

1

Abstract

CNNs have proven to be a very successful yet

computationally expensive technique which made them

slow to be adopted in mobile and embedded systems.

There is a number of possible optimizations:

minimizing the memory footprint, using lower precision

and approximate computation, reducing computation cost

of convolutions with FFTs. These have been explored

recently and were shown to work.

This project take ideas of using FFTs further and

develops an alternative way to computing CNN – purely in

frequency domain. As a side result it develops intuition

about nonlinear elements: why do they work and how new

types can be created.

1. Introduction

Today mobile devices such as smartphones and tables

are the most often used compute platform and digital

camera as such they are the best target for various

computer vision applications. These devices are battery

powered which limits available resources and poses a

significant challenge to advanced algorithms such as

CNN.

Traditionally CNNs have been developed for clusters of

desktop grade CPUs and GPUs which consume about 80

and 200W respectively, while mobile platforms are limited

at 5-10W. This gets even worse for wearable and “always
on” devices which only have 0.1-1W.

A common approach to alleviate performance and

power problem (to some degree) is to move computation

to “the cloud”, however this raises privacy concerns about
doesn‟t solve the power problem if we want to apply
CNNs in real time. Sending even small 256x256 images at

25fps over the data network will quickly drain the battery,

not to mention huge amounts of latency.

The only way to solve this problem is by building

specialized hardware such as NeuFlow[15] or

DaDianNao[17]. Alternatively, one can try to adjust an

algorithm to better fit existing hardware and it‟s
limitations. The best results could be archived by applying

both approaches at the same time and co designing

algorithms and hardware at the same time.

2. Problem statement

In specialized hardware, most of the gains are archived

by select “the right” algorithm – the one which can be

implemented efficiently.

For embedded platform the measure of efficiency is

power which is equal to number of operations times

energy per operations. To optimize power we can either do

less operations or spend less energy doing it.

2.1. Energy table

First of all it‟s important to understand how the energy
is spent on various steps in computer program.

Operation Energy, pJ Relative cost

16b Int ADD 0.06 1

16b Int MULT 0.8 13

16b FP ADD 0.45 8

16b FP MULT 1.1 18

32b FP ADD 1.0 17

32b FP MULT 4.5 80

Register File, 1kB 0.6 10

L1 Cache, 32kB 3.5 58

L2 Cache, 256kB 30.2 500

on-chip DRAM 160 2667

DRAM 640 10667

Wireless transfer 60000 1000000

Table 1: Energy cost of common operations.

Numbers in Table 1 heavily depend on technology

parameters, such as manufacturing node (feature size),

operating voltage, frequency, etc. but the general trend

will be same:

 communication is extremely expensive

 computation is cheaper than memory access

 memory access depends on it‟s capacity
(register file vs cache vs DRAM)

 integer arithmetic is cheaper than floating point

CNN optimizations for embedded systems and FFT

Artem Vasilyev

Stanford

353 Sierra Mall Stanford CA 94305
tema8@stanford.edu

2

 everything depends on data precision(16b vs

32b)

This clearly shows the importance of data locality and

memory footprint optimization to energy efficiency.

2.2. Choosing CNN implementation

For a baseline architecture in embedded system we‟d

want to use one of the top performing submitions in

ImageNet challenge, that has the minimal working set. In

other words, the CNN with smallest number of

parameters.

CNN Year Parameters

AlexNet[3] 2012 60M

Clarify[7] 2013 65M

OverFeat[5] 2013 70M

VGG [8] 2014 135M

GoogLeNet[6] 2014 7M

Table 2: Number of parameters in state-of-the-art CNNs.

As the summary table 2 shows, in general, the trend has

been towards increasing the number of weights. This is

cause by increasing complexity of CNN and adding more

layers.

An exception to this trend is 2014 winner – GoogLeNet.

By comparing it with VGG, we can notice that there are

more convolution layers – 59 stages of varying sizes in 21

layers vs 16 stages of 3x3 convolutions over 16 layers in

VGG[8]. At the same time GoogLeNet[6] has about 20x

less parameters because there is a one instead three Fully

Connected layers.

Even though such a reduction is great we are still need

7m*4Byte=28MB of storage this is still too high from

SRAM and would require DRAM access. Additionally we

are doing about 3x more computations (59 vs 21

convolution stages).

GoogLeNet use a lot of convolutions, in fact it spends

majority of computations doing them. For this reason it‟s
critical to have a very efficient implementation of

convolution. One of the options is by using Fast Fourier

Transformation. This will turn convolutions into point-

wise multiplications and reduce complexity from O(n2*k2)

to O(n2) where n is the input width/height and k is the

filter size. Section 4 describes how this idea can be

developed further.

3. Overview of previously explored ideas

The remaining problem with the number of parameters

can be addressed by the following optimizations:

 Setting some weights to 0

 Quantizing weights to fewer bits

 Weights Deduplication

And the computation increase can be offset by:

 Interger/Fixed point arithmetic instead of floats

 Aproximate/Imprecise computation

 Use less precision / fewer bits

 Do convolutions in frequency domain

All these ideas have merit and there are very recent

papers (from 2015) that explored them, however those

papers used old CNN designs as a baseline link

AlexNet[3], OverFeat[5] or Maxout[4], no paper have

considered GoogLeNet[6], but in general the same

methods will likely work.

3.1. Setting some weights to 0

The main assumption is that some weights are less

important than others and can be set to 0 and that this will

have small to moderated affect on the accuracy.

M. D. Zeiler and R. Fergus[9] showed that the

convolotional layers gradually increase the accuracy of

CNN which supports my assumptions. Furthermore

techniques like DropConnect [10] suggest that remove

some parameters is not only acceptable, but could also be

beneficial and certain regularizations types are also

known to encourage sparse parameters as shown in

Elastic Net [11].

3.2. Quantizing weights

L2 is most commonly used regularization type it

penalizes large values in weights and encourages that all

parameters are used a little. This suggest that we can

expect relatively small dynamic range in weights thus use

smaller number of bits to represent them.

3.3. Weights deduplication

Data deduptication is a well know technique to reduce

memory requirement. It doesn‟t change the data and thus

will not affect the accuracy and it can be efficiently

integrated into computer architecture as was shown by

HICAMP[14].

 The simplest way to simulate the benefits of

deduplication is by using compression, like Zip.

3.4. Lower precision arithmetic

O. Temam [16] investigated neural network hardware

accelerator geared towards defect tolerance and energy

efficiency. This is a very desirable feature of CNN which

allows cheaper and more efficient hardware

implementations. The fault tolerance can be investigated

in software by artificially injecting random errors during

computation. It seem that the fault tolerance could the

consequence of using more precision than required by the

algorithm.

3

Courbariaux and David investigated the use of low

precision arithmetic for deep learning in [12]. Their result

shows that Maxout[4] architecture can use only 10bits for

computation and 12bits storage without significantly

affecting the accuracy.

S. Gupta et al. [13] also successfully used lower

precision arithmetic both for CNN and fully connected

architecture. Their paper used very simple CNN with 2

layers and small data set like CFAIR10, but they showed

that it‟s possible to use none standard 12bit float instead of
32bit single precision with small effect on the accuracy.

They report archiving energy efficiency of 37

GOps/second/W with low precision implementation in

fpga vs 1-5 GOps/second/W achievable on CPU/GPUs (

Intel i7-3720QM, NVIDIA GT650m and the GTX780)

3.5. FFTs

A well know property of FFT is that it turns convolution

into element wise multiplication. Not only this requires

significantly less operations to compute, but it also

eliminates reeducation step in convolution (summation)

and thus exposes extra level of parallelism. This is a very

desirable characteristic in every parallel system, but

especially in GPUs which are optimized for fully

independent threads. Not surprisingly FFTs were used for

GPU optimization, fist by Mathieu et al.[1] who reported

up to 3 times faster performance and in resent for of N.

Vasilache et al[2] which archived 1.4 to 14.5 time better

performance than cuDNN by custom implementation of

FFTs tuned to small kernel sizes.

4. CNNs with FFTs

4.1. Problem statement and related work

Works of Mathieu et al.[1] and Vasilache et al[2] are the

most related papers to my project. Both papers used

traditional CNN structure and interpretation of weights,

which means there have to do FFT, element wise

multiplication and inverse FFT on every convolution layer.

Both FFT and iFFT are O(n2log n) operations (vs O(n2)

for element wise multiplication). This greatly reduces the

benefits especially for small filters (see [1] for more

details).

My idea is to comute FFT only once on the input image

and do iFFT after the last convolution layer (or at the very

end). Modern CNNs like VGG[8] and GoogLeNet[6]

have up to 59 convolution stages in 21 layer and the

savings would be big, but it would also require doing both

NonLinearity and Pooling layers in frequency domains.

The next section develops mathematic framework to

approach this problem and reports experimental results for

Pooling layer and Nonlinearity.

4.2. Linear system analysis

A common way to analyze and work with linear systems

is through the use of a transfer function. A complicated

system can be broken into simple stages, each stage is

modifying a spectrum according to the transfer function

and feeds the output to the next stage.

Such method can‟t be directly applied to CNN because
of none linearity. Switching between time and frequency

domain (as in [1] and [2]) is one way to address it. The

advantage of this approach is that it can deal with all types

on none linear functions, but at the expense of doing iFFT

before none linearity and FFT after.

 Alternatively we can use the properties of a particular

none linearity function and stay in the frequency domain.

Section 4. 5 will develop mathematic justification for the

case of ReLu() function which allows to treat it almost like

a linear system.

4.3. Convolution layer

As was mentioned before, convolution in frequency

domain becomes an element wise multiplication of the

Fourier components.

To perform element wise multiplication, the two arrays

must be of equal size, so it might seem that we have

increase the number of parameters from k2 to n2. But in

fact all n2 Fourier coefficients can be expressed through

k2 original parameters because we can view the coefficient

as a weighted sum of 2D delta functions: � − , −
,

∗ (,)

Delta function is defined over entire n2 domain, and it‟s
spectrum is known.

4.4. Pooling layer

Pooling layer can be done ether with MAX operation or

AVERAGE. This is the same as image decimation – a

standard practice image processing, it is well described by

Bouman in [25].

Decimation is equivalent to image blur, which removes

high frequencies for an image followed by size reduction.

This can be done in frequency domain by doing

convolution and discarding extra frequency components.

Figure 1: Pooling Layer in Frequency domain

4

MAX and Average are special kinds of blur kernels

used for their computation efficeincy (in space domain).

The later one is also known as box filter. Both are actually

considered suboptimal compared to 2D sinc function [25]

which better suppresses aliacing.

The comparison beween space and frequency domain

implementation is shown on Figure 1. It should be noted

that in frequency domain using box filter intead of sinc

doesn‟t give any benefits because both are just element

wise multiplications.

4.5. Nonlinearity in frequency domain

Any stage in the system can be viewed as applying a

certain function g(y) to the input function f(x),so analysis

in the frequency domain comes to finding the Fourier

transform F(g(f(x)) with respect to F(f(x)).

 In general problem doesn‟t have an analytical solution,
but we can find one in case g(y)=ReLu(y)

The most common way none linearity is ReLu, which

acts as data clipping in time domain. It creates sharp

corners in the signal, so in the frequency domain this

would add higher frequency harmonics to the spectrum.

Mathematically we can express ReLu(f(x)) function

through f(x) as a multiplication with the sign(f(x)) : which

is equal to 1 if f(x)>0 and 0 otherwise :

 � �� = max , 0 = � � ∗ ()

Because we are working with limited intervals (number

of samples) of function f(x), we can express ReLu through

the multiplication with sum of delta functions: � � ∗ = ∗ � − , > 0

The Fourier transform of a delta function is given by:

 � � − 0 () = 2� 0

Using linearity of FFTs and convolution theorem we

can express the Fourier transform of ReLu(f(x)) through

the Fourier transform of f(x): � � ��() () = 2� ⨂�

This shows that in frequency domain, ReLu() acts as a

convolution with the function of known form. However,

this function depends on the input and we need to find

positions in space domain : > 0. To do that we

need to take inverse transforms of the input and solve the

inequality.

The key factor is that once we have found , we know

the transfer function of the ReLu for this input and don‟t
need to calculate FFT.

Figure 2 illustrates the method of computing ReLu in

frequency domain. We can see that the result is very close,

but not identical. The power spectrum plots indicate that

the difference comes from the edges (high frequency) and

is likely caused by limited image dimensions.

4.6. Fully connected layer

Fully connected layer is a special case of convolution

layer where the result is computed for a single point. As

such, it turns into element wise multiplication in frequency

domain.

Typically, the input to this layer is very deep, but

narrow and short. But batching multiple image we can

make it wider and taller to increase the computation

efficiency.

4.7. Softmax

Softmax takes a vector as an input, but in frequency

domain every element of this vector is spread among all

frequencies. So we would need to use a matrix as an input

to softmax, or convert back to special domain with iFFT.

4.8. Computational complexity

Since ReLu is equivalent to convolution in frequency

domain it might seem that we haven‟t gained anything by

using FFTs.

This is not the case because pooling in frequency

reduces the data by discarding elements after a certain

index. As a result, the convolution doesn‟t need to
compute that data and has to generate only ¼ of the points.

Overall the complexity of the algorithm seems to be:

Figure 2: ReLu in Frequency domain

5

O(n2log n) vs O(n2 k2) in space domain. However, the

constant factor and lower order terms seems to be smaller.

Additionally, authors of [2] showed that the benefit of

independent operation in element by element

multiplication. It maps well on modern SIMD architecture

and runs faster, however a careful code tuning is required

to take full advantage of this property

Because asymptotically O(n2log n) is worse than O(n2

k2), we can expect that there is a point where two methods

run in the same time.

4.9. Putting it all together

For the final experiment, I have implement all layers

python, such that they interface with each other by passing

frequency activations instead of special ones.

This required soling a number of issues like: in

dimensions are even the location of 0 fequency in the

array is not obvious (different form MatLab), all

frequencies and spectrum have to account the number of

samples, etc.

However the one issue worth noting is that in

frequency domain, just like in space domain, we have to

deal with the boundary conditions by using more elements

than in the incoming activations. In special domain this

was a simple padding with 0, and in frequency domain this

requires changing all elements of array (because in numpy

implementation frequency depends on the number of

samples).

In the end my implantation ran much slower compared

to optimized computations we used in homework‟s and I
was getting poor prediction quality because the weights

were trained on a traditional network in space domain and

then transferred over to frequency CNNs, which doesn‟t
not compute identical result due to boundary conditions

and other implementation details hinted earlier.

Figure 3 illustrate this on a single block of three

consecutive operations: Convolution, ReLu, Pool. An

input was 151 by 151„Lenna‟ image and Sobel filter
operator: [[-1,-2,-1],[0,0,0],[1,2,1]].

We can see that even though the error on each layer are

small (as shown in Fig.1 and 2), they accumulate and they

are not concentrated in a small or not important area of the

image.

This issue will likely be corrected by using the same

frequency computations during training, instead of doing

them only during testing. Also we can back propagate

purely in the frequency domain – we are doing same kinds

of operations – multiplications, additions and

convolutions.

Figure 3: Conv-ReLu-Pool – error accumulation frequency

domain

5. Intuition about nonlinear elements

Nonlinear elements are often described as “magic” that
makes CNN works. They are given as the reason why

CNNs can express “interesting” functions that separate
object classes, but very little is given as explanation of

their mechanics other that the fact that ReLus “seem to
perform better than others”.

We have seen that ReLu acts as convolution in

Frequency domain. Let‟s try to develop an intuition about

other common types: sigmoid and tanh by looking at their

modification to a spectrum of function sin(50x).

In case of a linear system, we‟d simply derived a
transfer function by applying a step function as an input.

But since the system is not linear, we can only develop

intuition without mathematical backing.

As we can see from Figure 4, all three act similarly by

“spreading” information from a single frequency band at
50Hz to other harmonics: 2x and 4x in case of ReLu and

3x in case of sigmoid and tanh. Also it‟s clear that ReLu
redistributes information better – the peak at 2x is 20% of

the oginal, while sigmoid only 20% at the original location

and a tiny portion at 3x, putting most of the energy in DC.

High emphasis of nonlinearity on DC component is bad

because all the frequency would be smashed into the same

bin and become indistinguishable.

We also know that ReLu is followed by Pooling which

discards some frequency components, so a more even

redistribution has a better chance of preserving some of

the informational content from the frequency that will be

discarded in other components

6

5.1. Generating new nonlinearities

As we saw, ReLu, sigmoid and tanh act similarly, by

redistributing information for original image, we can

design new kind of functions to do the same thing.

A possible strategy is to use convolutions in frequency

domain (just like ReLu does), but employ different kenrels

than ReLu. And important feature is that the kernel

applied to each activation has to depend on that

activation, in other words it‟s not constant. ReLu bases the

kernel on mask which translates to a large kernel in

frequency domain, but we can use smaller kernel and even

one based on frequencies only instead of information from

special domain. We can also create one that doesn‟t
emphases DC component.

Of cause, we would have to train the network differently

and do a proper back propagation.

6. Conclusion and future works

In this project I did a review of possible methods to

optimize CNN for embedded platform and developed an

new way to perform all the computation in frequency

domain. This method exposed an intriguing “duality” of

CNN: a convolution operation is require both in special

domain and in frequency domain, however they have

different purpose and meaning. Convolution in space

captures special locality in the data, while convolution in

frequency redistributes information to different

components in order to mitigate information loss in the

Pooling layer.

The goal of doing computation in frequency domain

was to eliminate convolutions, while it‟s impossible to do

without constantly switching between space and frequency

(which is expensive), computation entirely in frequency

domain has to calculate ¼ of convolution results compared

to special domain.

The project has demonstrated that this is a viable

approach but computation has to be done the same way

during training and testing. We also saw that it‟s possible

to match the exact behavior of ReLu, but it‟s

computationally expensive. However this is probably not

required for the successful operation and other

nonlinearities are possible.

A good follow up would be to explore different kinds of

nonlinearities by performing convolutions in space, a more

optimized implementation similar to work in [2] and

performing training in frequency domain.

References

[1] M. Mathieu, M. Henaff and Y. LeCun. Fast training of

convolutional networks through ffts. CoRR, 2014

[2] N. Vasilache, J. Johnson, M. Mathieu,S. Chintala, S.

Piantino and Y. LeCun, Fast Convolutional Nets With fbfft

:A GPU Performance Evaluation. Under review at ICLR,

http://arxiv.org/abs/1412.7580, Under review at ICLR,2015

[3] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet

classification with deep convolutional neural networks.

NIPS, 2012.

[4] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville,

A., and Bengio, Y. Maxout networks. Technical report,

2013

[5] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition,

localization and detection using convolutional networks.

ICLR, 2014.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going

Deeper with Convolutions. http://arxiv.org/abs/1409.4842.

2014

[7] http://www.clarifai.com/

[8] K. Simonyan, A. Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition.

http://arxiv.org/abs/1409.1556, Under review at ICLR,2015

Figure 4: Effect of none linearity

http://arxiv.org/abs/1412.7580
http://arxiv.org/abs/1409.4842.%202014
http://arxiv.org/abs/1409.4842.%202014
http://arxiv.org/abs/1409.1556

7

[9] M. D. Zeiler and R. Fergus. Visualizing and Understanding

Convolutional Networks. CoRR, 2013

[10] L. Wan et al. Regularization of Neural Networks using

DropConnect. ICML, 2013

[11] H. Zou ,T. Hastie, Regularization and Variable Selection via

the Elastic Net.

http://web.stanford.edu/~hastie/Papers/elasticnet.pdf, 2003

[12] M. Courbariaux and J.-P. David. Low precision arithmetic

for deep learning. Under review at ICLR,

http://arxiv.org/abs/1412.7024 , 2015

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan P. Narayanan.

Deep Learning with Limited Numerical Precision,

http://arxiv.org/pdf/1502.02551v1.pdf ,2015

[14] D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P.

Stevenson, O. Azizi. HICAMP: architectural support for

efficient concurrency-safe shared structured data access,

http://dl.acm.org/citation.cfm?id=2151007, ACM, 2012

[15] C. Farabet, B. Martini, B. Corda, P. Akselrod, E.

Culurciello, and Y. LeCun. Neuflow: A runtime

reconfigurable dataflow processor for vision, in Proc.

Embedded Computer Vision Workshop, 2011.

[16] O. Temam. A Defect-Tolerant Accelerator for Emerging

High-Performance Applications. ISCA, 2012

[17] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T.

Chen, Z. Xu, N. Sun, and O. Temam. DaDianNao: A

Machine-Learning Supercomputer. MICRO'14, 2014

[18] Y. Jia. Caffe: An open source convolutional architecture for

fast feature embedding. http://caffe.berkeleyvision.org/,

2013.

[19] P. Warden. How to run the Caffe deep learning vision

library on Nvidia‟s Jetson mobile GPU board,

http://petewarden.com/2014/10/ , 2014

[20] Theano, http://deeplearning.net/software/theano/, 2015

[21] Torch, http://torch.ch/, 2015

[22] Pylearn2, http://deeplearning.net/software/pylearn2/, 2015

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.

Girshick, S. Guadarrama, T. Darrell. Caffe: Convolutional

Architecture for Fast Feature Embedding.

http://arxiv.org/abs/1408.5093 , 2014

[24] Caffe Model Zoo ,

http://caffe.berkeleyvision.org/model_zoo.html , 2015

[25] C. A. Bouman. Digital Image Processing .

https://engineering.purdue.edu/~bouman/ece637/notes/pdf/

RateConversion.pdf, 2015

[26] Fourier transform.

http://en.wikipedia.org/wiki/Fourier_transform , 2015

http://web.stanford.edu/~hastie/Papers/elasticnet.pdf
http://arxiv.org/pdf/1502.02551v1.pdf%20,2015
http://dl.acm.org/citation.cfm?id=2151007
http://deeplearning.net/software/theano/
http://torch.ch/
http://deeplearning.net/software/pylearn2/
http://arxiv.org/abs/1408.5093
http://caffe.berkeleyvision.org/model_zoo.html
https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RateConversion.pdf
https://engineering.purdue.edu/~bouman/ece637/notes/pdf/RateConversion.pdf
http://en.wikipedia.org/wiki/Fourier_transform%20f

