\qquad

C5•Measurements and Calculations

ACCURACY \& PRECISION

Idea 1: Measurements (3.25 cm) are different than other numbers (3.14159265).

- Measurements represent an action by someone with some measuring instrument.
- Measurements have built-in uncertainty; no measurement is exact.
- Measurements have units.

Idea 2: The uncertainty in a measurement needs to be communicated.

Definitions:

accuracy - how close a measurement is to \qquad precision - how close a measurement is to \qquad

Precision versus Accuracy:

Look at each target below and decide whether the situation is accurate, precise, both, or neither:
(Note: it is "accepted" that the bull's eye is the place everyone aims for.)

Accurate?: Yes / No
Precise?: Yes / No

Accurate?: Yes / No
Precise?: Yes / No

Accurate?: Yes / No
Precise?: Yes / No

Precision Problems:

Several lab groups measure the density of aluminum. Here is their data:

Team 1	Team 2	Team 3	Team 4	Team 5	Team 6	Team 7
$2.65 \mathrm{~g} / \mathrm{cm}^{3}$	$2.75 \mathrm{~g} / \mathrm{cm}^{3}$	$2.80 \mathrm{~g} / \mathrm{cm}^{3}$	$2.77 \mathrm{~g} / \mathrm{cm}^{3}$	$2.60 \mathrm{~g} / \mathrm{cm}^{3}$	$2.65 \mathrm{~g} / \mathrm{cm}^{3}$	$2.68 \mathrm{~g} / \mathrm{cm}^{3}$

If the density of aluminum is $2.70 \mathrm{~g} / \mathrm{cm} 3$, were the lab groups accurate? (hint: calculate the average of the data) Were the groups precise?

Here is more data. Is this more precise, less precise, or the same precision as the above data?

Team 1	Team 2	Team 3	Team 4	Team 5	Team 6	Team 7
$2.60 \mathrm{~g} / \mathrm{cm}^{3}$	$2.70 \mathrm{~g} / \mathrm{cm}^{3}$	$2.80 \mathrm{~g} / \mathrm{cm}^{3}$	$2.75 \mathrm{~g} / \mathrm{cm}^{3}$	$2.65 \mathrm{~g} / \mathrm{cm}^{3}$	$2.62 \mathrm{~g} / \mathrm{cm}^{3}$	$2.78 \mathrm{~g} / \mathrm{cm}^{3}$

Accuracy Problems:

$$
\% \text { error }=\frac{\text { measured value }- \text { actual value }}{\text { actual value }} \times 100
$$

1. Working in the laboratory, a student find the density of a piece of pure aluminum to be $2.85 \mathrm{~g} / \mathrm{cm}^{3}$. The accepted value for the density of aluminum is $2.699 \mathrm{~g} / \mathrm{cm}^{3}$. What is the student's percent error?
2. A student experimentally determines the specific heat of water to be $4.29 \mathrm{~J} / \mathrm{g} \mathrm{x} \mathrm{C}^{0}$. He then looks up the specific heat of water on a reference table and finds that is is $4.18 \mathrm{~J} / \mathrm{g} \mathrm{x} \mathrm{C}$. What is his percent error?
3. A student takes an object with an accepted mass of 200.00 grams and masses it on his own balance. He records the mass of the object as 196.5 g . What is his percent error?
