3.3 Derivatives of Trigonometric Functions

Math 1271, TA: Amy DeCelles

1. Overview

You need to memorize the derivatives of all the trigonometric functions. If you don't get them straight before we learn integration, it will be much harder to remember them correctly.

$$
\begin{aligned}
(\sin x)^{\prime} & =\cos x \\
(\cos x)^{\prime} & =-\sin x \\
(\tan x)^{\prime} & =\sec ^{2} x \\
(\sec x)^{\prime} & =\sec x \tan x \\
(\csc x)^{\prime} & =-\csc x \cot x \\
(\cot x)^{\prime} & =-\csc ^{2} x
\end{aligned}
$$

A couple of useful limits also appear in this section:

$$
\begin{gathered}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \\
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0
\end{gathered}
$$

2. Examples

1.) Find the derivative of

$$
g(x)=4 \sec t+\tan t
$$

We use the derivatives of sec and tan:

$$
g^{\prime}(x)=4 \sec t \tan t+\sec ^{2} t
$$

2.) Find the derivative of

$$
y=\frac{1+\sin x}{x+\cos x}
$$

Since y is the quotient of two functions we first use the quotient rule:

$$
y^{\prime}=\frac{(1+\sin x)^{\prime}(x+\cos x)-(1+\sin x)(x+\cos x)^{\prime}}{(x+\cos x)^{2}}
$$

Evaluating the derivatives we get:

$$
y^{\prime}=\frac{(\cos x)(x+\cos x)-(1+\sin x)(1-\sin x)}{(x+\cos x)^{2}}
$$

Simplifying the numerator:

$$
\begin{aligned}
y^{\prime} & =\frac{\left(x \cos x+\cos ^{2} x\right)-\left(1-\sin ^{2} x\right)}{(x+\cos x)^{2}} \\
& =\frac{x \cos x+\cos ^{2} x-1+\sin ^{2} x}{(x+\cos x)^{2}}
\end{aligned}
$$

We now use the trig identity $\sin ^{2}+\cos ^{2}=1$:

$$
y^{\prime}=\frac{x \cos x-1+1}{(x+\cos x)^{2}}=\frac{x \cos x}{(x+\cos x)^{2}}
$$

2.) Find the derivative of

$$
y=x \sin x \cos x
$$

Since y is a product of functions we'll use the product rule. We have to use it twice, actually, because y is a product of three functions. Applying it once, we get:

$$
y^{\prime}=(x)^{\prime}(\sin x \cos x)+(x)(\sin x \cos x)^{\prime}
$$

And now applying it to the product $\sin x \cos x$, we get:

$$
y^{\prime}=(x)^{\prime}(\sin x \cos x)+(x)\left((\sin x)^{\prime}(\cos x)+(\sin x)(\cos x)^{\prime}\right)
$$

Now taking derivatives, we get:

$$
y^{\prime}=\sin x \cos x+x((\cos x)(\cos x)+(\sin x)(-\sin x))
$$

And simplifying:

$$
y^{\prime}=\sin x \cos x+x\left(\cos ^{2} x-\sin ^{2} x\right)=\sin x \cos x+x \cos ^{2} x-x \sin ^{2} x
$$

3.) Find tangent to the curve at the point $(0,1)$.

$$
y=\frac{1}{\sin x+\cos x}
$$

The slope of the tangent line will be the value of the derivative at $x=0$. So the first thing we do is compute y^{\prime}. We use the quotient rule:

$$
y^{\prime}=\frac{(1)^{\prime}(\sin x+\cos x)-(1)(\sin x+\cos x)^{\prime}}{(\sin x+\cos x)^{2}}
$$

Computing derivatives:

$$
y^{\prime}=\frac{0-(\cos x+(-\sin x))}{(\sin x+\cos x)^{2}}
$$

And simplifying:

$$
y^{\prime}=\frac{\sin x-\cos x}{(\sin x+\cos x)^{2}}
$$

So the slope of the tangent is:

$$
m_{\mathrm{tan}}=y^{\prime}(0)=\frac{\sin 0-\cos 0}{(\sin 0+\cos 0)^{2}}=\frac{0-1}{(0+1)^{2}}=-1
$$

Using the point-slope form of the line, we can say that the tangent line is:

$$
(y-1)=(-1)(x-0)
$$

i.e. the tangent line is:

$$
y=1-x
$$

4.) Prove $\frac{d}{d x} \sec x=\sec x \tan x$

Remember that sec is defined to be $\frac{1}{\cos }$. So we can use the quotient rule to find the derivative of sec:

$$
\begin{aligned}
\frac{d}{d x} \sec x & =\left(\frac{1}{\cos x}\right)^{\prime} \\
& =\frac{(1)^{\prime}(\cos x)-(1)(\cos x)^{\prime}}{(\cos x)^{2}} \\
& =\frac{0-(-\sin x)}{(\cos x)^{2}} \\
& =\frac{\sin x}{(\cos x)(\cos x)} \\
& =\left(\frac{\sin x}{\cos x}\right)\left(\frac{1}{\cos x}\right) \\
& =\tan x \sec x
\end{aligned}
$$

5.) Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 6 x}
$$

If we plug in 0 , both the top and the bottom are zero, so we hope to use some trick to evaluate the limit. We would like to use the fact that:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

So we divide top and bottom by x :

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 6 x}=\lim _{x \rightarrow 0} \frac{\left(\frac{\sin 4 x}{x}\right)}{\left(\frac{\sin 6 x}{x}\right)}
$$

Looking at the top fraction, θ is $4 x$, because that is what is inside the sine function. In order to have $\frac{\sin \theta}{\theta}$, we need to have $\sin 4 x$ divided by $4 x$, not x. So we multiply and divide by 4 :

$$
\frac{\sin 4 x}{x}=4\left(\frac{\sin 4 x}{4 x}\right)
$$

We do the same thing for the bottom fraction:

$$
\frac{\sin 6 x}{x}=6\left(\frac{\sin 6 x}{6 x}\right)
$$

Putting it back together, we have:

$$
\lim _{x \rightarrow 0} \frac{\left(\frac{\sin 4 x}{x}\right)}{\left(\frac{\sin 6 x}{x}\right)}=\lim _{x \rightarrow 0} \frac{4\left(\frac{\sin 4 x}{4 x}\right)}{6\left(\frac{\sin 6 x}{6 x}\right)}
$$

Now we can take the limit as $x \rightarrow 0$:

$$
\lim _{x \rightarrow 0} \frac{4\left(\frac{\sin 4 x}{4 x}\right)}{6\left(\frac{\sin 6 x}{6 x}\right)}=\frac{4 \cdot 1}{6 \cdot 1}=\frac{2}{3}
$$

So we can conclude:

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 6 x}=\frac{2}{3}
$$

Note: After having done several examples like this one you might be tempted to do the following:

$$
\frac{\sin 4 x}{\sin 6 x}=\frac{4 \sin x}{6 \sin x}=\frac{4}{6}=\frac{2}{3}
$$

Do NOT do that!! This is very wrong. You cannot factor the 4 out of $\sin 4 x$!
5.) Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}
$$

If we plug in 0 , both the top and the bottom are zero, so we hope to use some trick to evaluate the limit. We would like to use the fact that:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

So we divide top and bottom by x :

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}=\lim _{x \rightarrow 0} \frac{\left(\frac{\cos x-1}{x}\right)}{\left(\frac{\sin x}{x}\right)}
$$

Now we can take the limit as $x \rightarrow 0$:

$$
\lim _{x \rightarrow 0} \frac{\left(\frac{\cos x-1}{x}\right)}{\left(\frac{\sin x}{x}\right)}=\frac{0}{1}=0
$$

So we can conclude:

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}=0
$$

6.) Compute the following limit:

$$
\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t}{t^{2}}
$$

Again, if we plug in $t=0$ we will get zero over zero, so we must use a trick. Notice that in this case the top and bottom are both squared:

$$
\frac{\sin ^{2} 3 t}{t^{2}}=\frac{(\sin 3 t)^{2}}{t^{2}}=\left(\frac{\sin 3 t}{t}\right)^{2}
$$

Now we want to have $\sin \theta$ over θ, so we divide and multiply by 3 :

$$
\left(\frac{\sin 3 t}{t}\right)^{2}=\left(3 \frac{\sin 3 t}{3 t}\right)^{2}=9 \cdot\left(\frac{\sin 3 t}{3 t}\right)^{2}
$$

Now we can take the limit:

$$
\lim _{t \rightarrow 0} 9 \cdot\left(\frac{\sin 3 t}{3 t}\right)^{2}=9 \cdot\left(1^{2}\right)=9
$$

So we can conclude:

$$
\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t}{t^{2}}=9
$$

