready. A running
thread is currently being executed by the processor 20 and
processing a request. A blocked thread is blocked on a queue
waiting for a request to process, and while blocked. another
thread in the same process can run. And a ready thread is
scheduled to be executed by the processor 20.

According to the present invention. the local threads 202
are blocked on the local queue 190, while the global threads
202 are blocked on the global queue 200. With the local
queue 199, the local threads 202 are associated with one SLS
170. Request packets are read into the local queue 190 only
from the SLS 170. Since the file server software 24' can only
have a limited number of threads as threads require more
memory. this method proves to be very efficient. Using this
method, less number of threads achieves higher perfor-
mance.

With the global queue 200, the global threads 204 are not
associated with a specific SSS 180. Since the global threads
204 block only on the global queue 200. each one of the
global threads 204 is available to process requests regardless

10

15

20

25

3c

35

45

50

55

65

6

on which socket a request is received. According to the
present invention. maximum utilization of the all the global
threads 204 is achieved even when oaly one entity 12 is
logged on to the file server 14. i.e.. low load cases.

After the sockets 170 and 180 have been opened by the
ASP 130. the ATP 120 notifics the ASP 130 when a request
arrives. In order to receive the request from the ATP 120. the
ASP 130 must issue what is called SPGetRequest calls to
provide buffer space (memory) for the receipt of the
requests. When a request has been received. the SPGetRe-
quest call completes and identifies the type of ASP request.

According to the present invention. the work of process-
ing requests is divided into two phases, initialization and
queuing. to further improve performance. The initialization
phase takes place when the server 14 is initialized and the
queuing phase occurs when request are received.

FIG. 7 is a flow chart depicting the steps taken during the
initialization phase after the sockets 170 and 180 have been
opened. Referring to FIGS. 6 and 7. the file server software
24 initializes the local queue 190 and the global queue 200
to receive incoming requests in step 250. The local threads
202 are set to block on the local queue 190 and the global
threads 204 are set to block on the global queue 200 in step
252. An amount of memory 21 sufficient to make the N
number of SPGetRequest calls is allocated in step 254. The
last step 256 in the initialization phase is to make N number
of SPGetRequest calls to the ATP to initiate the listening of
requests.

FIG. 8A is a flow chart depicting the steps taken during
the queuing phase when a request arrives at the SLS 170.
Referring to FIGS. 6 and 8A. the ATP 120 receives the
request from the SLS 170 in step 270, and then the ASP 130
places the request into the local queue 190 for processing in
step 272. As stated above. the local threads 202 are blocked
on the local queue 190, waiting for requests to arrive. When
a request becomes available, it is assigned to the first
available local thread for processing in step 274.

FIG. 8B is a flow chart depicting the steps taken during
the queuing phase when a request arrives at an SSS 180. The
ATP 120 receives the request from the SSS 180 in step 276,
and then the ASP 130 places the request into the global
queue 200 for processing in step 278. As stated above. the
global threads 204 are blocked on the global queue 200,
waiting for requests to arrive. When a request becomes
available. it is assigned to the first available global thread for
processing in step 280.

FIG. 9 is a flow chart depicting the steps taken by both a
local thread 202 and a global thread 204 when executed.
First the thread removes the incoming request from its
respective queue in step 300. Requests received over the
SLS 170 are session-opening. session maintenance. and
control commands that only contain ATP user bytes (4
bytes). Request received over an SSS 180 contains both ATP
user bytes and ATP data bytes (0~578 bytes). If its deter-
mined that the request only contains ATP user bytes in step
302, then the thread extracts the user bytes and processes the
session-type command in step 304. If the request contains
ATP data bytes. then the thread processes the request in step
306. and sends the request to the AFP 130 for AFP process-
ing in step 308. The final step is for the thread to initiate an
SPGetRequest call to allow a socket to receive another
request in step 310.

The two phase processing and the use of queues of the
present invention allows the ASP 130 to initiate an inde-
pendent number of SPGetRequest calls for receiving request
even though there is a lesser number of threads available for

5.796.954

7

processing. The ability to make many SPGetRequest calls
means that even during heavy network traffic. all incoming
requests are received. while a smaller number of threads
means less use of system resources.

Another approach to this problem would be to bind one
thread to one socket. This approach is unsatisfactory. If
requests arrive at only a few sockets, then only those threads
associated with those sockets are busy. The threads associ-
ated with the other sockets remain idle. In the present
invention, a thread is bound to a queue. rather than a
particular socket., where the use of the thread is maximized.
Therefore. the present invention ensure that all threads are in
use whether requests arrive from only one network entity or
multiple entities.

A method and system for maximizing the use of threads
for processing request in a network protocol layer has been
disclosed. One with ordinary skill in the art will recognize
that the present invention is not limited to the AppleTalk
protocol or the Macintosh file system, but rather can be
implemented with any type of network protocol and any
type of file system. Software written according the present
invention is intended to reside in some form of computer
readable medium, such as memory or disk or communicated
via a network, and compiled and executed by a processor.

Although the present invention has been described in
accordance with the embodiments shown. one of ordinary
skill in the art will readily recognize that there could be
variations to the embodiments and those variations would be
within the spirit and scope of the present invention.
Accordingly, many modifications may be made by one of
ordinary skill in the art without departing from the spirit and
scope of the appended claims.

What is claimed is:

1. A method for maximizing the use of threads in a file
server process for processing requests received from entities
on a network, the file server process including 2 fist socket
and a plurality of second sockets for receiving requests from
entities on a network. the method comprising the steps of:

(a) providing a first queue for storing requests received
from the first socket, the requests received from the first
socket including a first type of request for opening a
session;

(b) providing a second queue for storing requests received
form the plurality of second sockets, the requests
received from the plurality of second sockets being a
second type of request;

(c) processing the first type of request in the first queue
with a first set of threads; and

(d) processing the second type of request in the second
queue with a second set of threads.

2. A method as in claim 1 wherein step (a) includes the

step of:

(al) allocating memory for receiving the requests from
the first socket and from the plurality of second sockets.

3. Amethod as in claim 2 wherein the file server software
resides in a file server including a network protocol having
an AppleTalk Session Protocol (“*ASP”) layer and an Apple-
Talk Transaction Protocol (“ATP”) layer, wherein step (¢)
further includes the step of:

(c1) issuing N number of get request calls from the ASP
layer to the ATP layer to receive the requests from the
network.

4. A file server having a file server process for processing
request received from entities on a network., the file server
comprising:

a first queue for storing a first type of request for opening

a session received over the network;

10

15

20

25

30

35

45

50

55

8

a second queue for storing a second type of request
received over the network:

means for processing the first type of request in the first
queue with a first set of threads: and

means for processing the second type of request in the
second queue with a second set of threads. wherein the
use of the threads in the file server process is maxi-
mized.

5. A file server as in claim 4 further including:

a first socket for receiving the first type of request; and

a plurality of second sockets for receiving the second type
of request.

6. A file server as in claim 5 further including a network
protocol having an AppleTalk Session Protocol (“ASP”)
layer and an AppleTalk Transaction Protocol (**ATP") layer.
wherein the first and second types of request are passed from
the ATP layer to the ASP layer upon receipt.

7. A method for maximizing the use of threads in a file
server process for processing requests received from entities
on a network. the file server process including a first socket
for receiving a first type of request from entities on a
network and a plurality of second sockets for receiving a
second type of request from the entities, the method com-
prising the steps of:

(a) initializing a first queue,

(b) initializing a second queue;

(c) allocating memory for receiving requests from the first

socket and from the plurality of second sockets;

(d) storing the first type of request received from the first
socket in the first queue, the first type of request for
opening a session;

(e) storing the second type of request received from the
plurality of second sockets in the second queue;

() processing the first type of request in the first queue
with a first set of threads;

{(g) processing the second type of request in the second
queue with a second set of threads.

8. A method as in claim 7 wherein the file server software
resides in a file server including a network protocol having
an AppleTalk Session Protocol (“ASP”) layer and an Apple-
Talk Transaction Protocol (“ATP”) layer, wherein step (c)
further includes the step of:

(cl) issuing N number of get request calls from the ASP
layer to the ATP layer to receive the requests from the
network.

9. A method as in claim 8 wherein N is equal to the

number of plurality of second sockets.

10. A computer-readable medium for use in a system that
includes a processor capable of accessing data stored by the
computer-readable medium, the computer readable medium
containing a program for maximizing the use of threads in
a file server process for processing requests received from
entities on a network. the file server process including a first
socket and a plurality of second sockets for receiving
requests from entities on a network. the program compris-
ing:

providing a first queue for storing a first type of request
received from the first socket, the first type of request
socket for opening a session;

providing a second queue for storing a second type of
request received from the plurality of second sockets:

processing the requests in the first queue with a first set of
threads; and processing the requests in the second
queue with a second set of threads.

5.796.954

9 10
11. A computer-readable medium as in claim 10 wherein includes an AppleTalk Transaction Protocol (*ATP”) layer,
the program further comprises: and wherein the program further comprises:
allocating memory for receiving the requests from the first issuing N number of get request calls from the ASP layer
socket and plurality of second sockets. to the ATP layer to receive the requests from the
12. A computer readable medium as in claim 11 wherein 5 network.

the program includes a network protocol having an Apple-
Talk Session Protocol (“ASP”) layer and the file server LI S B B

