EE 2370, Design and Analysis of Signals and Systems
Instructor: C. Davila

HW 2: Complex Form of the Fourier Series

1. Find the complex form of the Fourier Series of the following periodic signals:

2. Find the complex form of the Fourier Series for the following signal:
(a) $\tau=1, T=10$.
(b) $\tau=1, T=100$.

3. Modify the Matlab M-file "FS.m" and the other Matlab functions from Homework 1 so that they compute the complex form of the Fourier series. Use your program to check your hand-calculated results of problems 1, 2(a), and 2(b) up to $n=20$. Note, the program "quad" works better if you set the limits of integration so that they do not contain any sudden discontinuities in $x(t)$, for example, if there is a discontinuity at t_{1} use $\operatorname{quad}\left(f, t_{0}, t_{1}-0.001,1 e-10\right)+\operatorname{quad}\left(f, t_{1}+0.001, t_{2}, 1 e-10\right)$ instead of $q u a d\left(f, t_{0}, t_{2}, 1 e-10\right)$. A complex exponential can be realized in Matlab using the "exp" function (type "help exp"). For each signal, submit your hand-calculated coefficients alongside the Matlab computed coefficients up to $n=20$, a plot of the Fourier series approximation to the signal, and a plot of the magnitude of the coefficients (line spectrum).
