
C–1

Common Weaknesses of Android Malware Analysis

Frameworks
Lars Richter

University of Erlangen-Nuremberg

Abstract—In order to evade anti-malware products of different
vendors, Android malware authors are seeking for possibilities
to gain information about the execution environment of their
applications. So called split-personality malware loads additional
code during runtime to prevent detection by offline code analysis
e.g. the Google Bouncer. To evade detection during runtime it
behaves like a normal app and analyzes its environment at first.
If an analysis environment can be excluded the app will load
and execute the malicious code. To prevent such analysis by
malware an Android sandbox seeks to simulate the real smart
phone as close as possible and leaves minimum trace of the vir-
tualization. In previous work different Android sandboxes where
fingerprinted to detect the analysis environment. In this paper we
are building on these findings to present and categorize different
weaknesses of Android malware analysis frameworks. With that
knowledge it is possible to improve Android sandboxes to spoof
e.g. split-personality applications to execute their malicious code
and thus detect them.

I. INTRODUCTION

With its market share of 78% in shipped units Android is

dominating the smartphone market in the first quarter of 2015.

Without a doubt Android has become the most popular Oper-

ating System for smartphones and tablets. With the increase

of computing power and rising functionality of the operating

system and its applications, people rely on these devices for

all Internet-related subjects. From messaging to shopping and

banking, users confide their mobile computers their personal

secrets and login credentials. Criminals are taking advantage

of that trust with more and more sophisticated malware. In

contrast to other smartphone operating systems android allows

the user to install software from unverified sources. This is

on the one hand a big advantage over the other systems,

because the user can decide which software he wants to install

without loosing the warranty of the device. As a consequence,

multiple app stores for Android devices exist. On the other

hand enables such an distributed ecosystem multiple starting

points for spreading malicious software AndRadar. Each store

has to deal with malicious applications and must detect them

to preserve their reputation.

A. Motivation

According to recent studies over 2000 new malicious appli-

cations are discovered everyday[36]. It is obvious that there

is no possibility to detect such a number of new malware

This paper was written as part of the conference seminar ”IT Security”
which was organized by the Chair for IT Security Infrastructures (Prof. Dr. F.
Freiling) at the University of Erlangen-Nuremberg during summer term 2015

manually. Google developed the Bouncer as a first action

to detect malware. The Bouncer is a service that analysis

every submitted application to the Google Play Store. If

an application is seen as malicious it is rejected and the

developers account, and all accounts issued from that IP, will

be automatically banned [24]. According to Google the intro-

duction of the Bouncer resulted in a 40% reduce of malware

in the store [14]. Alternative markets which do not have such

anti malware measures in place contain 5-8% malicious apps

[18]. To analyze newly submitted applications and to detect

malware, multiple automated frameworks were developed by

researches and security companies [1][16][17][28][34][40].

These anti malware frameworks are using different approaches

and detection mechanism. In a recent study, multiple mal-

ware analysis frameworks were compared according to their

analysis approach, technical / logical scope, delicateness to

known bugs, behavior representation and detection [23]. Each

analysis approach has its advantages and disadvantages. But

there is also malware which can not be detected with known

frameworks [19]. Highly sophisticated malware can simulate

benign behavior and executes its malicious hidden content, if

it is installed on an non analysis environment. Because of the

heterogeneous and diverse analysis frameworks the reasons

malware remain undetected are numerous.

B. Contribution

In this paper we are investigating the reasons some malware

stays undetected in some analysis environments. We charac-

terize the different analysis types, we present some popular

frameworks which are based on these types and we describe

some drawbacks of each analysis type. One disadvantage of

the static analysis is e.g. the inability to scan highly obfuscated

code. Transformations form the basis of the obfuscation and

they are described in section III. In the following section

IV we demonstrate the numerous possibilities an Android

application can fingerprint its host. It becomes clear that it

is a serious task to trick an application into believing it is

executed on an physical host during the dynamic analysis

to observe its malicious behavior. Most analysis approaches

assume that an applications is fully sandboxed and can not

communicate with other applications to gain higher privileges.

In section V we give an overview about common communica-

tion channels caused by application collusion and the risks. A

further difficult malware behavior is described in section VI.

Unforeseeable Events, like external events or timing events

can not be simulated due to their complexity or resource



C–2

limitations. Malware can use these events to trigger mali-

cious behavior. We present an introduction to HARVESTER,

which claims to be able to defeat these mechanism. As an

prospect to related and for future work we summarize in

section VII improvements of the different analysis methods to

overcome the listed weaknesses. We characterize the approach

of the BareCloud as one solution to benefit from the highly

fragmented malware analysis environment. The investigations

scope is limited to the referenced literature.

C. Related Work

Poeplau et al. [26] developed a static analysis tool for de-

tecting dynamic code loading of Android applications during

runtime. They performed a study with that analysis and they

found out, that 8 of the top 50 free Android applications

are using dynamic code loading. They also showed that

code loading can exploit a conceptional weakness of analysis

frameworks.

Another research field are the possible communication chan-

nels which are used by colluding applications on an Android

smartphone. Schlegel et al. [32] presented Soundcomber as

a first Trojan which uses covert communication channels to

exchange information. Therefore the Trojan itself is only using

a small amount of permissions. Another application is waiting

for the data on the covert channel to send it over the network.

Both applications in particular are unsuspicious, but when

combined, they pose a serious threat. Marforio et al. [20]

analyzed the possibilities to use communication channels to

transfer data between colluding applications. Analysis tools

failed to detect the data exchange. Therefore they conclude

that covert communication channels are a threat to smartphone

security. Mazurczyk and Caviglione [21] complemented the

work of Marforio et al. They survey the different methods

and approaches to hide information on the smartphone. They

also reviewed the methods according to detection possibilities.

Rastogi, Chen and Jiang developed the DroidChameleon

[30], a systematic framework to evade detection by static

analysis frameworks. They describe different transformation

attacks to reduce the signatures commercial anti malware

tools can detect. They state that simple transformations are

successful because most analysis tools are searching for known

signatures and are prone transformation attacks.

Another possibility to evade detection by analysis systems

is to fingerprint the analysis environment first and hide the

malicious intent of the application. Petsas et al. [25] presented

detection heuristics of dynamic analysis environments of three

categories, static properties, dynamic sensor information and

VM-related complications. With the help of these heuristics

they were able to avoid detection of analysis systems. Vi-

das and Christin [31] [39] also showed different techniques

for detecting Android analysis systems. They classified their

approaches into behavior, performance, hardware- / software-

components and analysis system design choices. They evalu-

ated the detecting techniques against the analysis frameworks

Andrubis, CopperDroid and ForeSafe. Maier, Müller and Prot-

senko [19] demonstrated how malware can evade analysis sys-

tems and presented a tool for fingerprinting multiple Android-

based analysis systems. They where able to create a malware

that successfully surpasses existing malware scanners and they

successfully bypassed the Google Bouncer by uploading a

modified Android root exploit. Balzotti et al. [3] presented

a first approach for Android which is able to detect split-

personality malware, by executing the malware in an emulator

and on an uninstrumented reference system.

Malware analysis systems can by divided into static and

dynamic analysis systems. Drebin [1] performs a fast broad

static analysis on the phone during runtime, and searches for

patterns of malicious applications with the help of machine

learning. Like Drebin is Marvin [16] another on-device anal-

ysis tool. It is using similar approach to classify applications

based on a set of features which are extracted during a static

and dynamic analysis. For the dynamic analysis the application

file in question is submitted via a web interface or the Marvin

application itself.

The dynamic analyzes executes the malware in a monitored

and often sandboxed environment. Hybrid approaches are us-

ing static analysis to improve the dynamic execution. Andrubis

[17] is a fully automated hybrid analysis systems. Andrubis

is publicly available and was able to collect analysis data of

over 1 million applications, where 40% had a malicious intend.

That dataset is used to discuss trends in applications behavior

to differentiate between benign and malicious. Andlantis [4]

is a highly scalable dynamic analysis frameworks which is

able to schedule and analyze thousands of Android instances

in parallel to make best use of the limited computational

resources. To detect privilege escalation attacks through covert

channels XManDroid [5] extends the monitoring mechanisms

of Android. The implementation dynamically analyzes the

permission usage of the different applications and commu-

nication links between the applications. TaintDroid [8] is an

information tracking analysis system which monitors multi-

ple sources of sensitive data. With TaintDroid it is possible

to detect possible misuse of sensitive data by third party

applications. Another taint analysis framework is FlowDroid

[35] which monitors callbacks by the Android framework and

uses context, flow, field and object-sensitivity to reduce the

number of false positives. The Mobile-Sandbox by Michael

Spreitzenbarth et al. [34] is also a hybrid analysis approach.

The static analysis is used to reach higher code coverage

during the dynamic analysis. Additionally it uses specific

techniques to log native API calls, which can be used to hide

malicious content. They found that the existence of native code

calls does not imply that the application is malicious.

The BareCloud [15] is an automated evasive malware de-

tection system which is using multiple analysis approaches,

including a bare-metal reference system. It observes the

malware behavior on the different systems and compares

them to detect split-personality malware. This approach is

focused on Windows malware. Balzotti et al. [3] presented

a similar approach to detect Android malware. Rasthofer et

al. developed the HARVESTER [28], which is an approach

to defeat split personality malware. It uses program slicing

and dynamic execution to extract runtime values from any

position in the Java bytecode. This analysis approach is very

effective against highly obfuscated malware which uses timing

and logic bombs.



C–3

Other researchers analyzed and compared multiple frame-

works with each other. That research is used to get an

overview about the similarities and differences of the anal-

ysis approaches. Fedler, Schütte and Kulicke [10] evaluated

multiple antivirus applications in regards to their analysis

approach and detection rate. They conclude that antivirus

software may be reliable to detect long-known threats but the

capability to detect new threats or variants of existing malware

is limited. Neuner et al. [23] compared 10 dynamic Android

analysis sandboxes in terms of feature support and the ana-

lyzed application properties. They evaluated their effectiveness

with known malware samples and Android bugs. Lindorfer

et al. presented with AndRadar a framework for discovering

malicious applications in different Android markets to expose

the distribution strategies of malware authors. They evaluated

how fast markets detect and delete malware.

II. CATEGORIZATION

As previously motivated there is a need for analyzing

smartphone applications. In general the analysis can be dif-

ferentiated into static and dynamic analysis. The use of both

techniques is called hybrid analysis.

A. Static Analysis

The static analysis covers aspects of the application without

actually executing them. A key artifact which is analyzed

by many frameworks is the manifest file which is required

by the application. The AndroidManifest1 provides meta in-

formation about the unique package name, used activities,

services, broadcast receivers and content providers. It names

classes which implement these components and publishes

their capabilities. With that information the Android system

knows under which condition each component has to be

launched. Additionally the manifest defines which permissions

are needed to access protected parts of the API. The access

to specified hardware components can be an indicator of ma-

licious behavior. A well known example is the torch app[33]

which requests GPS and network access to send the users

location data to the attacker. Another hint for malware is the

SEND SMS permission which is often used to send premium

SMS.

Another approach is to analyze the byte code of the ap-

plications. Since the code is not executed, and no variables

are set, it can not be decided which paths will be taken

by the application. With the help of graphs analysts can

understand the inner working of an application and how

the code blocks are connected [13]. Suspicious API calls

which access sensitive information can be detected with that

approach. API calls which encrypt or decrypt data or execute

external code are often used for code obfuscation but can also

be detected with the static analysis [1]. Obfuscation will be

discussed in detail in section III. External code can be found by

checking each resources file type in the Android Application

Package (APK). Malware hides often libraries in seemingly

benign external files to avoid detection of suspicious API calls.

1https://developer.android.com/guide/topics/manifest/manifest-intro.html

Android programs are compiled into Dalvik Executable Files

(.dex Files). The dissembled .dex files can be searched for

strings. These strings can be scanned for IP addresses, which

could point to command & control servers or data sinks for

private information. A well known tool for static code analysis

is Androguard which disassembles and decompiles Dalvik

byte code to Java Source Code. Frameworks like Tracedroid,

Andrubis and Sanddroid are using that static code analyzer

[23].

B. Dynamic Analysis

The dynamic analysis approach involves the execution of the

application on either a virtual machine or a physical device.

During the analysis, the behavior of the application is observed

and can be analyzed. The dynamic analysis results in a less

abstract view of the application than the static analysis. The

code paths executed during runtime are a subset of all available

paths. The main goal for analysis frameworks is to reach

high code coverage because all possible actions should be

triggered to observe any possible malicious behavior. Research

has shown that fully randomized input achieves a 40% or

lower code coverage. [12] Multipath execution is a way to

increase the code coverage. Whenever a branch is taken, the

current state of the VM is saved in a snapshot so that it can be

rolled back and execute the other branch. However this is only

partially applicable because this behavior much likely breaks

network protocols. [22] Depending on the data of interest,

different techniques exist to monitor the applications behavior.

One analysis technique is taint tracking. A system wide

implemented taint propagation is able to analyze the message

flow and potential misuse of private sensitive information

through third-party applications [23]. A popular framework

which uses that technique is TaintDroid. Developed with the

Dalvik Virtual Machine, it monitors how applications access

and manipulate user data in real time. It labels the sensitive

data as it flows through variables, files and messages. However

TaintDroid is only able to detect explicit data flow and is

not able to analyze implicit flow through control flow. Private

information could be transmitted over that channel. [8]

Another analysis technique is virtual machine introspection

(VMI) which is used to intercept events within the emulated

environment. It is also used to monitor the execution of

the Android API. VMI is either possible by modifying the

Dalvik VM or by using the QEMU emulator itself. A further

possibility to collect executed system calls is the standard

Linux library trace tool ltrace used by the Mobile Sandbox

[34].

C. Discussion

Static code analysis can be used to get an overview of the

applications but is very abstract. It can be used to reveal the

leakage of sensitive information, inter process communication,

network communication and cryptography misuse and more

[9]. However the static analysis can be tricked by obfuscation

techniques. Dynamic approaches on the other side can deliver

precise results because runtime data and values are available

and can be retrieved. But that data depends highly on the taken



C–4

code paths in contrast to the results from the static analysis,

which are produced by the whole codebase. Therefore the

best approach is the hybrid approach which uses static code

analysis to gather information to improve the outcome of

the dynamic analysis. Andrubis for example compares the

requested permissions in the manifest with the permissions

that are requested in the byte code, as well as the used ones

during the execution in the dynamic analysis [17].

III. CODE OBFUSCATION

The goal of code obfuscation is to prevent static code

analysis. Code obfuscation alone can not prevent detection

of malicious behavior through dynamic analysis because the

code will be deobfuscated during execution and therefore the

function calls and values can be monitored. We will describe

a small number of transformation attacks which sufficiently

hinder the analysis by static analysis frameworks.

A. Trivial Transformations

Trivial transformations are mainly attacking signature based

detection approaches. Android packages are signed zip files.

These packages can be unzipped, repacked again and signed

with a custom key. In addition the package name can be

altered. The detection approaches which are based on the

package signature or a hash of the complete app will fail.

Signatures on the bytecode can be defeated with disassem-

bling, reordering and reassembling again. Signatures based on

single items will be unusable. [31]

B. Detectable Transformations

Some transformation attacks can be revealed by the data

flow, which is not altered by these attacks. These transforma-

tions are detectable by Static Analysis (DSA) [31]. Methods

for DSA transformation attacks are renaming of static strings

(such as classnames and methodnames), code reordering,

changing of the call directions, junk code insertion, data

encoding and encrypting payloads and native code exploits.

The last method describes the hiding of native code exploits

in non standard locations in the applications package. These

exploits are stored encrypted an will be decrypted during

runtime. This method differs from the Bytecode Encryption

attack, which is a non-detectable transformation attack because

the main application can still be analyzed. [31]

C. Non-Detectable Transformations

These methods are preventing the static code analysis. The

analysis could detect that the following methods are executed

but it can not decide whether its cause is benign or malicious.

It would result in a high false positive rate.

The Java Reflection API allows to modify the runtime

behavior of applications.2 The method call could be changed

into any other call during execution. This defeats the data flow

analysis of static frameworks.

2https://docs.oracle.com/javase/tutorial/reflect/index.html

Another transformation is Bytecode Encryption. The main

function of the application is stored in a separate dex file in

encrypted form. The only parseable code is the decryption

routine. With the help of the DexClassLoader the external dex

file can be loaded and executed. Analysis frameworks could

detect the usage of the DexClassLoader but only a dynamic

analysis system can investigate the behavior further.

The DexClassLoader can be used to execute downloaded

code too. Benign applications use that procedure to install

add-ons so it cannot be flagged as malicious by default. In

addition applications can directly request the installation of a

downloaded APK which prompts the user a dialog. Poeplau

et al. exploited that method to build an application which

downloads and executes malicious code [26]. Their app was

not detected as malicious by the Google Bouncer or any anti

virus application.

D. Discussion

The transformation attacks are a significant threat to static

analysis frameworks. Simple package and identifier renaming

techniques allow evasion of some analysis tools. More sophis-

ticated methods can be used to thwart the analysis. [31]

An example for applied code obfuscation techniques is the

Android/BadAccents malware. The malware is using email for

sending sensitive user data. The malware analyst is interested

in the specific API calls for sending the email. Therefore he

searches with the help of static code analysis for these API

calls. But the malware is saving the sensitive information as

native code. Static and forward analysis can not be used to

extract the values from ARM native code, therefore the API

call information will remain undetected. [29]

Poeplau et al. described code injection against benign

applications [26]. The application developers are in duty to

check if their downloaded code is integer and authentic.

The technical understanding for the security risks is often

not existent or there is no business value in securing their

applications. In consequence an attacker is able to replace

downloaded code with its own malicious code. This could

happen during insecure HTTP downloads, on the unprotected

storage on the smartphone or the improper use of package

names. With that code injection technique the attacker can

use the allowed permissions of the benign app to gather

sensitive information to his own benefit. The risks of external

code execution are often underestimated. The attack vector of

exploiting known benign applications or underlying libraries

by injecting malicious code is not observed by current analysis

frameworks.

IV. FINGERPRINTING

As already mentioned static analysis approaches can be

made useless with code obfuscation. Code obfuscation can be

defeated with the dynamic analysis approach. Highly sophisti-

cated malware could be able to detect the monitoring and thus

take actions to prevent the analysis of its malicious behavior.

This method is called Fingerprinting and will be described in

the following.



C–5

A. Problem Statement

In contrast to desktop PCs the operating system of a

smartphone is aware of the build-in hardware because it is

not replaceable. There is no need to support modular hard-

ware. In consequence many different kernels to support the

different devices, specialized to each hardware configuration,

are existing. If an app is installed on a normal smartphone,

it expects that it can use the camera, GSM modem, GPS and

other sensors.

In a desktop PC environment analysis frameworks could

simply disable the network card because there are computers

which are not connected to any network, and malware authors

could target these PCs too. But it is very uncommon that a

smartphone got a disabled GPS sensor or camera. Even more

suspicious is GPS data which is fully randomized or camera

pictures which are always the same. Analysis environments

should be indistinguishable from the real device.

The problem is, that in contrast to PC sandboxes, all sensors

and hardware components must behave like their counterparts

on the physical devices. There is no modularity where a

component can be disabled. E.g. a smartphone without a SIM

card would raise a red flag to malware because it is most likely

executed in a sandbox.

This task gets more difficult because of the numerous device

information, settings and saved connections. A malware author

can define numerous conditions which certainly indicate the

environment as physical device. This leads to the problem that

the malware behaves benign in an analysis environment and

malicious at physical devices [3]. Maier, Müller and Protsenko

presented Sand-Finger a tool that finds characteristics where

analysis environments differ from the real device [19]. They

cannot find any sandbox which is indistinguishable from real

hardware.

B. Possibilities

There are numerous possibilities to differentiate between

the real device and the virtualization environment. They can

be divided into several groups.

Sensor behavior - describes the values which are returned

by the sensors of a smartphone, e.g. GPS sensor, acceleration

sensor, brightness sensor, temperature sensor and barometer.

These values must be consistent and realistic. Temperature

changes in milliseconds are as unrealistic as a z-acceleration

by 0, which means the device is situated in zero gravity.

User interaction - is the way the sensors work together and

the user navigates through the interfaces. Many frameworks

use the Monkey Runner3 to simulate semi random user input

from a given seed. That approach is sometimes not practicable.

The malware Android/BadAccents requires the user to put in

his bank account password twice and some numbers which

have to match a defined pattern [29]. If these conditions are not

met no malicious actions will be performed. The behaviour of

the monkey runner could also be exploited. Andrubis [17] and

Tracedroid [37] are using the same seed for every execution.

The malware author can execute the monkey runner with the

3https://developer.android.com/tools/help/monkeyrunner concepts.html

same seed and save this pattern in the app. He can following

flag that behavior as suspicious and hold back any malicious

behavior and therefore prevent any detection.

Hardware Components - Since the application has access

to I/O ports, memory management chips and networking

devices, these all must be made available by the emulation

environment. CPU frequencies are available on the physical

device but are not available by default in the emulator [39].

The responses to low level calls must behave like the function

calls on the real devices.

Android API - many API methods return fixed values in

a VM. For example is the return value of Build.HARDWARE

”goldfish” in the standard Android Emulator. The combination

of some values clearly indicates that an emulator is used. [39]

Protocol implementations - differ from real devices too.

The Android Emulator cannot forward pings. In a recent study

only one out of 10 sandboxes are able to emulate a ping to

a destination [19] and is therefore an easy way to spot the

emulation.

Virtualization overhead - exists e.g. in QEMU because

of the binary translation. QEMU translates the code block

wise and executes it. During the execution of the block is no

possibility to handle an interrupt by the host OS. Therefore

it is easily detectable [11]. A solution is QEMU’s single step

mode, which defeats this detection but is noticeable slower

and again detectable[39].

Personal Information - Malicious applications could ex-

pect some personal information on the devices, like contacts,

messages, missed calls, pictures, saved WLAN networks,

paired bluetooth devices, music files or a browser history. If

some data did not exist or the samples are too old, it is much

likely an unused device and therefore not worth the risk to be

discovered by an analysis framework.

Another simple indicator for a sandbox is the uptime.

During the analysis the emulated device is often rebooted to

create a replicable environment. Normal devices are running

the whole day, so an uptime is much likely higher than 10

minutes. The most sandboxes do not manipulate the uptime

[19].

Maier, Müller, Protsenko conclude that the combination of

uptime, a hardware string and a list of connected networks is

a reliable indicator for the execution environment [19].

Petsas et al. [25] classify the described detection types into

3 categories. Static heuristics are based on static information

which are fixed values in the emulation environment. Dynamic

heuristics are based on unrealistic behavior of the sensors.

Hypervisor heuristics describe incomplete emulations of the

hardware. They evaluated multiple sandboxes for their sturdi-

ness against multiple evasion techniques.

C. Discussion

As previously stated simple measures can be taken to

detect an analysis environment. Malware authors and sandbox

developers are in an arms race to defeat each other detection

mechanisms. PC malware is not using fingerprinting methods

so intensively because PC virtualization is a standard technique

in data centers. So the malware has to be executed despite its



C–6

environment because VMs are rewarding hosts. There is no

practical use-case for smartphone virtualization to this time.

So a malware author has no intention in infecting a known

virtualized host because of the risk of detection [39].

Another way to prevent fingerprinting is to use an analysis

system which is indistinguishable from the physical host. Such

systems are known as transparent analysis systems. Cobra

[38] performs dynamic translation of the code during runtime.

Instructions which could be used to detect the virtualization

are replaced with save ones. It could only replace known

fingerprinting methods. Ether [7] uses a more transparent

approach by using the hardware virtualization of the CPU.

That virtualization comes with the cost of performance which

could be detected by timing analysis.

However malware could implement checks for anomalies

in the internal or external environment that detects analysis

frameworks. It could wait a specific time for real user activity

or trying to connect to a non existent domain. If there is

no real user interaction like long device sleeps during the

night and every non-existent domain is resolved, the analysis

environment is detected.

To avoid the fingerprinting Kirat and Vigna presented the

BareCloud [15], a bare-metal based malware detection based

on the Cuckoo Sandbox4 for Windows. The use of physical

devices instead of virtualization makes the analysis more

transparent and robust against highly specialized malware. The

approach is to execute the malware in different environments

and compare the behavioral profiles to find differences. The

assumption is that the malware successfully fingerprints one

sandbox and behaves benign to evade it. To detect differences

the malware has to show its malicious behavior in one of the

analysis systems. This system is called the reference system

and is a bare-metal system to simulate the real device as close

as possible. The BareCloud is to our knowledge the most suc-

cessful framework for detecting high sophisticated malware. It

combines bare-metal, transparent (Ether [7]), hybrid (Anubis5)

and simple emulation frameworks (Virtual Box)6 to detect

as many differences as possible in the malware behaviour to

detect sandbox evasion. Known and unknown fingerprinting

methods will fail to detect the BareCloud framework because

the reference device is a bare-metal analysis environment.

However Kirat, Vigna and Kruegel indicate that there is

a possibility to fingerprint the bare-metal device by MAC

address and the presence of the iSCSI drivers. [15]

V. APPLICATION COLLUSION

One security mechanism on Android is the permission-

based approach. An user can review the used permission by

an application and can decide if the requested permissions are

justified. The permission-based security approach suffers a big

disadvantage when it comes to application collusion. Users

are believing that they approve the requested permissions to

each application independently. Researchers have found out

that with the use of covert communication channels quite the

contrary is the situation [20] [21].

4http://www.cuckoosandbox.org
5http://anubis.iseclab.org
6http://www.virtualbox.org

A. Soundcomber

The first malware using application collusion is the Sound-

comber which records sound and sends sensitive information

with the help of a covert channel to another application. After-

wards the information is sent to a data sink within the internet

[32]. In consequence the Soundcomber itself only needs a few

and unobtrusive permissions. The application collusion attacks

are neither a software vulnerability nor related to a particular

implementation. The reason for the vulnerability itself is the

assumption that the applications are independently accessing

the available resources and are not able to communicate with

each other. Furthermore, malware analysis frameworks are

using the same assumption. Therefore application collusion

can not be detected when only one application at a time is

analyzed.

B. Overt Communication Channels

Marforio et al. classify the communication channels based

on their implementation into application, OS, hardware and

based the detection possibilities into overt and covert channels

[20]. An example for an overt application communication

channel is a shared configuration. Two applications can asyn-

chronously exchange information by using the Android API

to store and read data at an Android preference XML file7.

However the creation and querying of the preferences could

be detected when one of the two communicating applications

is installed. Another overt communication channel which can

operate without the use of special permissions are Broadcast

Intents. The source application communicates via a payload

added to broadcast messages within the system. The sink

application registers itself as receiver of these particular

broadcast messages. This communication assumes that both

applications are running synchronously. Again, this approach

can be detected by dynamic analysis frameworks because the

underlying system calls can be traced to malicious behavior.

C. Covert Communication Channels

Covert communications channels are far more sophisticated.

Schlegel et al. describe and evaluate multiple different covert

channels [32]. In contrast to some overt communication chan-

nels, covert communication channels are synchronous and

can not save data persistently. This means the communica-

tion partners have to synchronize each other before actually

exchanging information. One covert channel is the vibration

setting of the device. The data source toggle the silent mode

and the data sink interprets this binary information. The use

of the volume settings enables a higher bandwidth because

different values are possible. The achieved bandwidth rises

to 150 bps from 87 bps. A higher bandwidth of 685 bps is

reached by using file locks. Simplified, the sender locks a

file and the sink also tries to lock it. A binary ”one” is send

when the lock attempt fails and a binary ”zero” is being send

the sink gets the lock. Marforio et al. [20] extend that covert

methods. They achieved a throughput of 4324.13 bps on a

7https://developer.android.com/reference/android/content/SharedPreferences.html



C–7

Samsung Galaxy S using the type of intents8 to send data.

This channel is using the tremendous number of possibilities.

An intent can be configured with actions, flags and extra data

to exchange the data. This channel is similar to the overt

channel where the data is stored in the payload of the intent.

As described the covert communication has to be synchronized

at first. Sometimes it is crucial for malware to communicate

in milliseconds with a command and control server. Therefore

the synchronization time of the covert channel should be taken

into consideration. A high amount of data can be exchanged

through UNIX Socket Discovery [20]. This approach is based

on one synchronization and one communication socket. The

source will open the synchronization socket if the communi-

cation socket can be checked. The sink interprets the status of

the communication socket when the synchronization socket is

open. The synchronization time of this channel is around 5ms

on a Nexus One device and is able to transfer 2610bps.

D. Detection

A monitoring framework to detect covert communication

channels is TaintDroid [8]. As mentioned in Section II-B,

Taintdroid is able to track information-flow to reveal suspi-

cious actions. However, with its taint-tracking only variables,

files and interprocess messages can be monitored. Sensitive

information can be leaked through control flow. A framework

that extends the available monitoring mechanisms of android is

called XManDroid (eXtended Monitoring on Android) [5]. It

is able to analyze the permission usage of applications during

runtime to detect application-level privilege escalation attacks.

The idea is to maintain a system state which contains all

executed applications and the communication links between

them. XManDroid can approve or block these communication

links based on permanent conditions like: ”An application that

is notified about incoming or outgoing calls and can record

audio must not communicate to an application with network

access.” [5] The main task is to define rules, which are not

too strict to hinder benign applications but are strict enough to

prevent privilege escalation attacks through covert channels.

Mazurczyk and Caviglione [21] investigated further com-

munication channels, or steganography methods, which are

available on smartphones. They summarized their findings

that smartphones will become the most targeted devices for

data exfiltration because of their importance, omnipresents and

sensitive sensors. Covert channels are therefore an ideal way to

transport data. The lack of an available detection mechanisms

for covert channel exploits results in evasion of the most

malware analysis frameworks.

VI. UNFORESEEABLE EVENTS

Another challenge for dynamic analysis are events that are

so complex that they cannot easily be triggered or one might

not be able to trigger them because of the limited analysis

environment resources. A dynamic analysis must execute all

available paths to be complete. Measures like code obfuscation

or fingerprinting can be used to minimize the code coverage

of the analysis.

8https://developer.android.com/reference/android/content/Intent.html

A. External Events

External events are triggering Intents on Android. Intents

are internal events which can be used to request an action

from another app component. With the help of intent-filters9

an application can define which types of intents should be

delivered to the app component. The challenge for malware

analysis systems is to generate external events that trigger

these actions. An example intent is the receipt of a SMS.

All registered intent filters will be triggered. Therefore a

malicious application can behave benign until a certain intent

is triggered. With help of static analysis a hybrid analysis

environment can detect that the application is listening on

some intents, because they must be set in the applications

manifest. But it has no clue which special message will

trigger a special behavior. Advanced analysis frameworks like

MARVIN [16] or BareCloud [15] will flag unused intents as

suspicious.

To maximize code coverage by increasing the number of

intents fuzzy testing frameworks have been developed [27].

The Intent Fuzzer is using static analysis of the manifest

and the Dalvik bytecode to build a control flow graph with

the help of FlowDroid [35]. In the following it creates well

formed intents that will trigger these actions during a dynamic

analysis. The last step describes the generation of intents with

randomized values. With the help of random generated intents

they are able to trigger some additional behavior. However the

analysis did not scale for real world applications because all

explored paths must be kept in memory - which causes that

FlowDroid runs out of memory.

A highly sophisticated approach can use covert channels

to trigger the sleeping malware. That approach is almost

impossible to detect.

B. Timing Events

Another challenge for code analysis systems are timing

events. Because of the limited resources and the high number

of applications, each application is only tested for a short

period of time. Malware which behaves benign until a specific

date will probably not be detected if the malicious code is

sufficiently obfuscated or is loaded during runtime.

On February 3rd 2015 researches at AVAST reported that

applications which were available on the Google Play Store,

downloaded to 5-10 million devices, turned out to be malware

after 30 days of installation [2].

There exists a chance of detection with the help of hybrid

analysis approaches. The Mobile Sandbox [34] saves in the

static analysis all implemented timers and intents the appli-

cation uses. During the dynamic analysis the detected intents

will be triggered and the analysis will be executed a certain

time to trigger the implemented timers. However, if the timer

is connected to other typical user behavior like long device

sleeps during the night etc. it will not trigger the malicious

behavior.

Rasthofer et al. present HARVESTER, which allows fully

automatic extraction of runtime values from any position in

9https://developer.android.com/guide/topics/manifest/intent-filter-
element.html



C–8

the Android bytecode [28]. It is a new approach to defeat

highly obfuscated code and anti-analysis techniques (e.g. fin-

gerprinting, delayed execution, Java reflection). HARVESTER

combines static-analyzing by program slicing with dynamic

code execution. The slicing isolates the program code which

is involved in computing a specific value of interest. Other

values that do not contribute to the value are dismissed.

HARVESTER simulates the reaction to environment values the

application implements, instead of simulating the environment

values itself. Therefore HARVESTER is able to trigger differ-

ent behaviors by creating parametric slices. With these pre-

computed slices it is possible to create a reduced APK, which

contains the code that is involved in the computation of the

values of interest. Secondly the dynamic analysis executes the

reduced APK in an emulator or on a stock Android phone. All

different behaviors of the parametric slides will be triggered to

gain a complete reconstruction of the values of interest. This

approach makes the need of UI interactions unnecessary and

therefore increases the code coverage. With these mechanisms

it is possible to improve existing frameworks like TaintDroid

or FlowDroid, that cannot analyze highly obfuscated code by

the Java reflection API. An analyst can use HARVESTER

to produce an APK that only executes the slice which leaks

sensitive data. Runtime values and reflective calls are now

statically embedded. This allows the tools to discover the data

flow.

VII. IMPROVEMENTS

As previously described the detection of malware highly

depends on the level of obfuscated code and the fingerprinting

possibilities of the malware. Code obfuscation can be defeated

with the use of semantic-based analysis and dynamic code

analysis.[6] There are also some methods like time bombs,

which are only executed after a certain time has passed, or

logic bombs, that are activated by external triggers. These

methods still challenge current analysis frameworks.

With the help of semantic-based malware analysis the

program can be seen as a network of abstract instructions. This

approach is syntactic and ignores the semantic of instructions.

Therefore obfuscation methods which target pattern matching

analysis are impractical. Christodorescu et al. [6] are using

templates to describe a definition of a variable and all its

uses in the program. Because of the usage of an abstract data

flow instead of static strings the analysis is not vulnerable to

the previously described trivial and detectable transformation

attacks [31]. Nevertheless it is difficult to detect obfuscation

techniques which are based on memory reordering or changing

functions to its equivalent program instructions (e.g. replace

multiplication with arithmetic left shift).

The analyzing and slicing approach of HARVESTER is a

new and promising approach to defeat obfuscating techniques

and external event triggering. The reduced APKs which are

generated by HARVESTER can by analyzed by static analysis

tools. The detection rate of FlowDroid has been increased

by 300% with that approach for malware samples of the

Fakeinstaller.AH malware family. The slicing mechanism of

HARVESTER improves dynamic analysis frameworks too.

With its help it is possible to execute interesting code parts

directly. The analysis environment does not have to wait for

a certain time (to defeat time bombs), simulate real user

interactions (to trigger a specific method) or set external

events (to defeat logic bombs) to observe malicious behavior.

TaintDroid was able to detect the data leak instantly, without

the need to trigger those conditions explicitly [28]. These

results have shown that HARVESTER can be and should be

used to improve the detection rate of static an dynamic analysis

systems.

Split-personality malware could be exposed by using anal-

ysis frameworks like the BareCloud [15]. Although the Bare-

Cloud is not available for Android yet, its analyzing approach

is substantially different from the other analysis frameworks.

Instead of simulating one system as close as possible to

the real device and trigger as many functions as possible,

the BareCloud is taking advantage of the fingerprinting and

obfuscating possibilities of the malware. By using hierar-

chical similarity-based behavioral profile comparison, it is

possible to detect differences in the execution on bare-metal

devices, virtualized, emulated and hypervisor-based analysis

environments. On Android the different analysis frameworks

can be used to detect changes in the applications behavior.

Balzarotti et al. [3] presented a first technique which uses the

BareCloud approach. They identified applications that detect

the presence of a sandbox (in their study the emulator-based

Anubis is used) and behave differently from the execution

on a reference system. Hence they are able to identify split-

personality malware. Future work has to evaluate whether

it is possible to build such a system to analyze Android

Applications fully automated or if it generates too many false

positives.

VIII. CONCLUSION

In this paper we have presented a broad overview about

the existing Android malware analysis frameworks and their

challenges.

First we gave an insight in the categorization of the different

analysis approaches. We compared static analyzes to dynamic

analyzes, referenced to existing analysis frameworks which

implement these approaches and discussed the pros and cons.

Second we described code obfuscation as a possibility to

hide malicious code from analysis. We gave an overview about

the different types of transformation attacks and discussed their

threat to Android security. Additionally we mentioned the use

of code injection to exploit benign applications.

Third we stated the problem that it is considerable harder

to defeat fingerprinting on smartphones than it is on PCs

because of the numerous sensors and hardware modules which

must be implemented. We described the possibilities to detect

an analysis environment based on different values. With the

BareCloud we proposed a possibility to use fingerprinting

of malicious applications against them because they would

behave differently on an emulation environment and on a

physical device.

Fourth we showed different communication channels which

are caused by application collusion and lead to privilege esca-

lation. Most of the communication channels are not checked



C–9

by the analysis environments. Often only one application at a

time is analyzed and therefore no information leakage to the

network will be seen.

Fifth we described two other challenges for analysis en-

vironments which can not easily be triggered. An analysis

environment is not able to trigger all external events by using

random intents. These triggers are called logic bombs. Time

bombs are actions which are performed after a certain time,

which is also difficult to achieve because of limited resources.

We mentioned the HARVESTER approach that allows to

trigger these actions automatically.

Sixth we gave an overview about possible improvements

of the current analysis frameworks. We stated that the HAR-

VESTER looks very promising because it defeats some obfus-

cation and fingerprinting techniques. In combination with an

analysis framework like the BareCloud it should be possible

to detect more malicious applications.

REFERENCES

[1] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo

Gascon, Konrad Rieck, and CERT Siemens. Drebin:

Effective and explainable detection of android malware in

your pocket. In Proceedings of the Annual Symposium on

Network and Distributed System Security (NDSS), 2014.

[2] Avast. Apps on google play pose as games

and infect millions of users with adware.

https://blog.avast.com/2015/02/03/apps-on-google-

play-pose-as-games-and-infect-millions-of-users-with-

adware/, 2015. Accessed: 2015-07-14.

[3] Davide Balzarotti, Marco Cova, Christoph Karlberger,

Engin Kirda, Christopher Kruegel, and Giovanni Vigna.

Efficient detection of split personalities in malware. In

NDSS, 2010.

[4] Michael Bierma, Eric Gustafson, Jeremy Erickson, David

Fritz, and Yung Ryn Choe. Andlantis: large-scale android

dynamic analysis. arXiv preprint arXiv:1410.7751, 2014.

[5] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,

Thomas Fischer, and Ahmad-Reza Sadeghi. Xmandroid:

A new android evolution to mitigate privilege escalation

attacks. Technische Universität Darmstadt, Technical

Report TR-2011-04, 2011.

[6] Mihai Christodorescu, Somesh Jha, Sanjit Seshia, Dawn

Song, Randal E Bryant, et al. Semantics-aware malware

detection. In Security and Privacy, 2005 IEEE Sympo-

sium on, pages 32–46. IEEE, 2005.

[7] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke

Lee. Ether: malware analysis via hardware virtualization

extensions. In Proceedings of the 15th ACM conference

on Computer and communications security, pages 51–62.

ACM, 2008.

[8] William Enck, Peter Gilbert, Seungyeop Han, Vasant

Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon

Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:

an information-flow tracking system for realtime privacy

monitoring on smartphones. ACM Transactions on Com-

puter Systems (TOCS), 32(2):5, 2014.

[9] William Enck, Damien Octeau, Patrick McDaniel, and

Swarat Chaudhuri. A study of android application secu-

rity. In USENIX security symposium, volume 2, page 2,

2011.

[10] Rafael Fedler, Julian Schütte, and Marcel Kulicke. On

the effectiveness of malware protection on android, an

evaluation of android antivirus apps. Applied and Inte-

grated Security, 2013.

[11] Patrick Schulz Felix Matenaar. Detecting android sand-

boxes. http://www.dexlabs.org/blog/btdetect, 2012. Ac-

cessed: 2015-07-14.

[12] Peter Gilbert, Byung-Gon Chun, L Cox, and Jaeyeon

Jung. Automating privacy testing of smartphone appli-

cations. Technical report, Technical Report CS-2011-02,

Duke University, 2011.

[13] Johannes Hoffmann. From Mobile to Security. PhD

thesis, Ruhr-Universitt Bochum, 2014.

[14] Dan Kaplan. Google using custom

malware scanner for android apps.

http://www.itnews.com.au/News/289242,google-

employs-bouncer-to-cleanse-android-malware.aspx,

2012. Accessed: 2015-07-14.

[15] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel.

Barecloud: bare-metal analysis-based evasive malware

detection. In Proceedings of the 23rd USENIX Security

Symposium, 2014.

[16] Martina Lindorfer, Matthias Neugschwandtner, and

Christian Platzer. Marvin: Efficient and comprehensive

mobile app classification through static and dynamic

analysis. 2014.

[17] Martina Lindorfer, Matthias Neugschwandtner, Lukas

Weichselbaum, Yanick Fratantonio, Victor van der Veen,

and Christian Platzer. Andrubis-1,000,000 apps later:

A view on current android malware behaviors. In

Proceedings of the the 3rd International Workshop on

Building Analysis Datasets and Gathering Experience

Returns for Security (BADGERS), 2014.

[18] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,

Matthias Neugschwandtner, Elias Athanasopoulos, Fed-

erico Maggi, Christian Platzer, Stefano Zanero, and

Sotiris Ioannidis. Andradar: fast discovery of android

applications in alternative markets. In Detection of

Intrusions and Malware, and Vulnerability Assessment,

pages 51–71. Springer, 2014.

[19] Dominik Maier, Tilo Müller, and Mykola Protsenko.

Divide-and-conquer: Why android malware cannot be

stopped. In Proceedings of the 2014 Ninth Interna-

tional Conference on Availability, Reliability and Secu-

rity, ARES ’14, pages 30–39, Washington, DC, USA,

2014. IEEE Computer Society.

[20] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon,

and Srdjan Capkun. Analysis of the communication

between colluding applications on modern smartphones.

In Proceedings of the 28th Annual Computer Security

Applications Conference, pages 51–60. ACM, 2012.

[21] Wojciech Mazurczyk and Luca Caviglione. Steganogra-

phy in modern smartphones and mitigation techniques.

Communications Surveys & Tutorials, IEEE, 17(1):334–

357, 2014.

[22] Andreas Moser, Christopher Kruegel, and Engin Kirda.



C–10

Exploring multiple execution paths for malware analysis.

In Security and Privacy, 2007. SP’07. IEEE Symposium

on, pages 231–245. IEEE, 2007.

[23] Sebastian Neuner, Victor van der Veen, Martina Lindor-

fer, Markus Huber, Georg Merzdovnik, Martin Mulaz-

zani, and Edgar Weippl. Enter sandbox: Android sandbox

comparison. arXiv preprint arXiv:1410.7749, 2014.

[24] Jon Oberheide and Charlie Miller. Dissecting the android

bouncer. SummerCon2012, New York, 2012.

[25] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos,

Michalis Polychronakis, and Sotiris Ioannidis. Rage

against the virtual machine: Hindering dynamic analysis

of android malware. In Proceedings of the Seventh

European Workshop on System Security, EuroSec ’14,

pages 5:1–5:6, New York, NY, USA, 2014. ACM.

[26] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi,

Christopher Kruegel, and Giovanni Vigna. Execute this!

analyzing unsafe and malicious dynamic code loading

in android applications. In Proceedings of the 20th An-

nual Network & Distributed System Security Symposium

(NDSS), 2014.

[27] John Regehr Raimondas Sasnauskas. Intent fuzzer:

Crafting intents of death. 2014.

[28] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger,

and Eric Bodden. Harvesting runtime data in android

applications for identifying malware and enhancing code

analysis. 2015.

[29] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric

Bodden. An investigation of the android/badaccents

malware which exploits a new android tapjacking attack.

2015.

[30] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droid-

chameleon: evaluating android anti-malware against

transformation attacks. In Proceedings of the 8th ACM

SIGSAC symposium on Information, computer and com-

munications security, pages 329–334. ACM, 2013.

[31] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch

me if you can: Evaluating android anti-malware against

transformation attacks. Information Forensics and Secu-

rity, IEEE Transactions on, 9(1):99–108, 2014.

[32] Xiaoyong Zhou Mehool Intwala Apu Kapadia Xi-

aoFeng Wang Roman Schlegel, Kehuan Zhang. Sound-

comber: A stealthy and context-aware sound trojan for

smartphones. In Proceedings of the Network and Dis-

tributed System Security Symposium, 2011.

[33] Snoopwall. Flashlight apps threat assess-

ment report. http://www.snoopwall.com/wp-

content/uploads/2014/10/Flashlight-Spyware-Appendix-

2014.pdf, 2012. Accessed: 2015-07-14.

[34] Michael Spreitzenbarth, Felix Freiling, Florian Echtler,

Thomas Schreck, and Johannes Hoffmann. Mobile-

sandbox: having a deeper look into android applications.

In Proceedings of the 28th Annual ACM Symposium on

Applied Computing, pages 1808–1815. ACM, 2013.

[35] Christian Fritz Eric Bodden Alexandre Bartel Jacques

Klein Yves Le Traon Damien Octeau Patrick McDaniel

Steven Arzt, Siegfried Rasthofer. Flowdroid: Precise

context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps. PLDI 14, 2014.

[36] Vanja Svajcer. Sophos mobile security threat report. In

Mobile World Congress, 2014.

[37] Victor van der Veen. Dynamic analysis of android

malware. Master’s thesis, VU University Amsterdam,

2013.

[38] Amit Vasudevan and Ramesh Yerraballi. Cobra:

Fine-grained malware analysis using stealth localized-

executions. In Security and Privacy, 2006 IEEE Sym-

posium on, pages 15–pp. IEEE, 2006.

[39] Timothy Vidas and Nicolas Christin. Evading android

runtime analysis via sandbox detection. In Proceedings

of the 9th ACM symposium on Information, computer and

communications security, pages 447–458. ACM, 2014.

[40] Lok-Kwong Yan and Heng Yin. Droidscope: Seamlessly

reconstructing the os and dalvik semantic views for

dynamic android malware analysis. In USENIX security

symposium, pages 569–584, 2012.


