
MASARYKOVA UNIVERZITA

FAKULTA INFORMATIKY

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
SCAP policy compliance

configuration in Linux
installations

MASTER THESIS

Vratislav Podzimek

Brno, spring 2013

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Advisor: Ing. Mgr. Zdeněk Říha, Ph.D.

ii

Acknowledgement

Hereby I would like to thank to my parents for their love and ever-
lasting support and my girlfriend for her love and kind words as well
as a lot of patience when things didn’t go the way I wanted them to
go. Big thanks also goes to the advisers Ing. Mgr. Zdeněk Říha, Ph.D.
and Ing. Peter Vrabec (the technical adviser) and my colleague Ing.
Martin Sivák for all valuable pieces of advice they had been giving
me during my work on this thesis and to Bc. Šimon Lukašík for his
work on the oscap tool’s support for remediation and for extract-
ing fix data needed by the addon. Last but not least, I would like
to thank to Ing. Marie Pospíšilová and Mgr. Miroslav Špetla for the
first sparks of computer science knowledge that has become a burn-
ing interest I now have, and resulted, among the other things, in this
thesis.

iii

Abstract

One of the biggest problems of IT security is that even there are many
known principles and rules which should be followed to prevent at-
tacks and misuse, they are hardly ever deployed leaving systems
with vulnerabilities caused by wrong configuration. This thesis fo-
cuses on the Security Content Automation Protocol (SCAP) and the
possibilities of (semi-)automated evaluation and remediation of sys-
tems according to rules provided as a content following that speci-
fication. As a result of analyzing the SCAP and examples of SCAP
content an approach based on two-phase application of the content
during the installation process is suggested and implemented as an
extension for the Fedora and RHEL GNU/Linux distributions’ in-
staller, Anaconda, with the goal to provide administrators an easy
way to choose and apply the right security profile for their newly
installed systems.

iv

Keywords

SCAP, GNU/Linux, Fedora, RHEL, Anaconda, OS installation, Python,
hardening, IT security, OpenSCAP

v

Contents

Introduction . 2
2 Security Content Automation Protocol 5

2.1 SCAP languages . 7
2.2 SCAP reporting formats 10
2.3 SCAP enumerations . 11
2.4 SCAP measurement and scoring systems 13
2.5 Trust Model for Security Automation Data 14
2.6 Extensible Configuration Checklist Format 15

3 Open SCAP Projects . 21
3.1 scap-workbench . 23
3.2 Security State . 23
3.3 SCC . 24
3.4 SCE Community Content 25
3.5 Aqueduct . 26
3.6 SCAP Security Guide . 26

4 Policy Compliance Configuration 28
5 Anaconda Installer . 34

5.1 Installation Modes . 35
5.2 Architecture . 37
5.3 Addons Support . 39

6 OSCAP Anaconda Addon . 44
6.1 Architecture . 44
6.2 SCAP content processing 45
6.3 The helper modules . 47
6.4 Subpackages for installation modes 50
6.5 The code and deploying 58

7 Conclusions . 60
Bibliography . 64
Attachments . 75
Index . 76

1

Introduction

We live in a world where computers drive basically all areas of hu-
man interest and allow them grow more rapidly than ever before [1].
But wherever computers bring many advantages, there they also bring
a big potential for problems caused by their misconfiguration, fail-
ures or misuse by an adversary. To mitigate these risks it is very im-
portant to keep in mind that these causes are mutually related to
each other. Wrong configuration may result in a failure, but similarly
a failure may result in a wrong configuration1. The same applies to
the relation between wrong configuration and misuse by an adver-
sary and to the relation between a failure and misuse. That means all
these risks has to be fought against to get a safe and secure system.

Obviously, there are two groups of people who are responsible
for mitigation of such risks – the producers (of software or hardware)
and the customers. But with each kind of risk there are different pos-
sibilities of actions these two groups could take. Failures are caused
by flaws in the software or hardware design or its implementation
and construction, respectively, or by not enough redundancy that
would cover the cases of expected failures due to quite short life-
time of some hardware components. Thus only a little can be done
to fight the risks on the customer’s side. But with misconfiguration
and misuse prevention the burden lies on the customers because only
they can define which services the system will be providing and then
configure it in a right way and only they can set up the right policies
preventing misuse. With both configuration and policies being very
broad areas it is hard to achieve the state where the system is set up
in a best possible way2.

1. e.g. when a disk with logs, audit information or network traffic data fails
2. In fact it is impossible because there are always new types of attacks appearing
that require some counteractions in the configuration and policies.

2

INTRODUCTION

Because only a little can be done on the customer’s side to miti-
gate the risk of failures and there are well-known principles [2] that
should be followed to do so, we focus on the area of system config-
uration and policies. While the right configuration of the system to
make it work in a way it is supposed to work depends on the individ-
ual case and purpose of the system, in the area of the configuration
responsible for preventing attacks and misuse there are lots of gen-
eral recommendations, rules and principles that can be followed to
improve it. However, the problem is that even though such guide-
lines are available, only few administrators know where to get them
and even less administrators actually apply them. Where to get these
recommendations, rules and principles, how to apply them and how
to encourage administrators to apply them are the areas this thesis
focuses on.

The first chapter of the thesis describes the Security Content Au-
tomation Protocol (SCAP) and its components. One of the problems
with application of security content 3 is that there are many formats
used by the different producers of the content which complicates the
already hard task to achieve and maintain secure configuration. The
SCAP is a standard that tries to resolve this problem by defining a
machine-readable format for the documents holding security con-
tent. The main advantage of the format is that the evaluation of the
content on a particular system can be done in an automated way.

Once there is some content, the other questions are how to ap-
ply the content on a system and when to do it. The application of
some content on a particular system typically has two phases – eval-
uation and remediation. Evaluation is the phase where the rules de-
fined by the content are evaluated on the system to find out if they
are followed or not. In case some rules are not followed (the check
does not pass), remediation takes place to fix the system’s configura-
tion so that the rules are followed (their checks pass). Both of these
phases can be done manually, automatically or semi-automatically.
Manual checking if the rules defined in the content are met on a par-
ticular system would be possible, but, as it was already mentioned,
the standardized format (defined by the SCAP) is machine-readable

3. which is a term used for recommendations, rules, principles, examples, etc.

3

INTRODUCTION

and thus can be applied (semi-)automatically4. One of the tools that
allow such (semi-)automated evaluation of the SCAP content as well
as remediation is part of the OpenSCAP project [3] that, together
with a number of related projects, focuses on open-source [4] imple-
mentations of tools and libraries that facilitate the work with SCAP
content. The second chapter of this thesis describes the OpenSCAP
project and some other open projects related to it.

The other question is when to do the evaluation and remediation.
For sure there first needs to be a system to apply the content on. But
on the other hand using the system with a wrong configuration and
thus in a vulnerable state may result in an undetected attack that may
ruin any following attempts to improve system’s security and config-
uration (e.g. by letting an attacker to create an undetected backdoor
to the system). Thus, at the first glance, a best time to apply the se-
curity content on a system seems to be right after its installation. But
as will be described in the fourth chapter focused on security content
(policy) compliance configuration, there are reasons for a different,
better approach – doing evaluation and remediation during the op-
erating system (OS) installation.

To implement that better approach is the main goal of this the-
sis. Because it requires extending an OS installer, we will focus on
open-source projects that provide much easier way to understand
and extend their functionality. In particular we will focus on the
GNU/Linux5 distributions Fedora and Red Hat Enterprise Linux
(RHEL) and their installer, Anaconda , that provides a support for
extensions (called addons). Moreover there is a lot of security con-
tent available for these two systems (in particular for the RHEL). The
fifth chapter of this thesis focuses on the Anaconda installer and the
sixth chapter describes an addon that implements the evaluation and
remediation in the OS installation process. The last chapter then sum-
marizes the goals of the thesis and describes which of them and how
have been achieved.

4. A full automation is in many cases impossible, because somebody has to be
responsible for the configuration of a particular system and at the same time some-
body has to decide which rules has to be followed and required.
5. which is an operating system using the Linux kernel [5] and tools from the
GNU project [6]

4

Chapter 2

Security Content Automation Protocol

There are many institutions, organizations and projects producing
and providing security content in many different forms. From one or
two-page pamphlets with just basic and most important rules like:

“Encrypt all data transmitted over the network.

Encrypting authentication information (such as pass-
words) is particularly important.” [7]

that can be found in the Hardening Tips for the Red Enterprise Linux
5 pamphlet 1 to hundreds of pages long documents like Guide to
the Secure Configuration of Red Hat Enterprise Linux 5 [8]. Both
these documents are provided by National Security Agency (NSA)
which is together with National Institute of Standards and Technol-
ogy (NIST) one of the most important and reliable providers of such
recommendations and rules. NIST, for example, provides the United
States Government Configuration Baseline (USGCB) which is a set of
security configuration baselines that are required or recommended to
be followed in federal institutions in the United States.

Usage of many different formats for the security content compli-
cates the interoperability of the tools used to process it and practi-
cally blocks attempts on a collaborative development of such con-
tent. Generally, in order to achieve interoperability between multiple
tools processing some data as well as with the producers creating
such data there needs to be a protocol or standard specifying the for-
mat. In the area of security content such protocol is the Security Con-
tent Automation Protocol (usually referred as SCAP) with its most

1. the word hardening is a term used for application of the security content to
make the system less vulnerable to attacks and misuse

5

2. SECURITY CONTENT AUTOMATION PROTOCOL

recent version specified in the NIST Special Publication 800-126 – The
Technical Specification for the Security Content Automation Protocol
(SCAP): SCAP Version 1.2 [9] starting with the following definition:

“The Security Content Automation Protocol (SCAP) is
a suite of specifications that standardize the format and
nomenclature by which software flaw and security con-
figuration information is communicated, both to ma-
chines and humans.” [9]

As the definition describes, SCAP is not a single specification, but a
set of multiple component specifications. They can be divided in the
following five categories (with overview of the components):

• languages – XCCDF, OVAL, OCIL,

• reporting formats – ARF, Asset Identification

• enumerations – CPE, CCE, CVE,

• measurement and scoring systems – CVSS, CCSS and

• integrity – TMSAD.

Many of these components use XML as the underlying technology
and a typical SCAP content then consists of multiple pieces of XML
with format defined by the (standalone) specifications of the compo-
nents listed above either in separate, but mutually linked, files or in
a single file with the pieces encapsulated in data stream collection
defined in the aforementioned NIST Special Publication 800-126.

Every well-formed [10] XML file must have one root element. In
case of the SCAP content encapsulated in a single file it is the data-
stream-collection element that defines XML namespaces and
is composed of one or more data-streams, components and op-
tionally Signatures. Signature elements (which are required to
be valid XML digital signatures [11]) can be used to ensure integrity
and authenticity of the data. component elements then hold the con-
tent, as defined by the SCAP components’ specifications, that are ref-
erenced by the data-streams. data-stream elements are com-
posed (among the other things) of dictionaries (links to CPE

6

2. SECURITY CONTENT AUTOMATION PROTOCOL

dictionaries), checklists (links to XCCDF content) and checks

(links to OVAL or OCIL checks). Since the intention was to facili-
tate the creation of data streams and data stream collections from
an existing content using separate files, all these links are realized
as component-ref elements that provide IDs for what used to be
separate files (so that all the references from an existing content are
still valid) and contain catalogs that do basically the same for the
referenced component – i.e. catalogs define mappings between
what used to be separate files used by the component to IDs of the
component-refs for the content from those files.

The rest of the chapter is dedicated to descriptions of the SCAP
components, that are the basic building blocks of the SCAP content,
with the amounts of text proportional to the importance of the com-
ponents in connection with this thesis.

2.1 SCAP languages

The languages category contains the two probably most important
components of SCAP – Extensible Configuration Checklist Descrip-
tion Format (XCCDF) and Open Vulnerability and Assessment Lan-
guage (OVAL) – and the Open Checklist Interactive Language (OCIL).
In short, the Extensible Configuration Checklist Description Format
is a language that can be used to define rules and cases in which
particular rules should be applied. As it is the most important com-
ponent of SCAP (or at least from the perspective of this thesis) and
as it directly or indirectly relates to all the other components, a sep-
arate section at the end of this chapter is dedicated for its broader
description.

The XCCDF provides a way how to define rules, but only on
the level of their titles, descriptions and IDs. While for the human
reader just a description (or even a title) like “Create a separate par-
tition or logical volume for /tmp” could be enough to get the mean-
ing of the rule and to perform a check, for a computer anything like
that is practically impossible. And since one of the main goals of the
SCAP is automation, it needs to provide a way how to include some
machine-readable data to the rules on basis of which an automatic
evaluation could be done. That is where the Open Vulnerability and

7

2. SECURITY CONTENT AUTOMATION PROTOCOL

Assessment Language (OVAL) comes into play with its three major
components – OVAL System Characteristics, OVAL Definitions and
OVAL Results as defined by The OVAL Language Specification [12].
The first component is used for representing the configuration infor-
mation of systems, the second one is for expressing a specific ma-
chine state and the last one is for reporting the results of an assess-
ment. Because system characteristics and definitions of the desired
state depend on the particular system, the OVAL specification de-
fines just a basic, but extendable framework. Other specifications fo-
cused on particular systems then give the OVAL content the ability
to describe the system characteristics and the desired state of real
systems. Examples of such extending specifications are The OVAL
Language UNIX Component Model Specification [13] for UNIX-like
systems [14] and The OVAL Language Windows Component Model
Specification [15] for Windows systems, but these are definitely not
the only ones (in total there are currently 15 extensions for OVAL
Definitions). An interesting fact about The OVAL Language Speci-
fication and the specifications of the extensions is that they use the
Unified Modeling Language (UML) [16] to describe XML elements.
On one hand it is quite unusual, but on the other hand it perfectly
fits the model the OVAL language uses where new elements are in
many cases defined as being inherited2 from some other elements
and elements often use (contain) the other elements.

From the perspective of this thesis the most important part of
the OVAL language are Oval Definitions that are, among the other
things, used in XCCDF rules’ checks. Example of OVAL definitions
can be seen in the attachments. It contains metadata about the con-
tent generation (product_name, schema_version and timestamp
elements) followed by the definitions, tests and objects. Each
definition has some metadata (title, description) and criteria
where each criterion references one or more tests that describe
what should hold for some objects. The basic framework covered
by the OVAL language specification consists of all the elements but
tests and objects that are system-specific (and thus specified in
the extensions that apply to a particular system).

2. in the same way as it is known from the object oriented programming

8

2. SECURITY CONTENT AUTOMATION PROTOCOL

As it was already mentioned above, an OVAL content is, among
the other things, usually used to define checks whether XCCDF rules
are followed or not. That means there has to be an interpreter that
actually checks the system according to the OVAL content and pro-
vides back data showing if the check failed of passed. There is a freely
available3 referential implementation of such tool – The OVAL In-
terpreter [18], but since it doesn’t cover all the functionality needed
in many cases (especially the extensions), some other interpreters
are usually being used. For example there is the jOVAL [19] project
focused on implementing a more comprehensive OVAL interpreter
(covering more extensions) that is licensed under the Affero GPL li-
cense [20].

Another important part of the OVAL framework is the OVAL
Repository described on its home page as follows:

“The OVAL Repository is the central meeting place for
the OVAL Community to discuss, analyze, store, and
disseminate OVAL Definitions. Members of the com-
munity contribute definitions by posting them to the
OVAL Repository Forum, where the OVAL Team and
other members of the community review and discuss
them.” [21]

which plays an important role in reusability of the OVAL content.
Though it may seem that the OVAL covers everything needed

to define checks for XCCDF rules, there are cases when it cannot
be used because of the fact that it is oriented only on systems and
their states and configurations and not on the users of such sys-
tems. This allows OVAL content to be evaluated automatically, but
on the other hand doesn’t cover the rules like “All users must have
passed the basic security training.” that may appear in the SCAP con-
tent. For cases like that elements of the Open Checklist Interactive
Language are used. The most recent format of the language is de-
fined by the NIST Interagency Report 7692 – Specification for the
Open Checklist Interactive Language (OCIL) Version 2.0. [22] The
OCIL provides a unified and general framework for creating ques-
tionnaires that can be used, among the other places4, in a SCAP con-

3. licensed under the BSD licence [17]
4. e.g. school exams

9

2. SECURITY CONTENT AUTOMATION PROTOCOL

tent, especially as the interactive checks of some types of rules. To be
compatible with OVAL, the OCIL also uses XML as an underlying
technology. The root element of the OCIL data is ocil which con-
tains metadata5, questionnaires, task_actions, questions,
results and other elements. The questionnaires reference one
or more task_actions that describe which questions should be
used and what should happen if the questions cannot be answered.
The results of the interactive checks (i.e. task_actions) are then
stored in the results element.

2.2 SCAP reporting formats

Another category of the SCAP components contains the SCAP re-
porting formats – Asset Reporting Format (ARF) and Asset Identifi-
cation. As their names suggest these two components are closely re-
lated, concretely the assets6 the ARF data reports about can be iden-
tified the way the Asset Identification format defines. The specifica-
tion of the Asset Identification is covered in the NIST Interagency Re-
port 7693 – Specification for Asset Identification 1.1 [23]. The Asset
Identification format provides a standardized, general and machine-
readable way of identification. It uses XML and leverages, among
the other standards, extensible Address Language (xAL) and exten-
sible Name Language (xNL) by Organization for the Advancement
of Structured Information Standards (OASIS) to reuse existing stan-
dards instead of “re-inventing the wheel”. The core specification pro-
vides data model for eleven types of assets – Person, Organization,
System, Software, Database, Network, Service, Data, Computing De-
vice, Circuit and Website, but extensions can define additional types
by inheriting from any of those types. The particular assets are then
identified using a set of so called literal attributes (classical identi-
fiers like Media Access Control (MAC) address of a device etc.) and
relationships to other assets.

Asset Reporting Format specified in the NIST Interagency Report
7694 – Specification for the Asset Reporting Format 1.1 [24] defines a

5. like information about the data generation and the document itself – its
title, description and notices – that can be shown to the user
6. defined as “anything that has value to an organization” [24]

10

2. SECURITY CONTENT AUTOMATION PROTOCOL

versatile data model for interoperable and machine-readable reports
about assets. The relation to the other components of the SCAP (ex-
cept the Asset Identification) may be not obvious, but due to defin-
ing only a common structure the ARF can be used to create a re-
port about e.g. OVAL or XCCDF results (which are, by definition, as-
sets). The root (XML) element of the ARF content is asset-report-
collection that contains report-requests, assets, reports
and relationships. assets are the assets identified using the
Asset Identification for which reports are generated on report-

requests’ behalf. The relationships then provide subject–predi-
cate–object relations between the other elements (e.g. which report

was generated for which asset on which report-request’s be-
half.

2.3 SCAP enumerations

One of the goals of every standard or specification defining a data
format is to provide an interoperable and platform independent way
to represent some kind of data. The same applies to SCAP and all
of its components which means that SCAP content can be created,
stored and processed on any platform (of course some computing
and storage resources are required). But on the other hand, as we
have already seen in the section about the OVAL, pieces of SCAP
content may be targeting a particular platform. Just a simple exam-
ple – there may be a rule saying that system firewall has to be turned
on, but a check for that rule will definitely use different steps on some
Windows machine than on e.g. a GNU/Linux machine. So in a high-
quality and versatile content there would be at least two checks re-
lated to such rule, each for a particular platform, and the content pro-
cessor7 would have to decide and make sure that the right sequence
of steps (the right check) is used on any machine. But what may seem
trivial for a human is basically impossible for a computer. Well, with-
out any additional data. The data allowing computer (or more pre-
cisely the content processor) to decide which check to use on which

7. a tool that evaluates the content on a machine

11

2. SECURITY CONTENT AUTOMATION PROTOCOL

machine is the Common Platform8 Enumeration (CPE) defined by
four NIST Interagency Reports: 7695 – Common Platform Enumera-
tion: Naming Specification [25], 7696 – Common Platform Enumer-
ation: Name Matching Specification [26], 7697 – Common Platform
Enumeration: Dictionary Specification [27] and 7698 – Common Plat-
form Enumeration: Applicability Language Specification [28], all, in
the time of this thesis being written, in version 2.3. As the number of
specifications shows, there are four components of CPE. CPE Nam-
ing defines how valid CPE names should be created, CPE Name
Matching defines how the evaluation of patterns (will be described
later) in the CPE identifiers should be done, CPE Applicability Lan-
guage is a format of XML data that allows creation of more complex
expressions with AND and OR logical operators (to express for ex-
ample “Mozilla Firefox 3.6 on Windows 7”).

CPE Dictionary is a format enveloping multiple CPE items in
one component (file or XML subtree) that could be used in connec-
tion with other SCAP content. The CPE dictionary (the cpe-list

element is composed of cpe-items linking CPE name and check(s)
specifying how to recognize the platform (usually OVAL checks). In
a SCAP content the CPE names or IDs of more complex expressions
are used in places where a platform specification is needed (e.g. in
case of multiple platform-dependent checks for a rule) and the con-
tent processor is responsible for searching for the checks and evalu-
ating them. Since there is only a limited number of commonly used
platforms (the CPE names), the goal is to create a single repository
(CPE Dictionary) of CPE items that would be used by all SCAP con-
tent. Such official CPE Dictionary is hosted by NIST [29] and all cre-
ators of SCAP content are encouraged to share their CPE data there
if possible. CPE names consist of multiple parts that specify e.g. the
type, name and version of the platform. Since some content may ap-
ply to multiple versions of a platform, CPE specification allows usage
of some simple patterns in identifiers9 that can be then matched with
multiple CPE names.

8. where the platform means a class of applications, operating systems or hard-
ware devices
9. the ’*’ and ’?’ characters with common meaning known from e.g. file path pat-
terns and the keyword ANY with obvious meaning plus missing item having the
same meaning as ANY

12

2. SECURITY CONTENT AUTOMATION PROTOCOL

The other two enumeration components of SCAP are Common
Vulnerabilities and Exposures (CVE) and Common Configuration
Enumeration (CCE) that reflect the fact that there are well-known
vulnerabilities as well as well-known recommended configurations.
The major parts of these components are freely available lists – the
CVE List and the CCE List – providing data gathered from many
sources. The ways how these lists are being populated are described
on web pages of the projects:

“The process begins with the discovery of a potential
security vulnerability or exposure. The information is
then assigned a CVE Identifier by a CVE Numbering
Authority (CNA) and posted on the CVE Web site. As
part of its management of CVE, The MITRE Corpora-
tion functions as Editor and Primary CNA. The CVE
Editorial Board oversees this process.” [30]

“CCE entries are currently assigned to configuration is-
sues by members of the CCE Content Team and posted
on the public CCE Web site.” [31]

2.4 SCAP measurement and scoring systems

One of the long standing problems of the security-related configu-
ration and policy management has always been prioritization. With
a lot of known vulnerabilities (and new ones always emerging) to-
gether with known configuration patterns and rules that should be
followed to mitigate the risks of their misuse it is important to first
fix the issues that bring the highest risk. But it is hard to asses the
vulnerabilities and the configuration rules correctly to find out what
these “hot issues” are. To mitigate this, two standardized and ver-
satile mechanisms for scoring were created – Common Vulnerability
Scoring System (CVSS) and Common Configuration Scoring System
(CCSS) – specified in NIST Interagency Reports 7435 – The Common
Vulnerability Scoring System (CVSS) and Its Applicability to Federal
Agency Systems [32] and 7502 – The Common Configuration Scor-
ing System (CCSS): Metrics for Software Security Configuration Vul-
nerabilities [33]. These two scoring mechanisms are very similar to

13

2. SECURITY CONTENT AUTOMATION PROTOCOL

each other. Products of both are values between 0.0 and 10.0 and both
use the same three metric groups – Basic, Temporal and Environ-
mental – where the first one “represents the intrinsic and fundamental
characteristics of a vulnerability that are constant over time and user en-
vironments” [32], the second one is for characteristics that vary with
time but not with the user environment and the last one covers the
characteristic that are specific for the user environment. This also de-
termines who is responsible for performing the scoring in particular
metric groups.

The computation of the resulting score is then defined by equa-
tions combining weighted “subscores” of these metric groups to re-
sult in a number between 0.0 and 10.0 as the final score. Computa-
tions of “subscores” are defined by equations and coefficients weight-
ing numeric values corresponding to the semantic values of the el-
ementary metrics (like e.g. Access Vector, Access Complexity, and
Authentication metrics that are parts of the Basic metric group of
CVSS). The resulting score is then assigned an identifier which can
be used in for example SCAP content to allow prioritization. One of
the biggest advantages of CVSS and CCSS is that the outputs are not
only the score values but also all the values the resulting score values
were computed from.

2.5 Trust Model for Security Automation Data

Evaluation of the SCAP content needs to run under administrator’s
privileges because it often needs to check and modify system’s con-
figuration. This means that should the content contain some ma-
licious data, it could for example ruin the system or create back-
door when being evaluated. In the same time a typical SCAP con-
tent has tens of thousands of lines of XML data [34] that can hardly
be checked for malicious content either manually or automatically.
Thus the content consumer has to trust the content producer that
the provided content is secure and will not cause any unexpected
changes in the system. Once such trust is established, the consumer
still has to verify the authenticity (whether it was really created by
the trusted producer) and integrity (whether it was not modified af-
ter the producer created it) of the content. The most common way

14

2. SECURITY CONTENT AUTOMATION PROTOCOL

for the producer of some data to allow consumer to verify its au-
thenticity and integrity is to create a digital signature which is also a
method used by the SCAP. And since SCAP uses XML as an underly-
ing technology, the Trust Model for Security Automation Data (TM-
SAD) component, that specifies the format of digital signatures of
the SCAP content, leverages the XML Signature Syntax and Process-
ing (XMLDSig) standard10 and just specifies which algorithms and
protocols can be used for digital signatures of security content [36].
More about the XMLDSig can be found e.g. at [11].

2.6 Extensible Configuration Checklist Format

So far the SCAP components that allow definitions of automated or
manual checks (OVAL and OCIL, respectively), reporting (ARF and
Asset Identification), platform, vulnerabilities and configurations enu-
meration (CPE, CVE and CCE), scoring (CVSS and CCSS) and in-
tegrity verification (TMSAD) have been described. But as it was de-
scribed in the introduction, the configuration patterns and recom-
mendations (the security content) are usually given as a set of rules
that the targeted system must follow to be in compliance with the
content. Also systems serving different purposes will need to follow
different sets of rules as well as some tweaks to the rules may be
needed on the content consumer’s side. Finally, when the rules are
evaluated on a particular system, the results of the evaluation has to
be available to check if the rules are followed or not. All these cases
are covered by the Extensible Configuration Checklist Format (XC-
CDF) with it’s most recent version specified in the NIST Interagency
Report 7275 – Specification for the Extensible Configuration Check-
list Description Format (XCCDF) Version 1.2 [37].

As the majority of the SCAP components, XCCDF also uses XML
as the underlying technology. But since it covers a wide area of the
content data, its specification defines three types of XCCDF docu-
ments each with a different root (top-level) element:

• Benchmark – that can contain rules,

• TestResult – for results of Benchmark evaluation and

10. defined by the World Wide Web Consortium [35]

15

2. SECURITY CONTENT AUTOMATION PROTOCOL

• Tailoring – for modifications of some Benchmark.

As it can be seen from the list above, the most important document
type (and root element) is the Benchmark11 that consists of Profile
elements or so called items (or both) where an item can be either
Value, Group or Rule. Rule elements (which define the config-
uration rules that should be followed) may use Values and may
be (together with Values) grouped into Groups or Profiles. The
Profiles may contain either Groups or Rules and the same ap-
plies to Groups that can be nested this way. Every item can then
extend another item of the same type if it is in its scope (where a
scope of an item is very similar to a scope of a class attribute in
object-oriented programming12). Other than that the Benchmark el-
ement also holds metadata describing it. For example the status

that “SHOULD indicate the level of maturity or consensus for the bench-
mark” [37] (and optionally also the dc-status that “Holds additional
status information using the Dublin Core format” [37]), the title, the
description and version. If the benchmark is platform specific,
it should also contain the platform element specifying the platform
with a CPE identifier as described in the SCAP enumerations section
(2.3).

Every item (group, rule or value) should contain the same meta-
data elements as listed above for the Benchmark13 and possibly also
one or more warning and question elements where warnings

should inform e.g. about the serious impacts of the item’s applica-
tion (like “remote connections to the machine will not work if this rule is
followed”) and questions should help with the decisions about the
item during tailoring (will be described later). In addition to groups
the items may also be grouped into clusters by multiple of them
having the @cluster-id attribute set to the same value. On top
of that rules and groups may contain the selected, requires and
conflicts elements where the the first one means whether the rule

11. the elements listed in the following paragraphs don’t cover all elements that
are allowed or required in particular context (all can be found in the XCCDF spec-
ification [37]
12. the precise definition of the scope of an item can be found in the XCCDF spec-
ification [37]
13. with platform allowed only in Group and Rule elements

16

2. SECURITY CONTENT AUTOMATION PROTOCOL

or group should be evaluated or not and requires (conflicts)
elements contain references to other items that have to (cannot) be
selected in the same time.

The most important building block of the SCAP content is prob-
ably the Rule element as it holds data that specify a rule that should
be followed to remediate some vulnerability or generally improve
the system’s configuration. In addition to the elements it has com-
mon with Groups and Values it may (and in most cases should)
contain other child elements holding data that allow (semi-)automatic
evaluation of the rule on a particular system and further describe or
identify the rule. Those elements are the parts of the XCCDF that
make use of the other SCAP components. To follow the ordering
from the XCCDF specification, we will start with the ident element,
that is expected to hold an assigned name of the issue the rule in-
stantiates, implements or remediates. The data in the ident element
should be a name assigned in the system (e.g. CPE, CVE, CCE and
others) specified by the @system attribute’s value. Then there may
be an impact-metric element14 that should contain a value as de-
fined by the CVSS specification. Among the other possible child ele-
ments there are three of them that are crucial for the evaluation and
remediation – check, complex-check, fix and fixtext.

check and complex-check are mutually exclusive and either a
one or more checks can be used or one complex-check that de-
fines a boolean expression on multiple checks. Each check should
then contain or reference data that can be used to check if the sys-
tem is in compliance with the rule or not and its @system attribute’s
value should specify, by a Universal Resource Identifier (URI), the
system the check data should be interpreted with. Typically this will
be either the URI of the OVAL system15 or the URI of the OCIL sys-
tem16, but any other value understood by the processing tool can be
used as well (we will see an example in the chapter 6). Another im-
portant attribute is @selector that can be used to specify in which
cases the check should be used by setting the same value for the
check’s and rule’s @selector attributes. If there are multiple checks

14. although it is recommended to be moved under the metadata element
15. http://oval.mitre.org/XMLSchema/oval-definitions-5
16. http://scap.nist.gov/schema/ocil/2.0

17

2. SECURITY CONTENT AUTOMATION PROTOCOL

with the same value of @selector used by the rule, then each check
should use a different system. The OVAL checks take precedence
over OCIL checks because the former system supports automatic
evaluation.

Every rule has its check(s) associated so that it can be decided
whether a particular system is in compliance with the rule or not.
If it is, then nothing more needs to be done except of reporting that
the rule is followed (or that its check passed). But if the check fails
there are two options of what can be done – either the fail is just re-
ported, so that the administrator of the system knows the rule isn’t
followed or an attempt can be made to fix the system’s state or con-
figuration so that the rule is followed and subsequent run of the
check passes. The second case is covered by the fixtext and fix

elements. While the fixtext element is expected to contain plain
text that describes how to fix the system’s state or configuration, the
fix element is supposed to contain a sequence of commands that
can be automatically interpreted by a tool specified by its @system
attribute. fixtext may also contain a reference to a fix which al-
lows pairing fix procedures with their explanations. In addition to
that, both fixtext and fix may also specify whether the system
should be rebooted or not (the @reboot attribute) after their ap-
plication, what is the so called strategy of the fix (the @strategy

attribute with one of predefined values17), what is the level of dis-
ruption (@disruption) the application of the fix would cause and
what is the complexity or difficulty (@complexity of the applica-
tion. On top of those attributes, the fix element may also specify the
platform (the @platform attribute with a CPE name or CPE applica-
bility language expression’s id as the value) it can be applied to and
the already mentioned system (@system) it should be interpreted
with. There are some predefined values (URIs) of the @system at-
tribute for most common systems, such as urn:xccdf:fix:urls
for a list of URLs to the resources that should be applied and multiple
urn:xccdf:fix:script:LANGUAGE values where the LANGUAGE
is substituted by a script language identifier (e.g. sh, perl, vbscript,

17. for example configure for configuration changes, disable for turning off
or uninstalling system’s component of patch for an application of a patch, update,
etc.

18

2. SECURITY CONTENT AUTOMATION PROTOCOL

etc.), but the content may use any value that will be understood by
the processing tool.

The Value elements are useful for giving names to parameters
used in the content and also for tailoring where the real value they
hold can be easily changed in multiple places with only one change
done, actually.

So far we have described the Benchmark that can hold Rules

(or Groups of Rules), that can be selected or not, Values and some
additional data. While this would be enough as a format for data that
can be evaluated on a particular system, there would have to be a lot
of documents each focused on a particular use case of a system and
all these documents would redundantly contain a lot of rules that
could have been shared in one place. The refinement of the content
so that it fits better some use case is called tailoring . The basic way
to do tailoring is to use Profile elements that may (in addition to
the metadata and various elements shared with Rule and Group ele-
ments) select (the select element) rules and groups or clusters rules
and refine values and rules (the refine-value and refine-rule

elements) by using so called selectors18. The Tailoring elements
and documents then allow tailoring to be done outside of the Bench-
mark element.

The third document type (and in the same time root element) of
the XCCDF is the TestResult which can be, as its name suggests,
used to store information about a single evaluation of a (possibly tai-
lored) benchmark. Because the test results only make sense in con-
nection with the benchmark and tailoring that were used to produce
the results, it needs to reference both of these elements (or docu-
ments). In addition to that, the TestResult may contain a name of
the organization applying the benchmark, the identity of the
user applying the benchmark, the profile that was used and infor-
mation about the target system the benchmark was applied to (using
the Asset identification component). The TestResult, of course,
has to contain the actual results of the test (benchmark application).
This can be done in two ways – by an overall score (with @system

attribute specifying the scoring system used) which is compulsory
and optionally with rule-result elements representing the results

18. more about the selectors can be found in the XCCDF specification [37]

19

2. SECURITY CONTENT AUTOMATION PROTOCOL

of rule evaluations (as metadata and optionally results from the check
system plus one of the predefined values such as pass, fail, fixed,
etc.).

As can be seen from the length of this chapter providing a rather
brief than exhaustive description of the components, the Secure Con-
tent Automation Protocol is a very complex and broad specification
and every tool that wants to be in conformance with it has to follow
a lot of rules and restrictions.

20

Chapter 3

Open SCAP Projects

An important feature of the SCAP, also pointed out in it’s name, is
that it allows automation which means that the evaluation of a SCAP
content on a particular system can be done by some tool instead of
manual verification of the rules and manual fixing of the system’s
state and configuration. On the other hand the creation of SCAP con-
tent cannot be done automatically (as today’s computers are not able
to detect a vulnerability, provide a fix for it and compose an XML file
will all the data needed), but still can be done in a “computer-aided”
way. There are many projects focused on both SCAP content creation
and evaluation, some of them focusing on separate particular com-
ponents and some of them trying to cover the whole specification.
Fortunately, many projects are focused on producing open-source [4]
tools and content that is publicly available with all the source code
for usage, modifications and redistribution which means that they
could be used as part of the Fedora GNU/Linux distribution strictly
requiring all its components to be open-source and publicly avail-
able. We have already seen examples of such projects in the section
describing the OVAL (2.1) – OVAL Interpreter and jOVAL – both fo-
cused on the evaluation of the OVAL content.

An example of a project that tries to cover all components of the
SCAP is the OpenSCAP project. Although still being under devel-
opment it already provides powerful tools to process the SCAP con-
tent and creates an important “crossroad” for many other projects fo-
cused on particular components. The OpenSCAP per se provides [3]:

• a library that can be used for SCAP content processing and
evaluation,

21

3. OPEN SCAP PROJECTS

• a scanner that utilizes the library and provides local scanning
capabilities,

• a number of XSLT1 [38] transformations that can be used to
transform an XML content to more human-readable HTML
format and

• SCAP content intended for testing and experimental purposes.

The library is written in C, but there are bindings for Perl and Python
languages, so that it can be used also from these high-level languages.
Probably the most important part of the OpenSCAP project is the
scanner (called oscap) which can be used for a wide range of ac-
tions done with a SCAP content starting from validation and basic
information extraction going through various transformations and
ending with complete evaluation. As can be seen in the chapter 6,
the Anaconda addon implemented as part of this thesis utilizes the
oscap tool to perform many operations. All parts of the OpenSCAP
project are distributed as source codes that can be compiled and in-
stalled to the system. For the Fedora GNU/Linux distribution, Red
Hat Enterprise Linux and their derivatives there are also software
packages using the RPM2 format. These packages contain the com-
piled and linked binaries together with additional files and can be
easily installed on a system with the following command:

$ yum install openscap openscap-utils openscap-content

that also downloads and installs the dependencies (other packages
that are needed for openscap packages to work properly) which sim-
plifies the installation a lot and allows a proper uninstallation that
removes the contents of the packages.

By providing a tool for evaluation of SCAP content and basically
all of its components, the OpenSCAP project acts like some kind of a
“central meeting point” for various projects that focus only on some
particular components or separate procedure that can be done with
the content. The rest of this chapter is dedicated to brief descriptions
of these related projects.

1. Extensible Stylesheet Language Transformations
2. originally Red Hat Package Manager, now RPM Package Manager

22

3. OPEN SCAP PROJECTS

3.1 scap-workbench

Although XML is a text format and can be quite easily read and un-
derstood not only by computers, but also by humans. But still, the
creation of a valid XML file following some specification is not an
easy task. Especially when there are many such specifications and
every one of them is that complicated as SCAP components are. Also
it is not so common and comfortable to use command-line tools (as
the oscap is) for a work, especially when they produce a lot of out-
put which can be hard to read in the textual interface. To facilitate
the creation and modifications of the SCAP content and to provide
a better user experience when doing evaluation the scap-workbench
project [40] was started with the goal to create a GUI tool that could
be used for scanning, tailoring and editing SCAP content together
with validation. While still being under development, the tool with
the same name as the whole project already provides a basic func-
tionality in all areas it is has been being created for. It is written in
the Python programming language and uses the openscap library
(the one created as part of the OpenSCAP project) through its Python
bindings. As a graphical framework for the GUI it uses the Gtk3 li-
brary [64].

3.2 Security State

When applying some SCAP content on a system, the first goal is to
get the system to the correct configuration and state so that it fol-
lows the rules defined in the content (or a particular profile, group
of rules, etc.). However, once achieved, this only means that the sys-
tem is in the desired state at the moment when the rules are being
evaluated. Since the overall (long-term) goal is to improve the sys-
tem’s configuration and state to make it is less vulnerable to various
attacks and mitigate the risks, there needs to be a mechanism cre-
ated to keep the system in compliance with the content and if some-
thing gets wrong, to fix it as soon as possible and in an automatic
way. This is the area the Security State [41] (or SecState) focuses on.
It provides a tool called secstate, that uses the openscap library3 to

3. again by its Python bindings because it is also written in Python

23

3. OPEN SCAP PROJECTS

do evaluation of the SCAP content on a system. The evaluation is
something that can be done also with the oscap tool, but the oscap is
stateless in a way that it doesn’t keep any information between the
runs. So what the secstate allows on top of the oscap tool’s capabil-
ities is some long-term management of the content on a particular
system. It allows the administrator to import SCAP content (regis-
tered by the secstate), then to choose profiles, groups, rules, etc. and
in the end run the audit (evaluation) and remediation. Since it keeps
the state (the imported content together with the selections) the audit
and remediation can be triggered periodically with various ways of
reporting issues, misconfiguration and other problems (if any) and
thus keeping the system in compliance with the policies given by the
chosen SCAP content.

3.3 SCC

An important component of the SCAP is the OVAL language as it
allows definitions of automated checks used in various places of the
SCAP content. However, creation of such checks is hard due to the
complexity of the OVAL language and also its model relying on us-
age of indices and referencing elements that are placed in a com-
pletely different parts of the document. Another problem is that the
XML format brings in a lot of “noise” (enclosing characters without
any actual meaning) and with proper indentation (and line break-
ing) that improves readability a typical OVAL content is both very
wide and long. To address these issues the SCC project [42] has been
started with the goal to create a simpler, better-readable and clearer
language that could be used to define checks. The language is called
SC and instead of using XML it uses a very simple and clear syntax
similar to the JavaScript Object Notation (JSON) with curly brack-
ets enclosing complex values and the equal sign creating key-value
pairs. It allows the content creator to omit the long identifiers re-
quired by the OVAL and supports locality in a way that the related
definitions (tests together with objects and their states) can be writ-
ten in one place next to each other. Thus the creation and reading
(e.g. when doing a review) of check definitions and is easier, but in
contrast to the OVAL, the SC is not a standard nor a part of the SCAP

24

3. OPEN SCAP PROJECTS

which means that there is no support for it in the tools doing the
evaluation of the content. To solve this problem, there is the scc (SC
compiler) tool, that takes an SC content and produces a valid OVAL
content that can be used by the standard tools supporting OVAL. To
allow that, the SC language provides a clear mapping to the OVAL
elements by using the same keywords for them.

3.4 SCE Community Content

Another problem resulting from the complexity of the OVAL lan-
guage is that it is almost impossible for the system administrators to
convert their scripts they have been using for a long time to check
system’s state and configuration all at once to OVAL checks which
would allow them to have the rules and checks defined as a proper
SCAP content instead of their own non-standardized and custom for-
mats that are understood only by their custom tools. For this rea-
son the developers of the OpenSCAP project came with the exten-
sion of the openscap library (and thus also the oscap tool) called
Script Check Engine (SCE) [43] that allows checks referenced in the
SCAP content to be any executables (i.e. scripts with the shebang4

or even binaries). When the executable is run during the evaluation
process, two special environment variables are added to its scope,
$XCCDF_RESULT_PASS and $XCCDF_RESULT_FAIL, with the val-
ues that should be used as exit codes when the check performed by
the executable passes or fails, respectively. In order to provide addi-
tional information about the results of the check, it is possible to in-
clude the standard output and standard error output gathered when
running the executable to the results.

The SCE extension is used by the SCE Community Content project,
that focuses on creation of a publicly available and easily under-
standable SCAP content that could be used on GNU/Linux systems.
Either directly or after customization that is, due to the usage of eas-
ily understandable scripts instead of complex OVAL language defi-
nitions, much easier when compared to the SCAP content using the

4. special line in the beginning of the script with the following format:
#!/path/to/the/interpret that points the OS to the tool which the script
should be interpreted with

25

3. OPEN SCAP PROJECTS

OVAL checks. The main platform targeted by the SCE Community
Content project [44] is the Fedora GNU/Linux distribution as it is a
platform both OpenSCAP and SCE Community Content projects are
being developed on and also a platform that contains new versions
of packages (openscap* packages included) soon after they are re-
leased by the developers (so called upstream). The goal is to provide
a default content possibly for all installations of the Fedora distri-
bution and a part of the work on this thesis is to participate in the
project mainly with the rules that should be considered in the pre-
installation phase (as will be discussed in the chapter 4.

3.5 Aqueduct

Development of a comprehensive SCAP content is a hard task that
takes a lot of work of many people. Thus it is quite often that only
rules and their checks are included in the publicly available con-
tent with the fix elements missing. While it is enough in many cases
where the manual changes that would take the system into a com-
pliant state are possible, it is a problem in case of a large number of
installations that are supposed to follow certain rules. An automated
remediation is crucial in such cases, but it requires the fix elements
to be added to the SCAP content. The Aqueduct project tries to tar-
get this issue on the RHEL 5 by developing multiple sets of fixes
for many security guidelines provided by various agencies [45]. The
fixes are available in the form of Bourne Again Shell (bash) scripts or
so called Puppet 5 manifests and are supposed to be run indepen-
dently on the content evaluation (e.g. with the oscap tool) which
should then follow to check if the system’s state and configuration
actually was changed in the right way.

3.6 SCAP Security Guide

As it was mentioned in the previous section, development of a SCAP
content is hard task that takes a lot of work and time. One of the re-
sults of this is that the SCAP content is usually created a long time

5. Puppet is a system for remote management [46]

26

3. OPEN SCAP PROJECTS

after a new (major) version of a system is released. And since the
main producers of security content are various agencies that often
use the older and thoroughly tested versions of systems rather than
newer and not so reliable versions, the recent versions of systems
are not covered by a security content at all or only a little bit. These
facts are reflected also on the state of the official security guidelines
for the RHEL were almost all content targets the RHEL 5 (initial ver-
sion released in 2007) and only a little content is available for the
RHEL 6 (initial version released in 2010). That is why the SCAP Se-
curity Guide (SSG) project [47] was launched with a goal to provide
SCAP based security guidelines for the RHEL 6 and also JBoss En-
terprise Application Server 5 (JBoss EAP 5) that could be used by
the customers using those tools and that could serve as a base for
the official content provided by the agencies that produce the official
content. It utilizes a lot of general and often vague recommendations
and bridges the gap between them and the real application that has
to be based on strict and well-defined rules and actions. By bridging
this gap it allows automated evaluation of the recommendations e.g.
with the oscap tool. In fact, the SSG content is often used as a test-
ing content for the products of the OpenSCAP and related projects.
For example the Aqueduct project provides fixes for the rules that
can be found in the SSG and the HTML version of the SSG content is
generated with the oscap tool [39].

27

Chapter 4

Policy Compliance Configuration

A chosen set of rules (e.g. from an XCCDF profile) defines a policy
on how a system should be set up and for the state of following such
rules or not the term compliance is used. When combined together,
we can talk about the policy compliance and a general goal is to con-
figure a particular system to be compliant with a particular policy,
given by a SCAP content in our case.

In order to do that, it is needed to:

1. get the content,

2. evaluate it on the system,

3. remediate the system and

4. check the results of another run of the evaluation,

where the last step is particularly important because the remediation
may not be 100% successful or there might be rules that are missing
usable1 fix elements either because they were not created or it is
impossible to create them for a general case.

As for the first step, there are many organizations and projects
providing SCAP content either for free and publicly or under some
restrictions. One of the organizations providing such content under
restrictions is the Center for Internet Security (CIS) [49] and its Secu-
rity Benchmarks division. Their benchmarks are being recommended
as a de facto security standards and are required by some of the
laws and regulations (e.g. Federal Information Security Management
Act [48]). Also they claim that:

1. i.e. with a matching @platform attribute and other values

28

4. POLICY COMPLIANCE CONFIGURATION

“Configuring IT systems in compliance with these Bench-
marks has been shown to eliminate 80-95 % of known
security vulnerabilities.” [50]

An example of a content provided publicly and for free is the Se-
curity Technical Implementation Guide (STIG) [51] created and dis-
tributed by the Defense Information Systems Agency (DISA) which
is together with the NSA guides [52] a standard for the Department
of Defence Information Assurance. Another examples of the avail-
able content are The Health Insurance Portability and Accountability
Act [53] targeting health information privacy, Payment Card Indus-
try Data Security Standard (PCI-DSS) [54] targeting cardholder infor-
mation protection and The United States Government Configuration
Baseline (USGCB) [55] the purpose of which is “to create security con-
figuration baselines for Information Technology products widely deployed
across the federal agencies” [55].

As has been described in the chapter 2, the SCAP version 1.2
comes with a definition of so called data stream collections and data
streams. But since a lot of the content has been created before the
most recent version of the SCAP specification has been released and
widely adopted, documents with the content may be provided in va-
riety of formats that can be divided into two types – a single XML
document with the data streams holding all content from all SCAP
components or multiple separate documents each for a particular
component (usually a CPE dictionary, OVAL checks, etc.). To facil-
itate the fetching and work with the content separated in multiple
documents, it is common to create a single file carrying all of the doc-
uments. A typical format used for this is the ZIP archive, but another
types of archives, such as TAR archives with various compression al-
gorithms2, can be used. In addition to that, in GNU/Linux (or UNIX)
environment the documents can be provided as a software package.
On Fedora, RHEL and their derivatives it would be the RPM packag-
ing system that on top of the archives’ abilities allows also integrity
and signature checks during installation (fetching content) and also
a subsequent integrity checks of the installed content compared to
the the original versions provided by the package. Many of the tools
provide a way to use directly the archived content, some other needs

2. that are often very efficient due to the XML nature of the content

29

4. POLICY COMPLIANCE CONFIGURATION

to extract the archive in advance manually which can complicate the
work in some cases, e.g. when the content is evaluated on a remote
system.

Steps 2. and 3. are evaluation and remediation. Both can be done
with a various tools, e.g. the ones described in the chapter 2. But as it
was already briefly described in the introduction, there is a question
when to apply the content (do the evaluation and remediation) to a
system. First idea may be to do it right after the system is installed,
because it leaves basically no time for an attacker to interact with
the possibly misconfigured system and on the other hand the system
already exists and can be modified. But with a closer look at some
rules it can be found that it is extremely hard and almost impossible
to fix the system’s configuration after the installation. For example
this rule can be found in the Guide to the Secure Configuration of
Red Hat Enterprise Linux 5 :

“Create Separate Partition or Logical Volume for /tmp

The /tmp directory is a world-writable directory used
for temporary file storage. Ensure that it has its own
partition or logical volume.” [8]

While it is possible to create a separate partition or logical volume for
the /tmp directory even after when the system is already installed, it
is much easier (and from the perspective of reliability and availabil-
ity of the server also safer) to create and configure such partition or
logical volume during the installation process. But in the installation
process, the system is not yet installed and it is impossible to evalu-
ate any rules on it as the configuration of the resulting system is not
known and the same, of course, applies to the remediation of such
system. It is obvious that proper evaluation and remediation cannot
be done all at once as well as it cannot be done (even periodically)
only on the installed system.

The best choice seems to be a combination of both approaches –
making sure that the to be installed system will follow the rules the
requirements of which are hard to be fulfilled with post-installation
changes and running the content evaluation and remediation right
after the installation, possibly even before the first boot of the newly
installed system. The main problem of this approach is that unless

30

4. POLICY COMPLIANCE CONFIGURATION

some additional data is provided by the SCAP content, the rules that
need to be evaluated in the pre-installation phase are almost impos-
sible to identify in an automated way. Because it is really hard for a
computer to decide about that from a title or description of a rule,
any automated identification of such rules would need to implement
the OVAL interpretation and there would have to be some consensus
or standard that would define how the OVAL checks would be con-
structed since there are often multiple ways how to write an OVAL
check for a particular rule. With the OVAL relying on its extensions
that are still evolving and appearing, anything like that would be
practically impossible. So instead of endlessly developing such iden-
tification system and teaching content creators how to write OVAL
checks in a specific way, it is much better to utilize the extensibility
of SCAP specifications (namely the XCCDF) by adding and process-
ing additional data in the SCAP content.

As it was described in the second chapter’s section focused on
the XCCDF (2.6, the Rule element may have multiple fix elements
each for a different interpretation system defined by the value of the
@system attribute. And while there are some predefined values of
the @system attribute, the specification allows using any URNs that
are understood by the content processing tool. If the value is under-
stood and the interpret identified by it is available, the content of the
fix element is passed to the interpret. Or the processing tool can have
the ability to extract contents of all fix elements from a given pro-
file3 intended for a given interpret. Thus there could be fix elements
added to the rules that need to be considered in the pre-installation
phase with a special format and a special value of their @system at-
tribute that could be pulled by the OS installer and interpreted in a
way that it makes sure those rules will be followed once the system
is installed.

The special value of the @system attribute needs to mark the
fix element as being intended for the installer of a particular OS so
that the installer can pull the contents of the fix elements it is able to
process and understand. In the same time it should be a simple and
mnemonic value to facilitate the creation and identification of such
additional fix elements by the content creators. The special format of

3. identified e.g. by the data stream ID, checklist ID and profile ID

31

4. POLICY COMPLIANCE CONFIGURATION

the contents of those fix elements needs to be both human-readable
and computer-readable, because on one hand the content creators
will be writing it and on the other hand the OS installer will be pro-
cessing it to get it’s semantic meaning. Since there are no restrictions
for the contents of the fix elements given by the XCCDF specifica-
tion4 [37], there are many possible ways how the format could look
like. However, when designing a format for some kind of data, the
first step should be the identification of what the data will represent.
In our case it means identification of the rules that need to be consid-
ered (i.e. evaluated) in the pre-installation phase and their attributes
that will have to be passed to the OS installer. By going through var-
ious security recommendations and guidelines (provided as a SCAP
content or in a different way) it can be found that there are the fol-
lowing types of such rules:

• rules concerning partitions or logical volumes (their existence
or options they are mounted with),

• rules defining characteristics of passwords (mainly the admin-
istrator’s password),

• rules concerning the boot loader5 configuration (in particu-
lar the existence of a password protecting it against malicious
modifications) and

• rules defining which packages should be or should not be in-
stalled on the system.

The last type of rules is somehow optional because it is usually easy
to remove the package from the installed system, but not installing it
shortens the time of the installation process and prevents any prob-
lems and configuration issues that can be caused by the mere instal-
lation of the package (if it doesn’t clean up after itself correctly when
being uninstalled). Thus the format of the fix elements specific for

4. other than that it needs to be valid piece of an XML document which e.g. means
it has to be a text
5. which is a small program at a predefined position on a hard drive that is started
when the computer is turned on and is responsible for loading operating system
and giving the control to it

32

4. POLICY COMPLIANCE CONFIGURATION

the pre-installation phase should provide (at least) a way to repre-
sent those types of rules.

33

Chapter 5

Anaconda Installer

The previous chapter describes what the steps of the application of
a SCAP content on a particular system are and points out that in or-
der to make system’s configuration compliant with a set of rules, it
is useful and sometimes necessary to evaluate the rules twice during
the installation of the system – in the pre-installation phase and in
the post-installation phase. Implementation of such approach needs
a modification or extension of the OS installer that drives the installa-
tion and thus may run the right checks and actions in the right time.
It is practically impossible to modify or extend a closed-source OS in-
staller and OS installers hardly ever provide an API1 for extensions
as they are very complex and single purpose programs. Fortunately,
the installer of the Fedora and RHEL GNU/Linux distributions, the
Anaconda installer [56], is an open-source project and recently a sup-
port for third-party extensions (called addons) has been added to
it so the approach suggested in the previous chapter can be imple-
mented. The rest of this chapter is dedicated to the descriptions of
the Anaconda installer, it’s specifics and the addon API it provides.

“The Anaconda is the operating system installer (OS)
used in Fedora, RHEL and their derivatives. From a
closer look it is a set of Python modules and scripts to-
gether with some additional files like Gtk widgets (writ-
ten in C), systemd units and dracut libraries. Altogether
they form a tool that allows user to set parameters of
the resulting (target) system and then set such system
up on a machine.” [57]

1. Application Programming Interface

34

5. ANACONDA INSTALLER

As the basic characterization above describes, the Anaconda installer
has multiple components and the most important and most complex
one is the set of Python modules and scripts that tie all the other
components together. The overall installation process done by the
Anaconda starts with booting to the installer (e.g. from a DVD, USB
stick or over network) which includes hardware detection and ini-
tialization. Then the Anaconda’s main process is started and based
on the installation method (will be described later) and interaction
with the user starts. Once the user gets all configuration options to
the desired state and starts the actual OS installation, the following
actions are run [57]:

• installation destination preparation (usually disk partitioning),

• software packages and data installation,

• boot loader installation and configuration and

• configuration of the newly installed system.

5.1 Installation Modes

There are three different modes of the installation or more precisely
three different ways how configuration options for the target system
(and in some cases also for the installation process) may be entered.
These modes differ in user-friendliness and numbers of configura-
tion options they provide. The most often used one is the Graphi-
cal User Interface (GUI) mode that covers all common use cases and
tries to be clear enough even for non-advanced users. And since both
Fedora and RHEL are quite often installed also on machines without
monitors or displays (so called headless machines), the GUI mode
can also be run via a Virtual Network Computing (VNC) session [58].

However, some systems don’t support any graphical output (or
sometimes the users don’t like GUIs). For such cases, the Anaconda
installer has also the text user interface (TUI) mode that can be run
either directly on a system’s display or remotely via serial console.
The TUI mode operates basically in the same way as a monochro-
matic line printer, because it is intended to support even a bit exotic

35

5. ANACONDA INSTALLER

hardware platforms2 with consoles that don’t support colors and cur-
sor moving. The result of these restrictions is that it is generally not
much user-friendly and it doesn’t provide as much functionality (in
the number of exposed configuration options) as the GUI mode and
some of the options has to be set by the command-line options passed
to the Anaconda.

The last, but definitely not least, installation mode that the Ana-
conda provides is the so called kickstart mode where the installation
is driven by a simple text file with command-like syntax referred as a
kickstart file. If a kickstart file contains all the configuration options
that need to be set to install a working system, the whole installation
runs automatically. If something is missing, the automatic processing
stops, the installer’s user interface3 (UI) asks the user for the missing
input and then the installation continues as if no kickstart file was
used (except for the values from the kickstart file being used if not
changed by the user in the UI). This means that one can use a partial
kickstart file with a few options specified and the others left for an
interactive completion. In contrast to the TUI mode that provides a
way to set only the most important configuration options, the kick-
start mode is the only full-featured mode. In other words, everything
that Anaconda allows to be configured can be configured in a kick-
start file and a common practice is that everything is first supported
by the kickstart mode and some of the features are then exposed in
the GUI or TUI while trying to keep the user interfaces clear and un-
derstandable. Being based on a text file with a defined syntax and
providing all configuration options that are implemented, the kick-
start mode is considered to be something like and expert mode. Nev-
ertheless, if one starts with some basic backbone of a kickstart file
and only does a few changes and additions, it is quite easy to autom-
atize the installation process which is very useful especially when
installing a lot of systems with the same or similar configuration. As
a good input for such tailoring4 is a kickstart file that is created as an
output of GUI or TUI installation.

2. e.g. s390 and s390x
3. graphical or textual, depending on which one is chosen with a command-line
option or in the kickstart file
4. if we borrow the term from the SCAP area

36

5. ANACONDA INSTALLER

5.2 Architecture

The Anaconda installer is a very complex tool and probably the most
advanced commonly used OS installer. It allows configuration of a
big number5 of aspects of the target system and supports installation
from various types of sources (e.g. DVD, CDs, USB stick, from net-
work over HTTP, FTP or NFS) together with installation to various
types of storage devices such as local disks with standard partitions,
logical volumes and software RAIDs or non-local storage devices at-
tached via iSCSI, FCoE or ZFCP6 all with preexisting or newly cre-
ated filesystems of various types.

Having such a complex tool as a monolithic giant would result
in impossible maintainability and thus the Anaconda installer is di-
vided into many parts itself (as was mentioned in the quoted de-
scription in the beginning of this chapter) and uses multiple external
libraries and tools (some of them being integral part of the Anaconda
in the past). Major components taking place in the installation pro-
cess are these Python packages:

• pykickstart – providing parsing and storing in-memory rep-
resentation of a kickstart file,

• yum – providing downloading and installation of RPM soft-
ware packages from packages repositories,

• blivet – not so longer ago being part of the Anaconda as pyana-
conda.storage and thus providing storage devices manipula-
tion and

• pyanaconda – gluing all the other components together and
providing some additional functionality like language, key-
board, timezone and network configuration.

Then, ideally not participating in the installation process, there is also
the python-meh package which provides an exception handler that

5. the kickstart mode understands more than 50 types of commands specified in
a kickstart file and vast majority of the commands has multiple options that can be
specified with them
6. even a brief explanation of these acronyms is beyond the scope of this thesis

37

5. ANACONDA INSTALLER

can gather a lot of information from the crashed installation and pre-
pare data for the libreport library which then allows user to create a
bug report.

From a different angle of view the Anaconda installer is a multi-
thread application combining modular and object-oriented program-
ming (OOP) performing a transactional and data-driven installation
of an operating system. It needs to be multi-thread because many ac-
tions it runs take seconds or tens of seconds that would, by running
all in a single thread, often render the UI unresponsive for a notable
amount of time. Moreover, many actions can be effectively run in
parallel7 since e.g. probing storage devices is bounded by slow I/O
operations whereas downloading packages is bounded by network
bandwidth both not necessarily blocking the UI interaction with the
user. Being written in Python, the Anaconda installer (as well as
the other major libraries and packages used by it) utilizes the lan-
guage’s multi-paradigm nature that allows writing code not strictly
in one programming paradigm. So for example all the UI elements
are objects (i.e. instances of classes as known in the OOP), but on the
other hand code that writes out keyboard configuration to the newly
installed system is a function defined in the pyanaconda.keyboard
module.

The best way to reason about why we can say that the installa-
tion process is transactional and data-driven is to describe the life
cycle of the data. At the beginning, if a kickstart file is passed to the
Anaconda, the file is processed (parsed and validated) by the pykick-
start package to create and in-memory tree-like representation of it
(which we will refer as the kickstart data in the following text). If no
kickstart file is given, a default tree-like structure is created with de-
fault values (None, empty strings, zeros or some reasonable defaults
like en_US as the preset language) in its leaves. Then, unless all the
necessary configuration options where specified in the kickstart file,
the interaction with the user follows during which the values in the
kickstart data are updated based on user’s input. This phase ends
with the user starting the actual installation process8 (by clicking the

7. even with Python having the Global Interpreter Lock that allows Python code
to be executed only in one thread at a time [59]
8. the starting is done automatically if all required configuration options are set

38

5. ANACONDA INSTALLER

right button or entering the right string in the text mode) and until
that happens, the underlying machine and its system is not modified
in any way. Thus the user is free to do any changes in the desired
configuration as well as going back and forth with the decisions and
only after giving a clear command the actual installation transaction
starts to be performed. However, what is different compared to com-
mon transactions known e.g. from database systems is, that the in-
stallation transaction cannot be reverted if something goes wrong.
The actual installation process consists of the steps mentioned at the
beginning of this chapter and each of the steps is driven by the values
stored in the kickstart data. But first of all, the runtime environment
of the installation is set up to a desired state by running the setup
methods of the nodes in the kickstart data tree. Then the installation
destination is prepared (usually by disk partitioning and creation of
filesystems) and a set of software packages is installed to it together
with a boot loader (if not requested otherwise by the particular kick-
start data value). Finally the newly installed system is configured
by calling the execute methods of the nodes in the kickstart data.
These methods usually take the values stored in their subtrees and
change the target system’s configuration to reflect those values. In
the end the kickstart data tree is transformed (back) to a kickstart file
that is written out to a predefined directory in the newly installed
system. Such a file can be used to install another system with the
same configuration (or reinstall the system if it breaks) or, as men-
tioned above, can be used for tailoring and creation of another kick-
start file. So the contents of the kickstart data tree really drive the in-
stallation procedure and much of the work is done by calling nodes’
methods.

5.3 Addons Support

Although the Anaconda installer is a very complex tool and allows
a lot of configuration options to be set in the installation process, the
resulting system has much more aspects that can be configured or
set up in many ways. On one hand the runtime environment of the
installation is quite specific and usually it is easier to do configu-

in the kickstart file

39

5. ANACONDA INSTALLER

ration that can be done post-install after the first boot of the newly
installed system (due to common tools working much better in the
standard runtime environment), but on the other hand once some-
thing can be done in the installation process by the installer, it can
be automatically reproduced on arbitrary number of machines via
kickstart installation. Moreover such settings can be set on a pre-
installed system (in case of so called OEM9 installations) leaving the
post-installation configuration for the first boot and thus the end cus-
tomer. So it may be potentially very useful to extend the OS installer
as much as possible, but more functionality means more lines of code
and greater complexity which results in more bugs and worse main-
tainability that is a real problem for any such critical component. As
a trade off the Anaconda provides a support for extensions called
addons. The addons can be created and maintained by the experts in
the area they cover and can be added to or removed from the instal-
lation environment based on their reliability and stability or on the
target user group of the distribution or a spin10.

Since a typical addon will add something to the installation UI,
before we describe how such Anaconda addon can be created and
how the API it has to implement looks, we first need to understand
the general model used for the Anaconda’s user interfaces. While
traditionally tools like OS installers use the so called wizard model
that guides the user through groups of configuration options one af-
ter another (with a possibility to go back or not), the Anaconda in-
staller (for many reasons) implements a model usually referred as
the hub&spoke model [57] . The figure 5.1 depicts the basic structure
and possible transitions between the screens. The central points of
the model are hubs , that provide access to the screens called spokes
(screens number 2 to 13 in the figure) in an arbitrary order and ar-
bitrary number of visitations usually together with descriptions or
summaries for the spokes. The somehow special screens number 1
and 14 are so called standalone spokes that enforce the order of visit-
ing. At the first glance those screens don’t fit into the model, but they
are very practical because very often some actions need to be done

9. Original Equipment Manufacturer
10. a spin is a modified version of a distribution with customized configuration,
different set of software packages or both

40

5. ANACONDA INSTALLER

SCREEN

1

HUB

1

HUB

2

SCREEN

14

Figure 5.1: hub&spoke model diagram [57]

before (or after) some other actions (that are then accessible from the
hubs). An example of such action is the language selection which is
implemented as a standalone spoke in the Anaconda installer. The
spokes can be grouped together by the hub they are reachable from
and in addition to that the hub can group together spokes from a par-
ticular category by placing them (or more precisely their accessors)
next to each other.

By the time of the work on this thesis being started there had
been no Anaconda addon implemented and used. Actually, there
had been no documentation of the API for addons and no referen-
tial code. To improve that state, the development of the Anaconda
Addon Development Guide [57] was started as part of this thesis
together with a trivial but well-commented Hello world addon [60]
which could be used as a referential code or a backbone for a differ-
ent, more complex and useful addon. The addon development guide
is still in a draft state, but it is expected to be reviewed by the doc-
umentation editors and become a part of the official documentation
for the Fedora GNU/Linux distribution.

An addon has to be a valid Python package (i.e. a directory with
the __init__.py file) and its subpackages (subdirectories) has to con-
tain modules with classes inherited from a specified set of classes
reflecting the installation modes. The name of the addon’s top-level
package should start with a prefix of the project or organization the

41

5. ANACONDA INSTALLER

addon comes from. So, for example the OSCAP addon described in
the next chapter uses the name org_fedora_oscap because it was cre-
ated as part of the Fedora project (the underscores replace the dots
to form a valid Python identifier). The subpackages with code for
the different installation modes have the predefined names – ks, gui
and tui, for the kickstart, GUI and TUI modes respectively. As it
was mentioned in the section focused on the architecture (5.2), ev-
erything in the installer should be supported first in the kickstart
mode. Addons are no exceptions and without having the kickstart
support implemented, they wouldn’t have their part (a subtree) of
the kickstart data available during the installation process. The ks
subpackage has to contain a Python module (of an arbitrary name)
with a definition of a class inherited from the AddonData class from
the pyanaconda.addons module. An instance of such inherited class
is then responsible for parsing lines from the kickstart file and stor-
ing the parsed values in the in-memory attributes. Then it should
have the setup and execute methods as described in the previous
section and the __str__ method so that the in-memory attributes
can be returned as a string and written out to the resulting kickstart
file at the end of the installation process. The gui subpackage may
have one or more subpackages each for a different group of UI el-
ements – spokes, hubs and categories – where the last one is for
defining a category of spokes, that should appear on the hub next
to each other. All of these subpackages (if existing) should then con-
tain modules with classes inherited from the special classes defined
by the API. However, for addons only the standard spokes are rec-
ommended as they fit best in the hub&spoke model without disturb-
ing the user experience (UX) much. The NormalSpoke is the special
class defined by the API for the standard spokes and the addon’s
class inherited from it should implement the methods for initializa-
tion of the spoke, refreshing when visited, getting status of the spoke
and information about its readiness and completeness and for apply-
ing changes11 done by the user on the spoke. Moreover the inherited
class should have a set of predefined attributes defining the spoke’s
title, icon, the file with the UI definitions12, etc. [57]. The tui sub-

11. storing them in kickstart data and modifying the runtime environment’s state
12. created in the Glade [61] designer

42

5. ANACONDA INSTALLER

package then follows similar rules as the gui subpackage, only the
categories of spokes are implemented in a different way – as string
identifiers specified by the spokes, not special classes.

The whole package with the addon should be then placed to the
installation environment to the /usr/share/anaconda/addons di-
rectory. When the Anaconda installer starts, it iterates over the di-
rectories found there and searches for the classes inherited from one
of the special classes defined by the API. This way all the addons’
data handlers, spokes, etc. are collected and instantiated.

43

Chapter 6

OSCAP Anaconda Addon

Chapters 4 and 5 described, among the other things, that it is a good
strategy to do first run of the content evaluation and remediation
even in the pre-installation phase, which means that the OS installer
has to be extended, and that the Anaconda installer allows such ex-
tension to be created and deployed. This chapter is dedicated to the
description of the actual implementation of the extension – the OSCAP
Anaconda addon . The name is derived from the OpenSCAP project’s
name because the addon utilizes the openscap library and the oscap
tool a lot. In spite of the fact that the addon is still being developed,
it already provides basic, but useful, functionality.

6.1 Architecture

As was described in the section focused on the addons support in
the Anaconda installer, the only supported programming language
for the addons is Python and an addon has to be a Python package
with the name prefixed by the organization or project it was created
under. The name of the OSCAP addon’s package was thus set to
the org_fedora_oscap because it is being created under the Fedora
project. Similarly to the Anaconda, the OSCAP addon is combin-
ing the OOP and modular programming paradigms and contains a
lot of functions next to definitions of classes and methods. The top-
level package has two subpackages, ks and gui (with the purpose
described in the section 5.3 and four helper modules providing use-
ful functionality for working with the content. The tui subpackage is
not implemented for now, because the GUI has higher priority (even
in the Anaconda installer) and the TUI will be implemented later if
it turns out there are users that cannot use the GUI mode. The four

44

6. OSCAP ANACONDA ADDON

modules in the top-level package are: common, content_handling,
data_fetch, rule_handling and utils. The simple utils module pro-
vides utility functions that are useful but not provided by standard
Python libraries/modules. And while the content_handling module
defines classes for getting information (mainly lists of items) from the
data stream collections, data streams and standalone XCCDF bench-
marks, the rule_handling module provides a class for handling spe-
cial rules (or more precisely the contents of fix elements) for the pre-
installation phase. The data_fetch defines a function for fetching data
from various sources and the common module provides constants
and functions that are used by the modules for installation modes
but are not specific any particular mode.

6.2 SCAP content processing

The OSCAP Anaconda addon implements the approach of SCAP
content application suggested in the chapter Policy compliance con-
figuration. In the beginning of the installation process the values
from the kickstart file are read and parsed to find out from where
the content should be fetched and which XCCDF profile (and in case
of the data stream collection from which data stream and checklist)
should be applied. When the GUI starts (as described in the previous
section there is no support for the TUI mode for now), the content is
fetched and if it is an archive, also extracted, then the contents of the
special fix elements for the pre-installation phase1 are gathered from
the chosen profile and evaluated to check and change the configu-
ration values set by the user in the kickstart file or in the UI. The
results of the check and information about the changes are shown on
the SECURITY PROFILE spoke2 that is marked as finished or not de-
pending on the results of the check. Also a profile together with data
stream and checklist IDs can be changed on the spoke and in the fu-
ture there may appear a field for entering a content URL (which can
be done only in a kickstart file for now). If a configuration that is
not in compliance with the chosen profile is detected, changes which

1. having their @system attribute set to urn:redhat:anaconda:pre
2. more information about the spoke can be found in the section 6.4 describing
the gui and ks subpackages

45

6. OSCAP ANACONDA ADDON

can be done automatically are made and problems that need to be
fixed manually3 are reported on the spoke. Unless all problems are
fixed, the spoke’s status is set to Misconfiguration detected and start
of the actual installation process is blocked. The user can go to the
SECURITY PROFILE spoke to find out what is the problem with the
current configuration and then go to the other spokes and change
the configuration or choose a different profile. Once that happens,
the installation may proceed and before the actual installation pro-
cess starts one more check of the compliance is done so that even
the potential problems caused by late changes in the configuration
are caught. This check is performed also if the GUI is not run (e.g.
in case of the TUI mode) so it prevents a system with non-compliant
configuration to be installed.

At the end of the installation process, when all packages are in-
stalled to the installation destination and the newly installed sys-
tem’s configuration is set up according to the values requested by
the user, the fetched (and extracted) content is copied to the tar-
get system and evaluation with remediation is run. The results are
saved under the root’s home directory of the newly installed system
for later analysis by the administrator. In case there are requests for
showing the results in the UI, an additional spoke for the installa-
tion screen or the Initial Setup tool4 (or both) will be implemented.
A screen for the Initial Setup would be the preferred way because
the results of evaluation right after the installation and during the
first boot may differ and the latter are more important and accurate.
However, due to the Initial Setup uses the pyanaconda package and
has the same API for addons, it may be possible to make the spoke
universal and suitable for both cases.

3. for example a requested partition cannot be created (or more precisely sched-
uled to be created) automatically because it is practically impossible to guess the
right size for it
4. the tool run during the first boot of the system using the pyanaconda package
and having the same addons support

46

6. OSCAP ANACONDA ADDON

6.3 The helper modules

It is a good practice to split the functionality into separate modules,
classes and functions with well-defined API, so that the implemen-
tations of the functions and classes can be changed liberally as long
as the API is preserved and the modules can be tested as separate
standalone units without the tests being affected by the rest of the
code (so called unit testing). The OSCAP addon follows this prac-
tice by having the functionality it needs to implement split into four
helper modules (apart from the gui and ks packages required by the
Anaconda’s API).

The utils module provides two simple but very useful functions
– ensure_dir_exists and universal_copy. The first one takes
a directory path, checks if such directory exists and if not, creates it.
This is a common operation done very often, but, for some reason,
the standard Python os.makedirs function fails if the directory al-
ready exists. Having such utility function defined means less lines of
code, smaller risk of bugs caused by writing the code from it again
and again and it can be tested by a unit test. The universal_copy
function provides a universal functionality for copying data, simi-
lar to the standard cp utility. The shutil module available as part
of the standard Python distribution provides functions for copying
data, but there are separate functions for copying files and directo-
ries and if copying directory, the destination directory must not exist.
The universal_copy function resolves these issues and moreover
it works with globs5.

Although the OSCAP addon uses the oscap tool to do content
evaluation and remediation, it also needs to process the content itself
to get the list of available data streams, checklists and profiles. The
openscap library and its Python bindings can be used for that, but
since it is very low-level library, it is useful to create a module pro-
viding a high-level API for things needed by the addon. This is im-
plemented in the content_handling module and its DataStreamHan-
dler and BenchmarkHandler classes. As the name suggests, the for-
mer one provides handling of data streams in a data stream collec-
tion and has public methods for getting data stream IDs, checklist

5. strings with special characters (*, ?, . . .) that can match multiple items

47

6. OSCAP ANACONDA ADDON

IDs and profiles in a given data stream and checklist respectively –
get_data_streams, get_checklists and get_profiles. The
much simpler BenchmarkHandler class provides only the profiles
property for getting a list of profiles in the benchmark (an XCCDF
document) it is instantiated with. Both classes use the ProfileInfo
helper class for encapsulation of the profile information (currently
the ID, title and description).

When a SCAP content is evaluated in the pre-installation phase,
the contents of the special fix elements have to be pulled from the
content, parsed and evaluated. While getting the contents of the fix
elements can be done with the oscap tool, the results (the special
rules) has to be parsed and evaluated by the addon itself. Since it is
not trivial and basically the most critical part of the addon that needs
to be tested well, a separate module – rule_handling – has been cre-
ated for it. As it was described in the chapter 4, the format for the con-
tents of the special fix elements has to be able to express a set of rules
and in the same time has to be clear and simple so that the content
creators can easily add such data next to the standard fix elements.
As a format meeting both these requirements the command-like syn-
tax used also for the kickstart files has been chosen. It is a very simple
and by being very similar to the kickstart files, it is familiar to people
writing such files for automated installations. Currently, the follow-
ing rules are supported:

• part MOUNTPOINT specifying that a separate partition or log-
ical volume for some mount point has to exist, optionally with
a --mountoptions=OPT1,OPT2,... option specifying the
mount options that should be used for the mount point,

• passwd --minlen=NUMBER specifying the minimal length
of user passwords,

• package --add=PACKAGE --remove=PACKAGE specifying
which packages should or should not be installed, respectively,
and

• bootloader --passwd specifying that the boot loader’s con-
figuration during boot should be protected with a password.

48

6. OSCAP ANACONDA ADDON

All these rules (or commands) are expected to be extended with ad-
ditional options as more types of rules that need to be handled in the
pre-installation phase are identified.

The rule_handling module exports6 only the RuleData class that
can be used for parsing, storing and evaluating the rules listed above.
It has three public methods7 – new_rule, eval_rules and re-

vert_changes – that can be used, in the same order, for adding
(parsing and storing) new rules, evaluating rules by doing changes
to the installer’s runtime configuration and reporting which changes
have been done or need to be done and for reverting changes done
by previous evaluations (which is needed when switching between
profiles). These methods use a couple of private methods and in-
stances of non-exported classes (child object) for the types of rules
listed above. The evaluation (reverting changes) is then done recur-
sively, by doing evaluation (reverting changes) of the child objects.

The common module provides constants and functions that are
used by the packages and modules for installation modes but are
not specific to a particular mode. For example there are constants
defining the paths of the files and directories containing the content
in both pre-installation and post-installation phases. Then there is a
function for getting special rules (or more precisely contents of the
fix elements) for the pre-installation phase by using the oscap tool
– get_fix_rules_pre – which takes a profile ID, path to the file
with a SCAP content and optionally data stream ID and checklist
(XCCDF) ID (in case of the content in the data stream collection)
and returns the concatenated contents of the special fix elements for
the rules selected by the given profile. The run_oscap_remediate
takes the same arguments plus one more that can be used to specify
in which root8 it should run the evaluation of the SCAP content and
remediation by using the oscap tool. The wait_and_fetch_net_data
function can be used for waiting for network connection and fetch-
ing data. It is supposed to be called in a separate thread because
otherwise it would block the caller potentially for a long time. As

6. in its __all__ variable
7. the Python language doesn’t have any keywords for access modifiers and
classes, methods, functions, etc. that should be considered private are just prefixed
with one or more underscores
8. the top-level directory of a system’s directory tree

49

6. OSCAP ANACONDA ADDON

it was described in the chapter 4 focused on the policy compliance
configuration, SCAP content can be provided as an archive. To allow
handling of such data, there is the extract_data function that ex-
tracts the data from a given archive to a given output directory. The
type of the archive is determined from the archive’s file name. Op-
tionally, the function can also check if some given file is included in
the archive. Apart from these functions and constants the common
module also defines the RuleMessage class (as a named tuple) and
three message types that can be used for passing information about
the pre-installation rules evaluation and remediation (done e.g. by a
RuleData instance).

Last but not least there is the data_fetch module, that exports
only a single function, fetch_data, and contains multiple constants
and a helper function needed for its implementation. For now, the
content data can be fetched only from network via the HTTP or HTTPS9

protocols, but in the future some other protocols or types of sources
(such as a USB stick) are expected to be supported. All by the uni-
versal fetch_data function that will use the non-exported func-
tions for specific sources or protocols. Although the SCAP defines
ways how to check authenticity of the content, it may be sometimes
enough and much easier to just check the authenticity of the server
from which the content is downloaded by verifying its SSL certifi-
cate. For cases where such server doesn’t have a certificate from a
well-known and trusted certification authority, the fetch_data func-
tion has, among the others, an argument that allows passing a path
to a file containing a certificate chain in the Privacy Enhanced Mail
(PEM) [63] format.

6.4 Subpackages for installation modes

The helper modules described in the previous section provide a core
functionality needed to process the SCAP content from fetching it
through pulling information from it to evaluating it on a newly in-
stalled system with remediation. However, to become useful, all these
pieces need to be glued together and hooked up to the Anaconda in-
staller. This is what the ks and gui subpackages do by implement-

9. HTTP over Secure Sockets Layer (SSL) [62]

50

6. OSCAP ANACONDA ADDON

ing the classes required by the Anaconda’s API for addons. As it is
common, the GUI code is much bigger and more complex than the
code handling the text-based user input even tough it utilizes the
helper modules and as well as the kickstart support code. Thus we
will start with a description of the ks subpackage, or more precisely,
its only module – oscap. This module exports the OSCAPdata class
inherited from the AddonData class from the pyanaconda.addons
module as the API requires. The OSCAPdata class provides meth-
ods for parsing and storing the contents of the kickstart file and ap-
plying such parsed values on both the installation environment and
the target system (as was described in the section 5.2 focused on the
Anaconda’s architecture).

When the Anaconda installer processes a kickstart file, it goes line
after line and parses the contents from it by using the pykickstart
package and its classes. Lines in a kickstart file can have four forms –
blank lines, comments starting with the # character, commands with
options and arguments (e.g. part /tmp --size=1024) or lines
opening (closing) sections that start with the % character. The addon
support in kickstart files is implemented as special sections starting
with the %addon ADDON_NAME line and ending with the %end line.
When the opening line is reached, an instance of the addon’s Addon-
Data implementation is created10 and all following lines are passed
to its handle_line method one after another. At the end of the sec-
tion, the finalize method is called. Then the setup and execute

methods are called as described in the section 5.2. A typical %addon
section may look like this:

%addon org_fedora_oscap
content−type = archive
content−u r l = ht tps :// example . com/scap_content . zip
p r o f i l e = xccdf_com . example_prof i le_my_prof i le
xccdf−path = xccdf . xml

%end

The OSCAPdata class implements the methods mentioned above
and provides some extra properties and attributes that can be used
e.g. by the GUI code. The handle_line method is responsible for

10. if no such addon is found an instance of the AddonData class itself is created
as a placeholder

51

6. OSCAP ANACONDA ADDON

parsing the key-value pairs11 and storing them in the internal at-
tributes. Since different actions can be needed for different keys and
values, the method just looks at the key and calls the appropriate in-
ternal (private) method responsible for parsing and storing the value
for that particular key. For now, the following keys are supported –
content-type, content-url, datastream-id, xccdf-id, xccdf-
path and profile – but more are expected to be added in the fu-
ture. Values for these keys can be used for specifying which type
the content is using (datastream, archive, etc.), from where it
should be fetched, which data stream, checklist should be used (if the
datastream type is used) or what is the path of the XCCDF bench-
mark in the archive (if the archive type is used) and which pro-
file should be chosen for evaluation and remediation. The finalize
method then performs some basic checks of the values such as that
if the archived content is used, the XCCDF path is specified and so
on. If some of the checks fails, an exception is raised and the instal-
lation stops. Despite this may look as a too strict policy, it is used by
the Anaconda installer with the intention to prevent installation of a
system with a non-working or non-requested configuration.

Then there are the setup and execute methods performing the
pre-installation and post-installation changes, respectively. The for-
mer one makes sure that the configuration is in compliance with a
chosen profile12 and adds packages needed for the post-installation
phase (especially the openscap and openscap-utils packages) to the
list of to be installed packages. The latter one copies the SCAP con-
tent to the newly installed system and runs evaluation and reme-
diation on it13. On top of these methods required by the API, there
are also three properties useful for the UI code providing paths to
the fetched and extracted content in the pre-installation and post-
installation phases.

The ks package may seem to provide all the functionality that is
needed for application of SCAP content in both pre-installation and
post-installation phases. However, if there is some problem with the
configuration that cannot be resolved automatically, the installation

11. which was decided to be a clear and simple format for information that need
to be expressed
12. by running the eval_rules method of a RuleData instance
13. by calling the run_oscap_remediate function with a different root specified

52

6. OSCAP ANACONDA ADDON

just terminates without giving user a chance to fix the configuration
and continue. Also if some required information (e.g. the profile) is
not given in the kickstart file, the installation terminates. For actions
that need an interaction with the user, the gui has been implemented.
It has two subpackages – spokes and categories – containing the
modules and classes implementing the Anaconda’s API for addons’
GUI elements. The categories subpackage provides only the security
module exporting only the SecurityCategory class. This class simply
defines a category titled as SECURITY, that is supposed to appear on
the SummaryHub, the main screen of the Anaconda’s user interface.

The spokes subpackage contains the oscap module exporting the
OSCAPSpoke class which is inherited from the NormalSpoke class
and defines a spoke that belongs to the SecurityCategory category
and thus appears on the SummaryHub. Apart from that, the oscap
module contains three helper functions for setting selections of combo
boxes and tree views and getting selections from combo boxes, be-
cause these functions are not provided by the graphical elements
themselves and are often needed. The Anaconda installer uses the
Gtk3 library [64] for the GUI so the OSCAPSpoke, that hooks into
the user interface, uses it as well. The look of the spoke is defined in
the oscap.glade file created with the Glade designer [61]. The Ana-
condaSpokeWindow widget is used as the main window because
that’s what is required for an installer spoke. The OSCAPSpoke class
has a set of special class attributes defined by the API which tell the
Anaconda how to instantiate it and how to show it. The uiFile

attribute points to the oscap.glade file, the mainWidgetName at-
tribute’s value tells the installer the ID 14 of the spoke’s main window
widget, the icon attribute specifies which icon should be used for
the spoke on the hub 15 and the title specifies what should appear
next to the icon as a name of the spoke as well as the spoke’s window
title. Figure 6.1 shows how the spoke’s accessor looks on the hub. As
can be seen, the spoke uses a lock icon (symbolizing hardening) from
the same set of icons the Anaconda’s spokes use. This way it looks
like an integral part of the installer and at first sight suggests what
its purpose is. The spoke appears in the SECURITY category with

14. as appears in the oscap.glade file
15. in its SpokeSelector instance acting as an accessor for the spoke

53

6. OSCAP ANACONDA ADDON

Figure 6.1: OSCAPSpoke on the Summary hub

the SECURITY PROFILE title and provides basic feedback about its
state in the status (“Misconfiguration detected”). The orange triangle
with an exclamation mark means that the spoke is not completed
and user needs to take some actions to continue with the installation.

The figure 6.2 shows the spoke’s screen as it appears when the
accessor shown in the figure 6.1 is clicked or activated by keyboard.
At the top there is a header provided by the Anaconda installer16.
Below the header there are two combo boxes allowing the user to
select data stream (the left one) and checklist from the selected data
stream (the right one). These combo boxes are hidden if a standalone
benchmark (not as part of a data stream collection) is used as a con-

16. or more precisely by its SpokeWindow widget

54

6. OSCAP ANACONDA ADDON

Figure 6.2: OSCAPSpoke’s main screen

tent. The biggest two elements in the screen are two views listing the
profiles available in the chosen checklist (the top one) and so called
rule messages which inform the user about all changes that were or
need to be done (according to the currently active profile) and warn
about potential issues. The “Select profile” button in between these
two views can be used for activation of the profile selected in the
upper view. If the selected profile is the currently active one, the but-
ton is insensitive and thus cannot be clicked. Once a different profile
is selected, the button becomes sensitive and if the user clicks it the
selected profile is activated (evaluated) and the store with the rule
messages is updated.

55

6. OSCAP ANACONDA ADDON

The screen was designed to fit in the style used by the Anaconda
installer and also according to the rules described in the Eric. S. Ray-
mond’s book The Art of UNIX Programming [66] that emphasize on
the clarity of the user interface together with visibly differentiating
between more and less important pieces of information.

The OSCAPSpoke class defines properties and methods required
by the Anaconda’s addon API and a few additional properties and
methods that facilitate the rest of the code. Every spoke must have
the following properties:

• ready specifying if the spoke can be visited or not,

• completed telling whether all required values are set or not
and

• status returning the short summary of the values set on the
spoke that then appears on the hub.

Besides these properties, the spoke also have to implement these
methods:

• initialize which is called when the GUI is being initial-
ized,

• refresh that is called every time the spoke is visited,

• apply which is responsible for storing the values from the UI
to the kickstart data instance17 when the spoke is left and

• execute that should do all changes to the runtime environ-
ment the spoke requires.

Being a standard Python class, the spoke must also have the __init__
method serving as a constructor. In OSCAPSpoke’s case this method
just initializes the instance attributes with default values and one
of them, self._storage, with a value it gets as one of its argu-
ments. This attribute holds reference to the Anaconda’s storage con-
figuration information and is crucial for pre-installation rule evalu-
ation. The initialize method then pull’s and stores references to

17. available as the self.data attribute

56

6. OSCAP ANACONDA ADDON

the UI elements of the spoke by querying an instance of the Gtk-
Builder class creating objects defined in the oscap.glade file. Then
it looks at the value of the OSCAPdata instance’s content_url

attribute and if it is a valid URL it starts a thread for fetching the
content, sends messages which say that the spoke is not ready and
that it is fetching data to the hub and starts a thread that watches
the fetching thread. Once fetching is finished, it initializes a DataS-
treamHandler or BenchmarkHandler instance with the fetched con-
tent, evaluates the special pre-installation rules from the content18,
initializes the UI elements (chosen profile, rule messages, etc.) and
sends messages marking the spoke ready with a status describing
the configuration’s compliance with the chosen profile (will be de-
scribed later). The refresh method just updates the UI elements
with the values set in the kickstart data (data stream ID, XCCDF
ID and profile) which are set either from parsing the kickstart file
or by the apply method when the spoke is left. One interesting
thing about the refresh method is that it is decorated with the
@gtk_action_wait decorator (provided by the pyanaconda pack-
age) which makes sure that even if the decorated method is called
from a non-main thread, it is run in the main thread (which is re-
quired by the Gtk library for code manipulating with the UI ele-
ments) and the caller’s thread is blocked until the decorated method
finishes. The returned value is then correctly returned to the caller.
The reason for decorating the refresh method is that it is called
from a non-main thread after data fetching and refreshes the UI el-
ements. Since the spoke doesn’t require any runtime changes to be
done when leaving it, the execute method does nothing.

The ready property just returns the value of the self._ready
attribute that is set during initialization and after data fetching. Be-
cause the spoke should prevent a system with non-compliant con-
figuration to be installed, the completed property returns True or
False depending on whether there are some problems (with the
configuration) that cannot be fixed automatically or not. This way
the spoke blocks the installation process by being incompleted until
the configuration is fixed (e.g. a partition is scheduled to be created)

18. by initializing and populating a RuleData instance and calling its
eval_rules method

57

6. OSCAP ANACONDA ADDON

or a different profile that is in compliance with the configuration is
chosen. Last of the required properties is the status property. Its
value reflects if there are any problems with the configuration (in
relation to the chosen profile) or not. If there are no problems, the
value is “Everything okay”. If there are warnings (some problems
were fixed automatically by an important change of the configura-
tion), the value is “Warnings appeared”. And finally, if there are some
problems that cannot be fixed automatically, the “Misconfiguration
detected” string is returned. The user is then expected to visit the
spoke to find out what the problem is.

Most of the code in the OSCAPSpoke actually lies in the meth-
ods that are used for reacting on user’s actions in the GUI. There are
handlers for the signals emitted by the UI elements when user in-
teracts with them (by changing the selected item or clicking them)
and helper methods and properties that are used to update the UI
after changes. For example there is the _switch_profile method
that gets the chosen profile (plus the data stream and XCCDF IDs)
from the GUI, reverts the changes done by evaluation of the previ-
ous profile and updates the rule messages store with the messages
reported by the evaluation of the newly chosen profile. This method,
as well as the other helper methods, is complicated by the fact, that
the used SCAP content may be a standalone XCCDF benchmark or a
data stream collection. Each of these two cases has slightly different
code paths that need to be executed.

6.5 The code and deploying

The OSCAP addon is an open source project. The source codes are
available in a public Git repository [65] so anybody can download
them and since the licence used for the project is the GNU General
Public Licence (GPL) version 2 (or later), the code can be freely used,
modified and redistributed under the same licence or any later ver-
sion of the GPL. To support the openness of the project, the source
code is straightforward, clean and a vast majority of the functions,
classes and methods have the so called docstrings providing a doc-
umentation about their purpose, parameters, return values, etc. In
places where the coding style compatibility with some other pieces

58

6. OSCAP ANACONDA ADDON

of the code is not needed19, the code follows the coding style de-
scribed in the Python Enhancement Proposal 8 (PEP 8) and follows
the suggestions provided by the pylint tool. The code and its de-
sign follow the rules, suggestions and guidelines from the two fa-
mous books about UNIX/Linux programming: Eric S. Raymond’s
The Art of Unix Programming [66] and Robert Love’s Linux System
Programming [67]. And there are 56 unit tests that should be run af-
ter every change in the code and should be kept passing. New tests
are expected to be added as more functionality is implemented.

For now, the OSCAP addon is just a Python package as the Ana-
conda’s addon API requires. If somebody wants to test it, it has to
be placed under the particular directory in installation environment
so that the Anaconda installer finds it and instantiates it. This can
be done by creating a so called updates image (for the installer) [68]
with the addon included in it together with the dependencies the ad-
don needs20. This is impractical and so for the future the plan is to
create an RPM package with the addon that would have the right
dependencies specified and that could be installed to the installer’s
environment by the lorax tool creating the installation images. How-
ever, it is a good practice to create a package only after the packaged
software has a stable version which is not the case of the OSCAP
addon yet because it is expected to be developed more before it is
used by many users. The plan is to have the addon as something like
a “technical preview” for the Fedora 19 release (the final release is
planned on the beginning of July 2013 [69]), so that people can try
using and testing it, and after fixing problems identified that way,
the addon should be packaged and possibly included as part of ev-
ery installation media for the Fedora 20 (the end of 2013) and the
subsequent releases.

19. for example the OSCAPSpoke tries to follow the similar coding style as the
Anaconda’s spokes
20. the openscap, openscap-utils and openscap-python packages

59

Chapter 7

Conclusions

One of the biggest problems of IT security is that even there are often
known principles and steps how to minimize attacker’s possibilities
and how to mitigate the risk of misuse of some particular system,
they are not so often deployed and used by the administrators. Either
they don’t know how to apply them correctly, don’t know where to
get such rules and recommendations or apply them in a wrong phase
of the system’s life-cycle. This thesis tries to fight this problem by an-
alyzing options provided by the Security Content Automation Pro-
tocol together with analyzing examples of the content following the
format defined by the SCAP, all finalized with the implementation of
an addon for the Anaconda OS installer that allows administrators
to choose a security profile for the newly installed RHEL or Fedora1

system with (semi-)automatic evaluation and remediation of the sys-
tem.

The analysis of the SCAP an its components has shown that it is
a very broad, versatile and extensible protocol providing enough ex-
pressivity for data that would help administrators to bring their sys-
tems in compliance with a chosen profile defined by the content they
use. With the SCAP being so broad and complex it would be very
difficult and time consuming to implement a whole chain of libraries
and tools for processing content following the specifications. Fortu-
nately, there is the OpenSCAP project (and the related projects) pro-
viding an open-source and freely available implementation of such
chain containing a library and a tool for processing SCAP content
that allow building a solution helping to fight the problem men-
tioned in the previous paragraph on top of them.

1. and number of their derivatives

60

7. CONCLUSIONS

How such solution should look like was identified by an analysis
of the examples of available SCAP content and the rules they con-
tained. We have found out that it can be hard to modify the system
to be in compliance with some types of rules after the installation
and thus an approach combining evaluation and remediation in the
OS pre-installation and post-installation phases has been suggested
as the best way to bring the system in compliance with a content.
Moreover, the OS installation is a process administrators usually pay
a lot of attention to so bringing up the question of security harden-
ing during it is a nice way to notify them something like that should
be and could be easily done. While OS installers are often very com-
plex and one-purpose tools, fortunately, the Anaconda installer used
by multiple GNU/Linux distributions provides a simple API for ex-
tensions (called addons). By studying the API and the capabilities
it provides we have found out that it is possible to implement the
suggested approach with an Anaconda addon.

However, by the time the work on the addon was being started
there wasn’t any working addon that would prove the Anaconda’s
addons support really works and show how an addon should look
like. Thus as a first step on the way to the SCAP content processing
addon the simple Hello world addon [60] has been implemented and
deployed in the installation environment which helped to identify
and fix bugs in the Anaconda’s addon support [70]. And since there
also was no documentation of the API and there were no guidelines
for the Anaconda addon development, the work on the Anaconda
Addon Development Guide [57] has been started to provide infor-
mation covering that area. By the time of the work on this thesis it
is still in a draft state, but it is expected to be reviewed, edited and
taken as part of the official documentation for the Fedora and RHEL
distributions which would simplify the work for the other people
implementing an Anaconda addon. The Anaconda’s addon support
(with the Hello world addon as a proof of concept) was presented at
the Developer Conference in February 2013 [71].

Finally the OSCAP addon that implements the approach of com-
bining pre and post-installation evaluation of the SCAP content has
been created. It uses the openscap library and the oscap tool pro-
vided by the OpenSCAP project (hence the name OSCAP addon)
and hooks up to the Anaconda installer where it checks the configu-

61

7. CONCLUSIONS

ration of the to be installed system and remediates the system once
it is installed, all according to a chosen profile from a given SCAP
content. Its graphical user interface provides a way to choose a pro-
file and review the changes in the configuration that are automati-
cally done to match the rules defined by the profile, together with
the changes that need to be done manually. And although it requires
additional data to be added to the SCAP content (the special fix
elements for the pre-installation phase), the format for this data has
been designed to be very simple, clear and similar to the format of the
so called kickstart files that is well-known to people using these files
for (semi-)automatic installations. Moreover, kickstart files are some-
times parts of the security content provided by organizations [72]
Thus it shouldn’t be a problem to add such pieces of data to the ex-
isting and newly created content.

Even though the OSCAP addon now provides only the basic func-
tionality and there is a lot of room for further enhancements and ad-
ditional features, two videos [73] [74] that were recorded to provide
a preview of its look and functionality got a very positive and con-
structive feedback from the members of the communities around the
OpenSCAP and SCAP Security Guide projects [75] [76]. It will be
available as a technical preview for the Fedora 19 release so that the
interested people can try and test it, and then, after fixing reported
issues and adding the most requested features it will be packaged
as a software package for the Fedora distribution and provided in a
easily deployable way for the Fedora 20 release together with some
default SCAP content created by the community and amended with
the rules for the pre-installation phase. Ideally as part of every instal-
lation media and thus every installation process which would mean
more than million uses with every release2 [77]. And since the addon
API of the Anaconda installer should be preserved also by its ver-
sion for the RHEL, the OSCAP addon will be also available for in-
stallations of this enterprise GNU/Linux distribution that will open
a huge area of potential users with demanding (and often financial)
interest in security and secure configuration of their systems.

So the two main goals now are further development of the addon
and its features and working together with SCAP content creators on

2. if the user base of the distribution doesn’t shrink unexpectedly

62

7. CONCLUSIONS

amending rules with the special fix elements understood and pro-
cessed by the addon in the pre-installation phase. Since the whole
project is open-source and publicly available, more contributors are
expected to get involved once it receives more attention with the re-
leases of the Fedora GNU/Linux distribution.

63

Bibliography

[1] GRUSKA, Jozef. Future challenges of informatics 2013 – Chapter 4:
New perception of (scientific) Informatics [online], [cited 10.04.2013].
Available at:

<http://www.fi.muni.cz/usr/gruska/future13/>

[2] Microsoft Corporation. Preventing Hardware Failures [online]
2005, [cited 10.04.2013]. Available at:

<http://technet.microsoft.com/en-us/library/
ee799385%28v=cs.20%29.aspx>

[3] Members of the OpenSCAP community. Main Page – Openscap
[online] 26.04.2013, [cited 28.04.2013]. Available at:

<http://open-scap.org/wiki/index.php?title=
Main_Page&action=history>

[4] The Open Source Initiative. The Open Source Definition [online],
[cited 28.04.2013]. Available at:

<http://opensource.org/osd>

[5] Linux.org. What is Linux [online] 20.07.2012, [cited 28.04.2013].
Available at:

<http://www.linux.org/article/view/
what-is-linux>

[6] Free Software Foundation, Inc. The GNU Operating System [on-
line] 10.03.2013, [quoted 28.04.20113. Available at:

<http://www.gnu.org/gnu/gnu.html>

64

BIBLIOGRAPHY

[7] National Security Agency. Red Hat Linux Hardening Tips [online]
June 2012, [cited 01.05.2013]. Available at:

<http://www.nsa.gov/ia/_files/factsheets/
rhel5-pamphlet-i731.pdf>

[8] Operating Systems Division Unix Team of the Systems and Net-
work Analysis Center, National Security Agency. Guide to the Se-
cure Configuration of Red Hat Enterprise Linux 5 [online] 28.02.2011,
[cited 01.05.2013]. Available at:

<http://www.nsa.gov/ia/_files/os/redhat/NSA_
RHEL_5_GUIDE_v4.2.pdf>

[9] HALBARDIER, Adam, QUINN, Stephen, SCARFONE, Karen,
WALTERMIRE, David. The Technical Specification for the Secu-
rity Content, Automation Protocol (SCAP) [online] September 2011,
[cited 01.05.2013]. Available at:

<SCAPVersion1.2>

[10] Refsnes Data. XML Validation [online] 2013, [cited 01.05.2013].
Available at:

<http://www.w3schools.com/xml/xml_dtd.asp>

[11] World Wide Web Consortium. XML Signature Syntax and Pro-
cessing (Second Edition) [online] 10.06.2008, [cited 10.05.2013].
Available at:

<http://www.w3.org/TR/2008/
REC-xmldsig-core-20080610/>

[12] BAKER, Jonathan, HANSBURY, Matthew, HAYNES, Daniel.
The OVAL R© Language Specification Version 5.10.1 [online]
20.1.2012, [cited 02.05.2013]. Available at:

<http://oval.mitre.org/language/version5.10.1/
OVAL_Language_Specification_01-20-2012.pdf>

65

BIBLIOGRAPHY

[13] HAYNES, Danny, MELACHRINOUDIS, Stelios. The OVAL R©

Language UNIX Component Model Specification Version 5.10.1 [on-
line] 03.04.2013, [cited 02.05.2013]. Available at:

<http://oval.mitre.org/language/version5.10.1/
OVAL_Unix_Component_Specification.04-04-2012.

pdf>

[14] Linux Information Project. Unix-like Definition [online]
18.06.2006, [cited 02.05.2013]. Available at:

<http://www.linfo.org/unix-like.html>

[15] HAYNES, Danny, MELACHRINOUDIS, Stelios. The OVAL R©

Language Windows Component Model Specification Version 5.10.1
[online] 19.01.2012, [cited 02.05.2013]. Available at:

<http://oval.mitre.org/language/version5.
10.1/OVAL_Windows_Component_Specification_

01-19-2012.pdf>

[16] Object Management Group. OMG Unified Modeling Language
(OMG UML), Infrastructure [online] 05.08.2011, [cited 02.05.2013].
Available at:

<http://www.omg.org/spec/UML/2.4.1/
Infrastructure/PDF>

[17] Open Source Initiative. The BSD 2-Clause License [online] ,
[cited 02.05.2013]. Available at:

<http://opensource.org/licenses/bsd-license.
php>

[18] MITRE Corporation. OVAL Interpreter [online] 01.11.2012,
[cited 02.05.2013]. Available at:

<http://oval.mitre.org/language/interpreter.
html>

[19] Farnam Hall Ventures LLC. jOVAL.org: OVAL implemented in
Java. For free. [online] 2013, [cited 03.05.2013]. Available at:

<http://joval.org/>

66

BIBLIOGRAPHY

[20] Free Software Foundation, Inc.. GNU Affero General Public Li-
cense [online] 28.02.2013, [cited 03.05.2013]. Available at:

<http://www.gnu.org/licenses/agpl.html>

[21] MITRE Corporation. OVAL Repository [online] 2013,
[cited 03.05.2013]. Available at:

<http://oval.mitre.org/repository/>

[22] CASIPE, Maria, SCARFONE, Karen, WALTERMIRE, David.
Specification for the Open Checklist Interactive Language (OCIL) Ver-
sion 2.0 [online] April 2011, [cited 08.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7692/nistir-7692.pdf>

[23] HALBARDIER, Adam, WALTERMIRE, David, WUNDER,
John. Specification for Asset Identification 1.1 [online] June 2011,
[cited 08.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7693/NISTIR-7693.pdf>

[24] HALBARDIER, Adam, JOHNSON Mark, WALTERMIRE,
David. Specification for the Asset Reporting Format 1.1 [online] June
2011, [cited 08.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7694/NISTIR-7694.pdf>

[25] CHEIKES, Brant A., SCARFONE, Karen, WALTERMIRE,
David. Common Platform Enumeration: Naming Specification [on-
line] August 2011, [cited 08.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7695/NISTIR-7695-CPE-Naming.pdf>

[26] BOOTH, Harold, PARMELEE, Mary C., SCARFONE, Karen,
WALTERMIRE, David. Common Platform Enumeration: Name
Matching Specification [online] August 2011, [cited 08.05.2013].
Available at:

<http://csrc.nist.gov/publications/nistir/
ir7696/NISTIR-7696-CPE-Matching.pdf>

67

BIBLIOGRAPHY

[27] CICHONSKI, Paul, SCARFONE, Karen, WALTERMIRE, David.
Common Platform Enumeration: Dictionary Specification [online]
August 2011, [cited 08.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7697/NISTIR-7697-CPE-Dictionary.pdf>

[28] CICHONSKI, Paul, SCARFONE, Karen, WALTERMIRE, David.
Common Platform Enumeration: Applicability Language Specification
[online] August 2011, [cited 08.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7698/NISTIR-7698-CPE-Language.pdf>

[29] National Vulnerability Database. Official Common Platform Enu-
meration (CPE) Dictionary [online] 17.05.2013, [cited 20.05.2013].
Available at:

<http://static.nvd.nist.gov/feeds/xml/cpe/
dictionary/official-cpe-dictionary_v2.2.xml>

[30] MITRE Corporation. CVE – Frequently Asked Questions [online]
2013, [cited 12.05.2013]. Available at:

<http://cve.mitre.org/about/faqs.html#a8>

[31] MITRE Corporation. CCE Creation Process [online] 22.03.2013,
[cited 12.05.2013]. Available at:

<http://cce.mitre.org/lists/creation_process.
html>

[32] MELL, Peter, ROMANOSKY, Sasha, SCARFONE, Karen. The
Common Vulnerability Scoring System (CVSS) and Its Applicability
to Federal Agency Systems [online] August 2007, [cited 08.05.2013].
Available at:

<http://csrc.nist.gov/publications/nistir/
ir7435/NISTIR-7435.pdf>

68

BIBLIOGRAPHY

[33] MELL, Peter, SCARFONE, Karen. The Common Configuration
Scoring System (CCSS): Metrics for Software Security Configuration
Vulnerabilities [online] December 2010, [cited 08.05.2013]. Avail-
able at:

<http://csrc.nist.gov/publications/nistir/
ir7502/nistir-7502_CCSS.pdf>

[34] SCAP Security Guide community. DRAFT Guide to the Secure
Configuration of Red Hat Enterprise Linux 6 [online] 13.05.2013,
[cited 15.05.2013]. Available at:

<http://people.redhat.com/swells/
scap-security-guide/RHEL6/output/

ssg-rhel6-xccdf.xml>

[35] World Wide Web Consortium. About W3C [online] 2012,
[cited 10.05.2013]. Available at:

<http://www.w3.org/Consortium/>

[36] BOOTH, Harold, HALBARDIER, Adam. Trust Model for Se-
curity Automation Data 1.0 (TMSAD) [online] September 2011,
[cited 10.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7802/NISTIR-7802.pdf>

[37] SCARFONE, Karen, SCHMIDT, Charles, WALTERMIRE,
David, ZIRING, Neal. Specification for the Extensible Configura-
tion Checklist Description Format (XCCDF) Version 1.2 [online]
September 2011, [cited 10.05.2013]. Available at:

<http://csrc.nist.gov/publications/nistir/
ir7275-rev4/NISTIR-7275r4.pdf>

[38] World Wide Web Consortium. XSL Transformations (XSLT) Ver-
sion 1.0 [online] 16.11.1999, [cited 10.05.2013]. Available at:

<http://www.w3.org/TR/1999/REC-xslt-19991116>

69

BIBLIOGRAPHY

[39] SCAP Security Guide community. DRAFT Guide to the Secure
Configuration of Red Hat Enterprise Linux 6 [online] 17.04.2013,
[cited 15.05.2013]. Available at:

<http://people.redhat.com/swells/
scap-security-guide/RHEL6/output/rhel6-guide.

html>

[40] scap-workbench community. scap-workbench [online] 25.10.2012,
[cited 15.05.2013]. Available at:

<https://fedorahosted.org/scap-workbench/>

[41] Security State community. Security State (SecState) [online]
27.11.2012, [cited 15.05.2013]. Available at:

<https://fedorahosted.org/secstate/>

[42] Tresys Technology. SCC – Trac [online] 07.10.2010,
[cited 15.05.2013]. Available at:

<http://oss.tresys.com/projects/scc/wiki>

[43] OpenSCAP community. Script Check Engine [online] 14.03.2012,
[cited 15.05.2013]. Available at:

<http://open-scap.org/page/SCE>

[44] SCE Community Content community. SCE Community Content
[online] 01.06.2012, [cited 15.05.2013]. Available at:

<https://fedorahosted.org/
sce-community-content/>

[45] Aqueduct community. aqueduct – Supported Security Configura-
tion Guidances [online] 02.07.2012, [cited 15.05.2013]. Available at:

<https://fedorahosted.org/aqueduct/>

[46] Puppet Labs. Puppet Labs Documentation [online] 17.05.2013,
[cited 15.05.2013]. Available at:

<http://docs.puppetlabs.com/#puppetpuppet>

70

BIBLIOGRAPHY

[47] SCAP Security Guide community. Welcome to scap-security-guide
[online] 01.04.2013, [cited 15.05.2013]. Available at:

<https://fedorahosted.org/scap-security-guide/>

[48] ROUSE, Margaret. Federal Information Security Management Act
(FISMA) [online] May 2013, [cited 15.05.2013]. Available at:

<http://searchsecurity.techtarget.com/
definition/Federal-Information-Security-Management-Act>

[49] Center for Internet Security. About CIS Security Benchmarks Divi-
sion [online] 2013, [cited 15.05.2013]. Available at:

<http://benchmarks.cisecurity.org/about/>

[50] Center for Internet Security. CIS Security Benchmarks Division Re-
sources [online] 2013, [cited 15.05.2013]. Available at:

<http://benchmarks.cisecurity.org/about/
#resources>

[51] Defence Information Systems Agency. Security Content Au-
tomation Protocol (SCAP) Content and Tools [online] 27.04.2013,
[cited 15.05.2013]. Available at:

<http://iase.disa.mil/stigs/scap/index.html>

[52] National Security Agency. Security Configuration Guides [online]
22.06.2012, [cited 15.05.2013]. Available at:

<http://www.nsa.gov/ia/mitigation_guidance/
security_configuration_guides/index.shtml>

[53] U.S. Department of Health & Human Services. HIPAA Pri-
vacy, Security, and Breach Notification Audit Program [online],
[cited 15.05.2013]. Available at:

<http://www.hhs.gov/ocr/privacy/hipaa/
enforcement/audit/index.html>

71

BIBLIOGRAPHY

[54] PCI Security Standards Council, LLC.. Documents Li-
brary [online] 2013, [cited 15.05.2013]. Available at:
<https://www.pcisecuritystandards.org/security_
standards/documents.php?document=pci_dss_v2-0#

pci_dss_v2-0>

[55] National Institute of Standards and Technology, Information
Technology Laboratory. The United States Government Configu-
ration Baseline (USGCB) [online] 29.04.2013, [cited 15.05.2013].
Available at:

<http://usgcb.nist.gov/>

[56] Fedora project community. Anaconda wiki [online] 16.05.2013,
[cited 20.05.2013]. Available at:

<https://fedoraproject.org/wiki/Anaconda>

[57] PODZIMEK, Vratislav. Anaconda Addon Development Guide [on-
line] 20.05.2013, [cited 21.05.2013]. Available at:

<http://vpodzime.fedorapeople.org/
anaconda-addon-development-guide>

[58] Wikipedia contributors. Virtual Network Computing [online]
05.05.2013, [cited 18.05.2013]. Available at:

<http://en.wikipedia.org/wiki/VNC>

[59] Python community. GlobalInterpreterLock [online] 02.08.2012,
[cited 18.05.2013]. Available at:

<http://wiki.python.org/moin/
GlobalInterpreterLock>

[60] PODZIMEK, Vratislav. Hello World addon repository [online],
[cited 16.05.2013]. Available at:

<http://www.fi.muni.cz/~xpodzim/git/?p=
hello-world-anaconda-addon.git>

[61] Glade Project community. Glade - A User Interface Designer [on-
line] 06.03.2013, [cited 18.05.2013]. Available at:

<http://glade.gnome.org/>

72

BIBLIOGRAPHY

[62] The Linux Documentation Project community. What is SSL and
what are Certificates? [online], [cited 18.05.2013]. Available at:

<http://www.tldp.org/HOWTO/
SSL-Certificates-HOWTO/x64.html>

[63] KENT, Stephen T.. Internet Privacy Enhanced Mail [online]
01.02.2006, [cited 18.05.2013]. Available at:

<http://www.acsac.org/secshelf/book001/17.pdf>

[64] GNOME Project. GTK+ 3 Reference Manual [online] 2012,
[cited 19.05.2013]. Available at:

<https://developer.gnome.org/gtk3/stable/>

[65] PODZIMEK, Vratislav. OSCAP addon repository [online],
[cited 18.05.2013]. Available at:

<http://www.fi.muni.cz/~xpodzim/git/?p=
master-thesis.git>

[66] RAYMOND, Eric S. The Art Of Unix Programming. 1st
Edition. Addison Wesley Professional, 2003. 547 pages.
ISBN 0-13-142901-9.

[67] LOVE, Robert. Linux System Programming. O’Reilly Media, Inc.,
2007. 368 pages. ISBN 0-596-00958-5.

[68] Fedora project community. Anaconda Updates wiki [online]
06.07.2012, [cited 19.05.2013]. Available at:

<https://fedoraproject.org/wiki/Anaconda/
Updates>

[69] Fedora project community. Releases/19/Schedule [online]
13.04.2013, [cited 19.05.2013]. Available at:

<https://fedoraproject.org/wiki/Releases/19/
Schedule>

73

BIBLIOGRAPHY

[70] PODZIMEK, Vratislav. [PATCH 1/2] Use ksdata.addons instead
of ksdata.addon and add ADDON_PATHS to sys.path [online]
12.02.2013, [cited 18.05.2013]. Available at:

<https://lists.fedorahosted.org/pipermail/
anaconda-patches/2013-February/003052.html>

[71] PODZIMEK, Vratislav. The technology beyond Anaconda NewUI
and 3rd party extensions [online] 12.03.2013, [cited 18.05.2013].
Available at:

<http://www.youtube.com/watch?v=e9bIubGmpD4>

[72] GRUBB, Steve. USGCB Standard Desktop Baseline Kickstart [on-
line] 30.09.2011, [cited 18.05.2013]. Available at:

<http://usgcb.nist.gov/usgcb/content/
configuration/workstation-ks.cfg>

[73] PODZIMEK, Vratislav. SCAP content based configuration in Fedora
installation [online] 24.04.2013, [cited 19.05.2013]. Available at:

<https://vimeo.com/64702496>

[74] PODZIMEK, Vratislav. SCAP content based configuration in Fedora
installation (update1) [online] 13.05.2013, [cited 19.05.2013]. Avail-
able at:

<https://vimeo.com/66085973>

[75] SHIMKO, Spencer. Video preview of the OSCAP Anaconda addon
[online] 15.05.2013, [cited 19.05.2013]. Available at:

<https://lists.fedorahosted.org/pipermail/
scap-security-guide/2013-May/003331.html>

[76] WELLS, Shawn. Re: [Open-scap] Video preview of the OSCAP Ana-
conda addon [online] 14.05.2013, [cited 19.05.2013]. Available at:

<https://www.redhat.com/archives/
open-scap-list/2013-May/msg00014.html>

[77] Fedora project community. Statistics – FedoraProject [online]
10.05.2013, [cited 19.05.2013]. Available at:

<http://fedoraproject.org/wiki/Statistics>

74

Attachments

Examples are often much better and clearer than long descriptions
and explanations. For this reason, a few directories and files should
be distributed with this text as attachments, either on an attached CD
or next to the file with the text. The directories have the following
structure and contents:

• examples :

– data_stream_coll.xml – a data stream collection
– xccdf.xml – a standalone XCCDF benchmark file
– oval.xml – an OVAL definitions file (used by the xccdf.xml

file)
– sce_xccdf.xml – an XCCDF using the SCE
– check.sh – simple script used by the sce_xccdf.xml file
– ks.cfg – a kickstart file that can be used to test the OSCAP

addon

• org_fedora_oscap – directory with the OSCAP addon’s pack-
age

• tests – directory containing the unit tests and the README
file explaining how to run them

75

Index

addon, 34, 39
Affero GPL license, 9
Anaconda installer, 4, 34
Aqueduct, 26
ARF, 6, 10
Asset Identification, 6, 10

benchmark, 15, 16, 52
blivet, 37
BSD licence, 9

catalog, 7
CCE, 6, 13
CCSS, 6, 13
check, 7
checklist, 7
CIS, 28
component, 6
CPE, 6, 7, 12
CVE, 6, 13
CVSS, 6, 13

data stream, 6
data stream collection, 6
DISA-STIG, 29

evaluation, 3

Fedora, 4
FISMA, 28
fix, 18

Glade, 42, 53

GNU, 4
GNU/Linux, 4
GPL, 58
Gtk, 23, 53

HIPAA, 29
hub, 40
hub&spoke model, 40

jOVAL, 9
JSON, 24

kickstart, 36, 45, 51

modular programming, 38

OCIL, 6, 9
OEM, 40
OOP, 38
openscap library, 22, 47
OpenSCAP project, 4, 21
OSCAP addon, 44
oscap tool, 22, 47, 49
OVAL, 6, 8
OVAL Interpreter, 9

PCI-DSS, 29
PEM, 50
PEP, 59
pyanaconda, 37
pykickstart, 37
pylint, 59

76

Python, 22, 38
python-meh, 37

Red Hat Enterprise Linux, 4
remediation, 3
RPM, 22, 29, 59
rule, 17

SCAP, 3, 5
scap-workbench, 23
SCC, 24
SCE, 25
secstate, 23
signatures, 6
spoke, 40
SSG, 26
SSL, 50
standalone spoke, 40

tailoring, 16, 19
TAR, 29

test result, 19
TMSAD, 6, 15

UML, 8
unit testing, 47, 59
URI, 17
USGCB, 5, 29

VNC, 35

wizard model, 40

xAL, 10
XCCDF, 6, 7, 15
XML, 6
XMLDSig, 15
xNL, 10
XSLT, 22

yum, 37

ZIP, 29

77

