\qquad

Use the Scantron for Questions 1-30. Mark only one answer unless instructed otherwise.

Chp 1 Basic questions

Scientific method

1. Testing a hypothesis is which step of the scientific method?
a) experimentation
b) hypothesis formation
c) educated guessing
d) hypothesis rejection or confirmation
e) theory formation

Metric system of measurement

2. Which of the following is a mass measurement (mark more than one answer).
A) cg
B) mL
C) dm
D) yd
E) kg

Use these answers for questions 3-5 (there is only one correct answer)
A) 10^{-9}
B) 10^{-6}
C) 10^{-3}
D) 10^{3}
E) 10^{6}
3. $\mathrm{Mg}=$ \qquad
4. $1 \mu \mathrm{~L}=$ \qquad L
5. $1 \mathrm{pm}=$ \qquad m
6. The area of Asia is approximately 16.8 million square miles. Which of the following is the correct way to express this number in scientific notation?
A. 1.68×10^{5}
B. 1.68×10^{6}
C. 1.68×10^{7}
D. 16.8×10^{6}
E. none of these

Accuracy and Precision

7. How would you describe the following density measurements in terms of accuracy and precision: $1.8 \mathrm{~g} / \mathrm{cm}^{3}, 1.7$ $\mathrm{g} / \mathrm{cm}^{3}, 1.9 \mathrm{~g} / \mathrm{cm}^{3}, 1.8 \mathrm{~g} / \mathrm{cm}^{3}$ The accepted value for this density $=2.51 \mathrm{~g} / \mathrm{cm}^{3}$.
A) accurate / precise
B) inaccurate / precise
C) inaccurate / imprecise
D) accurate / imprescise

Sig fig and uncertainty

8. Select the answer that has the correct number of sig. figs. for the values of the measurements shown at i and ii on these two rulers.

(A)	i:	1	ii:	0.1
(B)	i:	1.0	ii:	0.1
(C)	i:	1.0	ii:	0.10
(D)	i:	1.0	ii:	0.100
(E)	i:	1.00	ii:	0.100

9.. How many significant figures are in each of the following quantities?
i. 0.00062 kg
ii. 0.720 in. iii. $4.150 \times 10^{3} \mathrm{lb}$
A. i. $2 \quad$ ii. $2 \quad$ iii. 3
B. i. 2 ii. 2 iii. 4
C. i. $5 \quad$ ii. $3 \quad$ iii. 4
D. i. $2 \quad$ ii. $3 \quad$ iii. 4
E. i. 5 ii. 3 iii. 4

Chp 1 Challenge questions

Scientific method

10. Assume that you have four red balls. You do a test by weighing two balls and they have the same mass. Which of the following hypotheses can be eliminated:
A) each ball has a different mass
B) there are balls of only two masses
C) balls of three different masses are present.
D) all balls have the same mass.
E) more than one hypotheses can be eliminated

Chp 2 Basic questions

Unit analysis (Show all work for full credit)
(6pt) The human body has 5.2 L of blood. What is this in pints?

Rounding and sig fig

11. A solution is prepared by adding 1.77 grams of sodium nitrate, 2.4 grams of potassium chloride, and 0.973 gram of ammonium nitrite to 255 grams of water. Calculate the total mass and express the sum in the proper number of significant figures.
A) $2.6 \times 10^{2} \mathrm{~g}$
B) $2.60 \times 10^{2} \mathrm{~g}$
C) $2.601 \times 10^{2} \mathrm{~g}$
D) $2.6014 \times 10^{2} \mathrm{~g}$
E) $2.60143 \times 10^{2} \mathrm{~g}$
12. Complete the following operation:

$$
\frac{4.77 \times 10^{-4}}{\left(2.73 \times 10^{4}\right)\left(7.11 \times 10^{-8}\right)}
$$

A. 4.07
B. 0.246
C. 2.46×10^{-6}
D. 1.24×10^{-4}
E. 1.24×10^{-15}
13. Which of the following is an exact value?
A) 0.035 kg
B) 5 books
C) 9.25 g
D) 361 miles

Density, Percent, Temperature Calculations (Show all work for full credit)
(6 pt) The density of whole blood is $1.05 \mathrm{~g} / \mathrm{mL}$. A typical human has about 5.5 L of whole blood. How many pound is this?
(4 pt) Calculate the grams of alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, in 440.0 grams of a 23.0% solution.
14. Acetone boils at $56^{\circ} \mathrm{C}$. Express this temperature in Kelvin.
A) -329 K
B) -217 K
C) 133 K
D) 217 K
E) 329 K

Chp 2 Challenge Question

15. Which of the following ratios (aka, conversion factors) cannot be derived from the following equality:

$$
1.00 \mathrm{~A}=1.00 \times 10^{-10} \mathrm{~m}
$$

A) $\frac{1.00 \mathrm{~A}}{1.00 \times 10^{-10} \mathrm{~m}}$
B) $\frac{1.00 \times 10^{10} \mathrm{~A}}{1.00 \mathrm{~m}}$
C) 1.00 m
$1.00 \times 10^{10} \mathrm{~A}$
D) $1.00 \times 10^{-10} \mathrm{~m}$ 1.00 A
E) all are valid

Chp 3 Basic questions

16. Chemistry is the study of \qquad
A) matter and how it changes.
B) energy and its various forms.
C) space and planets.
D) plants and their structure.
E) animals and their behavior
17. Which of the following is a characteristic of a liquid?
a) Shape is variable and is the same as the bottom of the container.
b) Volume is constant.
c) Its temperature is higher than the solid phase of the same substance.
d) All are correct for liquids
e) None are correct for liquids
f) States of Matter

Use the following answers for questions 4-5

A) Gas state
B) Liquid state
C) Solid state
D) None of the states of matter.
18. The \qquad state of matter is characterized by rapidly moving particles that are very far apart and randomly arranged.
19. The name for the change from the gaseous state to the state is deposition.

The Chemical Elements and the Periodic Table

20. Which of the following is a pure substance that can be broken down by various chemical means into two or more simpler substances?
a) mixture
b) compound
c) element
d) atom
e) solution
(10 pts) Fill in the following table with the names or symbols of the elements, whichever is missing.

SYMBOL	NAME	SYMBOL	NAME
	vanadium	C	
P			scandium
	Beryllium	Ar	
Na			mercury
	arsenic	Sn	

21. Which is the most abundant element in the universe?
(a) hydrogen
(b) oxygen
(c) silicon
(d) iron
(e) none of the above
22. The two most abundant elements in the human body are:
A) oxygen and silicon
B) oxygen and hydrogen
C) carbon and hydrogen
D) oxygen and carbon
E) hydrogen and helium

Atomic Structure, Isotopes and Average Atomic Mass
(8 pt) Fill in this table with the missing values, isotope formulas or names.

Isotope name	Isotope symbol	Atomic number	Mass number	Protons	Neutrons	Electrons	Charge	(C)ation (A)nion (N)eutral
Aluminum-31 ${ }^{+3}$								

$(8 \mathrm{pt})$ Calculate the average atomic mass of an element that has two isotopes.
Percent
Mass (amu) Abundance
$\begin{array}{lll}\text { Isotope } 1 & 120.903824 & 57.30\end{array}$

Isotope $2 \quad 122.904222$
42.70

What element is this?

\qquad

The Mole

23. A thimble of water contains 4.0×10^{21} molecules. The number of moles of $\mathrm{H}_{2} \mathrm{O}$ is:
A) 2.4×1045
B) 6.6×10^{-3}
C) $6.6 \times 10-23$
D) 2.4×10^{23}
24. What is the mass of 3.61 moles of Ca ?
A) 0.090 g
B) 144 g
C) 40.0 g
D) 150 g

Chp 3 Challenge Questions

Elements, Compounds and the Periodic Table

Match the following terms with the substance described on the right. Mark all that apply on your scantron.

25. A solid that is shiny, has luster, is malleable, ductile and conducts electricity.	A. Arsenic
26. A nonmetal.	B. He
27. A metalloid	C. Neon
28. Alkali metal	D. Rubidium
29. Period 4 Group 5A	E. Tin
30. Two elements that have the same properties	

PERIODIC CHART OF THE ELEMENTS

\section*{* Lanthanide Series
 | | |
| :---: | :---: |
| | |
| | |
| | |

\neq Actinide Series

90	$\stackrel{91}{\mathrm{~Pa}}$	92	$\stackrel{93}{\mathrm{~N}}$	$\stackrel{94}{P}$	A^{95}	$\mathrm{Cl}_{\mathrm{m}}^{96}$	97 $B K$		${ }^{99} 8$	F^{100}	$\begin{aligned} & 101 \\ & \mathrm{Mid} \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{No} \end{aligned}$	$\begin{aligned} & 103 \\ & L r \end{aligned}$
232.038	(231)	238.03	(237)	(242)	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(256)	(257)

USEFUL CONVERSON FACTORS AND RELATIONSHIPS

Length
SV umát: meter;(m)
$1 \mathrm{~km}=0.62137 \mathrm{mi}$
$1 \mathrm{mi}=5280 \mathrm{ft}$
$=1.6093 \mathrm{~km}$
$1 \mathrm{~m}=1.0936 \mathrm{yd}$
$1 \mathrm{in} .=2.54 \mathrm{~cm}$ (exactly)
$1 \mathrm{~cm}=0.39370 \mathrm{in}$.
$1 \hat{A}=10^{-10} \mathrm{~m}$
Mass
SI mati: $k i k g 2 m i n g)$
$1 \mathrm{~kg}=2.2046 \mathrm{lb}$
$1 \mathrm{~b}=453.59 \mathrm{~g}$
$=16 \mathrm{cz}$
$1 \mathrm{amu}=1.6605402 \times 10^{-24} \mathrm{~g}$

2 pint $=1$ qt
$1 \mathrm{oz}=29.57 \mathrm{~mL}$

Energy (derived)
sI azat:/aule [/]

$$
\begin{aligned}
1 \mathrm{~J} & =1 \mathrm{~kg}^{2} / \mathrm{s}^{2} \\
1 \mathrm{~J} & =0.2390 \mathrm{cal} \\
& =1 \mathrm{C} \times 1 \mathrm{~V} \\
1 \mathrm{cal} & =4.184 \mathrm{~J} \\
1 \mathrm{eV} & =1.602 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

Pressure (derived)

$$
\begin{aligned}
1 \mathrm{~Pa} & =1 \mathrm{~N} / \mathrm{m}^{2} \\
& =1 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}^{2} \\
1 \mathrm{~atm} & =101,325 \mathrm{~Pa} \\
& =760 \mathrm{torr} \\
& =14.70 \mathrm{lb} / \mathrm{in}^{2}
\end{aligned}
$$

$$
1 \mathrm{bar}=10^{5} \mathrm{~Pa}
$$

Volume (derived)
57 azait: cubic mater (M23)

$$
1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}
$$

$$
=1 \mathrm{dm}^{3}
$$

$$
=10^{3} \mathrm{~cm}^{3}
$$

$$
=1.0567 \mathrm{qt}
$$

$$
1 \mathrm{gal}=4 \mathrm{qt}^{\mathrm{t}}
$$

$$
=3.7854 \mathrm{~L}
$$

$$
1 \mathrm{~cm}^{3}=1 \mathrm{~mL}
$$

$$
1 \mathrm{in}^{3}=16.4 \mathrm{~cm}^{3}
$$

