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Abstract 

 

CNNs have proven to be a very successful yet 

computationally expensive technique which made them 

slow to be adopted in mobile and embedded systems. 

There is a number of possible optimizations:  

minimizing the memory footprint, using lower precision 

and approximate computation, reducing computation cost 

of convolutions with FFTs.  These have been explored 

recently and were shown to work.  

This project take ideas of using FFTs further and 

develops an alternative way to computing CNN – purely in 

frequency domain. As a side result it develops intuition 

about nonlinear elements: why do they work and how new 

types can be created.  

 

1. Introduction 

Today mobile devices such as smartphones and tables 

are the most often used compute platform and digital 

camera as such they are the best target for various 

computer vision applications. These devices are battery 

powered which limits available resources and poses a 

significant challenge to advanced algorithms such as 

CNN.  

Traditionally CNNs have been developed for clusters of 

desktop  grade CPUs and GPUs which consume about 80 

and 200W respectively, while mobile platforms are limited 

at 5-10W. This gets even worse for wearable and “always 
on” devices which only have 0.1-1W. 

A common approach to alleviate performance and 

power problem (to some degree) is to move computation 

to “the cloud”, however this raises privacy concerns about 
doesn‟t solve the power problem if we want to apply 
CNNs in real time. Sending even small 256x256 images at 

25fps over the data network will quickly drain the battery, 

not to mention huge amounts of latency. 

The only way to solve this problem is by building 

specialized hardware such as NeuFlow[15] or 

DaDianNao[17]. Alternatively, one can try to adjust an 

algorithm to better fit existing hardware and it‟s 
limitations. The best results could be archived by applying 

both approaches at the same time and co designing 

algorithms and hardware at the same time.  

2. Problem statement 

In specialized hardware, most of the gains are archived 

by select “the right” algorithm – the one which can be 

implemented efficiently. 

For embedded platform the measure of efficiency is 

power which is equal to number of operations times 

energy per operations. To optimize power we can either do 

less operations or spend less energy doing it. 

2.1. Energy table  

First of all it‟s important to understand how the energy 
is spent on various steps in computer program.  

 

Operation Energy, pJ Relative cost 

16b Int ADD 0.06 1 

16b Int MULT 0.8 13 

16b FP ADD 0.45 8 

16b FP MULT 1.1 18 

32b FP ADD 1.0 17 

32b FP MULT 4.5 80 

Register File, 1kB 0.6 10 

L1 Cache, 32kB 3.5 58 

L2 Cache, 256kB 30.2 500 

on-chip DRAM 160 2667 

DRAM 640 10667 

Wireless transfer 60000 1000000 

 
Table 1: Energy cost of common operations. 

 

Numbers in Table 1 heavily depend on technology 

parameters, such as manufacturing node (feature size), 

operating voltage, frequency, etc. but the general trend 

will be same:  

 communication is extremely expensive 

 computation is cheaper than  memory access  

 memory access depends on it‟s capacity 
(register file vs cache vs DRAM)   

 integer arithmetic is cheaper than floating point 
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 everything depends on data precision(16b vs 

32b) 

This clearly shows the importance of data locality and 

memory footprint optimization to energy efficiency.  

2.2. Choosing CNN implementation 

For a baseline architecture in embedded system we‟d 

want to use one of the top performing submitions in 

ImageNet challenge, that has the minimal  working set. In 

other words, the CNN with smallest number of 

parameters. 

 

CNN Year Parameters 

AlexNet[3] 2012 60M 

Clarify[7] 2013 65M 

OverFeat[5] 2013 70M 

VGG [8] 2014 135M 

GoogLeNet[6] 2014 7M 

 
Table 2: Number of parameters in state-of-the-art CNNs. 

 

As the summary table 2 shows, in general, the trend has 

been towards increasing the number of weights. This is 

cause by increasing complexity of CNN and adding more 

layers.  

An exception to this trend is 2014 winner – GoogLeNet. 

By comparing it with VGG, we can notice that there are 

more convolution layers – 59 stages of varying sizes in 21 

layers vs 16 stages of 3x3 convolutions over 16 layers in 

VGG[8]. At the same time GoogLeNet[6] has about 20x 

less parameters because there is a one instead three Fully 

Connected layers. 

Even though such a reduction is great we are still need 

7m*4Byte=28MB of storage this is still too high from 

SRAM and would require DRAM access. Additionally we 

are doing about 3x more computations (59 vs 21 

convolution stages). 

GoogLeNet use a lot of convolutions, in fact it  spends 

majority of computations doing them. For this reason it‟s 
critical to have a very efficient implementation of 

convolution. One of the options is by using Fast Fourier 

Transformation. This will turn convolutions into point-

wise multiplications and reduce complexity from O(n2*k2) 

to O(n2)  where n is the input width/height and k is the 

filter size.  Section 4 describes how this idea can be 

developed further.  

3. Overview of previously explored ideas  

The remaining problem with the number of parameters 

can be addressed by the following optimizations: 

 Setting some weights to 0 

 Quantizing weights to fewer bits 

 Weights Deduplication 

And the computation increase can be offset by: 

 Interger/Fixed point arithmetic instead of floats 

 Aproximate/Imprecise computation 

 Use less precision / fewer bits 

 Do convolutions in frequency domain 

 

All these ideas have merit and there are very recent 

papers ( from 2015) that explored them, however those 

papers used old CNN designs as a baseline link 

AlexNet[3], OverFeat[5] or Maxout[4], no paper have 

considered GoogLeNet[6], but in general the same 

methods will likely work.  

3.1. Setting some weights to 0 

The main assumption is that some weights are less 

important than others and can be set to 0 and that this will 

have small to moderated affect on the accuracy. 

M. D. Zeiler and R. Fergus[9] showed that the 

convolotional layers gradually increase the accuracy of 

CNN which supports my assumptions. Furthermore 

techniques like DropConnect [10] suggest that remove 

some parameters  is not only acceptable, but could also be 

beneficial and certain  regularizations types are also 

known to encourage sparse parameters  as shown in 

Elastic Net [11]. 

3.2. Quantizing weights 

L2 is most commonly used regularization type it 

penalizes large values in weights and encourages that all 

parameters are used a little. This suggest that we can 

expect relatively small dynamic range in weights thus use 

smaller number of bits to represent them.  

3.3. Weights deduplication 

Data deduptication is a well know technique to reduce 

memory requirement. It doesn‟t change the data and thus 

will not affect the accuracy and it can be efficiently 

integrated into computer architecture as was shown by 

HICAMP[14]. 

 The simplest way to simulate the benefits of 

deduplication is by using compression, like Zip. 

3.4. Lower precision arithmetic  

O. Temam [16] investigated neural network hardware 

accelerator geared towards defect tolerance and energy 

efficiency. This is a very desirable feature of CNN which 

allows cheaper and more efficient hardware 

implementations. The fault tolerance can be investigated 

in software by artificially injecting random errors during 

computation. It seem that the fault tolerance could the 

consequence of using more precision than required by the 

algorithm.   
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Courbariaux and David investigated the use of low 

precision arithmetic for deep learning in [12]. Their result 

shows that Maxout[4] architecture can use only 10bits for 

computation and 12bits storage without significantly 

affecting the accuracy. 

S. Gupta et al. [13] also successfully used lower 

precision arithmetic  both for CNN and fully connected 

architecture. Their paper used very simple CNN with 2 

layers and small data set like CFAIR10, but they showed 

that it‟s possible to use none standard 12bit float instead of 
32bit single precision with small effect on the accuracy. 

They report archiving energy efficiency of 37 

GOps/second/W with low precision implementation in 

fpga vs 1-5 GOps/second/W achievable on CPU/GPUs ( 

Intel i7-3720QM,  NVIDIA GT650m and the GTX780) 

3.5. FFTs 

A well know property of FFT is that it turns convolution 

into element wise multiplication. Not only this requires 

significantly less operations to compute, but it also 

eliminates reeducation step   in convolution (summation) 

and thus exposes extra level of parallelism. This is a very 

desirable characteristic in every parallel system, but 

especially in GPUs which are optimized for fully 

independent threads. Not surprisingly FFTs were used for 

GPU optimization, fist by Mathieu et al.[1] who reported 

up to 3 times faster performance and in resent for of N. 

Vasilache et al[2] which archived 1.4 to 14.5 time better 

performance than cuDNN by custom implementation of 

FFTs tuned to small kernel sizes. 

4. CNNs with FFTs 

4.1. Problem statement and related work 

Works of Mathieu et al.[1] and Vasilache et al[2] are the 

most related papers to my project. Both papers used 

traditional CNN structure and interpretation of weights, 

which means there have to do FFT, element wise 

multiplication and inverse FFT on every convolution layer. 

Both FFT and iFFT are O(n2log n) operations ( vs O(n2) 

for element wise multiplication ). This greatly reduces the 

benefits especially for small filters (see [1] for more 

details).  

My idea is to comute FFT  only once on the input image 

and do iFFT after the last convolution layer (or at the very 

end).  Modern CNNs like VGG[8] and GoogLeNet[6] 

have up to 59 convolution stages in 21 layer and the 

savings would be big, but it would also require doing both 

NonLinearity and Pooling layers in frequency domains.  

The next section develops mathematic framework to 

approach this problem and reports experimental results for 

Pooling layer and Nonlinearity. 

 

4.2. Linear system analysis 

A common way to analyze and work with linear systems 

is through the use of a transfer function.  A complicated 

system can be broken into simple stages, each stage is 

modifying a spectrum according to the transfer function 

and feeds the output to the next stage. 

Such method can‟t be directly applied to CNN because 
of none linearity. Switching between time and frequency 

domain (as in [1] and [2]) is one way to address it. The 

advantage of this approach is that it can deal with all types 

on none linear functions, but at the expense of doing iFFT 

before none linearity and FFT after. 

 Alternatively we can use the properties of a particular 

none linearity function and stay in the frequency domain. 

Section 4. 5 will develop mathematic justification for the 

case of ReLu() function which allows to treat it almost like 

a linear system.  

4.3. Convolution layer 

As was mentioned before, convolution in frequency 

domain becomes an element wise multiplication of the 

Fourier components. 

To perform element wise multiplication, the two arrays 

must be of equal size, so it might seem that we have 

increase the number of parameters from k2 to n2. But in 

fact all n2 Fourier  coefficients can be expressed through 

k2 original parameters because we can view the coefficient 

as a weighted sum of 2D delta functions:  � ݔ − ݅ݔ , ݕ − ݕ݆  ݅ ,݆ ∗ ,݅)ݓ ݆) 

Delta function is defined over entire n2 domain, and it‟s 
spectrum is known.  

4.4. Pooling layer 

Pooling layer can be done ether with MAX operation or 

AVERAGE. This is the same as image decimation – a 

standard practice image processing, it is well described by 

Bouman in [25].  

Decimation is equivalent to image blur, which removes 

high frequencies for an image followed by size reduction. 

This can be done in frequency domain by doing 

convolution and discarding extra frequency components.  

 
Figure 1: Pooling Layer in Frequency domain   
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MAX and Average are special kinds of blur kernels 

used for their computation efficeincy  (in space domain). 

The later one is also known as box filter. Both are actually 

considered suboptimal compared to 2D sinc function [25] 

which better suppresses aliacing.  

The comparison beween space and frequency domain 

implementation is shown on Figure 1. It should be noted 

that in frequency domain using box filter intead of sinc 

doesn‟t give any benefits because both are just element 

wise multiplications. 

 

4.5. Nonlinearity in frequency domain  

Any stage in the system can be viewed as applying a 

certain function g(y) to the input function f(x),so analysis  

in the frequency domain comes to finding the Fourier 

transform F(g(f(x)) with respect to F(f(x)). 

 In general problem doesn‟t have an analytical solution, 
but we can find one in case g(y)=ReLu(y) 

The most common way none linearity is ReLu, which 

acts as data clipping in time domain. It creates sharp 

corners in the signal, so in the frequency domain this 

would add higher frequency harmonics to the spectrum. 

Mathematically we can express ReLu(f(x)) function 

through f(x) as a multiplication with the sign(f(x)) : which 

is equal to 1 if f(x)>0 and 0 otherwise : 

=  ݔ ݂ ��݁�  max ݂ ݔ , 0 = ∗  ݔ ݂ �݃݅�   (ݔ)݂

 

Because we are working with limited intervals (number 

of samples) of function f(x), we can express ReLu through 

the multiplication with sum of delta functions: �݅݃� ݂ ݔ  ∗ = ݔ ݂ ∗ ݔ ݂ ݔ �  − ,  ݅ݔ < ݅ݔ ݂ 0݅  

The Fourier transform of a delta function is given by: 

ݔ � �  − (݇)  0ݔ = ݁2�݆݇ 0ݔ   

 

Using linearity of FFTs and convolution theorem we 

can express the Fourier transform of ReLu(f(x)) through 

the Fourier transform of f(x): � �݁��(݂ ݔ ) (݇) =   ݁2�݆݇ ݅݅ݔ    ݔ ݂ �⨂ 

This shows that in frequency domain, ReLu() acts as a 

convolution with the function of known form. However, 

this function depends on the input and we need to find 

positions in space domain ݅ݔ < ݅ݔ ݂ :  0. To do that we 

need to take inverse transforms of the input and solve the 

inequality.  

The key factor is that once we have found  ݅ݔ , we know 

the transfer function of the ReLu for this input and don‟t 
need to calculate FFT. 

Figure 2 illustrates the method of computing ReLu in 

frequency domain. We can see that the result is very close, 

but not identical. The power spectrum plots indicate that 

the difference comes from the edges (high frequency) and 

is likely caused by limited image dimensions. 

 

4.6. Fully connected layer 

Fully connected layer is a special case of convolution 

layer where the result is computed for a single point. As 

such, it turns into element wise multiplication in frequency 

domain. 

Typically, the input to this layer is very deep, but 

narrow and short. But batching multiple image we can 

make it wider and taller to increase the computation 

efficiency.  

4.7. Softmax 

Softmax takes a vector as an input, but in frequency 

domain every  element of this vector is spread among all 

frequencies. So we would need to use a matrix as an input 

to softmax, or convert back to special domain with iFFT.  

4.8. Computational complexity 

Since ReLu is equivalent to convolution in frequency 

domain it might seem that we haven‟t gained anything by 

using FFTs.  

This is not the case because pooling in frequency 

reduces the data by discarding elements after a certain 

index.  As a result, the convolution  doesn‟t need to 
compute that data and has to generate only ¼ of the points. 

Overall the complexity of the algorithm seems to be: 

Figure 2: ReLu in Frequency domain   
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O(n2log n) vs O(n2 k2) in space domain. However, the 

constant factor and lower order terms seems to be smaller. 

Additionally, authors of [2] showed that the benefit of 

independent operation in element by element 

multiplication. It maps well on modern SIMD architecture 

and runs faster, however a careful code tuning is required 

to take full advantage of this property 

Because asymptotically O(n2log n) is worse than O(n2 

k2), we can expect  that there is a point where two methods 

run in the same time.  

4.9. Putting it all together 

For the final experiment, I have implement all layers 

python, such that they interface with each other by passing 

frequency activations instead of special ones.  

This required soling a number of issues like: in 

dimensions are even the location of 0 fequency in the 

array is not obvious (different form MatLab), all 

frequencies and spectrum have to account the number of 

samples, etc.  

However the one issue worth   noting is that in 

frequency domain, just like in space domain, we have to 

deal with the boundary conditions by using more elements 

than in the incoming activations. In special domain this 

was a simple padding with 0, and in frequency domain this 

requires changing all elements of array (because in numpy 

implementation frequency depends on the number of 

samples). 

In the end my implantation  ran much slower compared 

to optimized computations we used in homework‟s and I 
was getting poor prediction quality because the weights 

were trained on a traditional network in space domain and 

then transferred over to frequency CNNs, which doesn‟t 
not compute identical result due to boundary conditions 

and other implementation details hinted earlier. 

Figure 3 illustrate this on a single block of three 

consecutive operations: Convolution, ReLu, Pool. An 

input was 151 by 151„Lenna‟ image and Sobel filter 
operator: [[-1,-2,-1],[0,0,0],[1,2,1]]. 

We can see that even though the error on each layer are 

small (as shown in Fig.1 and 2), they accumulate and they 

are not concentrated in a small or not important area of the 

image. 

This issue will likely be corrected by using the same 

frequency computations during training, instead of doing 

them only during testing. Also we can back propagate 

purely in the frequency domain – we are doing same kinds 

of operations – multiplications, additions and 

convolutions.  

 

 

 

 

 

 

 
Figure 3: Conv-ReLu-Pool – error accumulation frequency 

domain   

5. Intuition about nonlinear elements 

Nonlinear elements are often described as “magic” that 
makes CNN works. They are given as the reason why 

CNNs can express “interesting”  functions that separate 
object classes, but very little is given as explanation of 

their mechanics other that the fact that ReLus “seem to 
perform better than others”. 

We have seen that ReLu acts as convolution in 

Frequency domain. Let‟s try to develop an intuition about 

other common types: sigmoid and tanh by looking at their 

modification to a spectrum of function sin(50x).   

In case of a linear system, we‟d simply derived a 
transfer function by applying a step function as an input. 

But since the system is not linear, we can only develop 

intuition without mathematical backing. 

As we can see from Figure 4, all three act similarly by 

“spreading” information from a single frequency band at 
50Hz to other harmonics: 2x and 4x  in case of ReLu and 

3x in case of sigmoid and tanh. Also it‟s clear that ReLu 
redistributes information better – the peak at 2x is 20% of 

the oginal, while sigmoid only 20% at the original location 

and a tiny portion at 3x, putting most of the energy in DC. 

High emphasis of nonlinearity on DC component is bad 

because all the frequency would be smashed into the same 

bin and become indistinguishable.  

We also know that ReLu is followed by Pooling which 

discards some frequency components, so a more even 

redistribution has a better chance of preserving some of 

the informational content from the frequency that will be 

discarded in other components  
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5.1. Generating new nonlinearities 

As we saw, ReLu, sigmoid and tanh act similarly, by 

redistributing information for original image, we can 

design new kind of functions to do the same thing.  

A possible strategy is to use convolutions in frequency 

domain (just like ReLu does), but employ different kenrels 

than ReLu. And important feature is that the kernel 

applied to each activation has to depend on that 

activation, in other words it‟s not constant. ReLu bases the 

kernel on  mask which translates to a large kernel in 

frequency domain, but we can use smaller kernel and even 

one based on frequencies only instead of information from 

special domain. We can also create one that doesn‟t 
emphases DC component.  

Of cause, we would have to train the network differently 

and do a proper back propagation.  

 

6. Conclusion and future works 

In this project I did a review of possible methods to 

optimize CNN for embedded platform and developed an 

new way to perform all the computation in frequency 

domain. This method exposed an intriguing “duality” of 

CNN: a convolution operation is require both in special 

domain and in frequency domain, however they have 

different purpose and meaning.  Convolution in space 

captures special locality in the data, while convolution in 

frequency redistributes information to different 

components in order to mitigate information loss in the 

Pooling layer. 

The goal of doing computation in frequency domain 

was to eliminate convolutions, while it‟s impossible to do 

without constantly switching between space and frequency 

(which is expensive), computation entirely in frequency 

domain has to calculate ¼ of convolution results compared 

to special domain. 

The project has demonstrated that this is a viable 

approach but computation has to be done the same way 

during training and testing. We also saw that it‟s possible 

to match the exact behavior of ReLu, but it‟s 

computationally expensive. However this is probably not 

required for the successful operation and other 

nonlinearities are possible. 

A good follow up would be to explore different kinds of 

nonlinearities by performing convolutions in space, a more 

optimized implementation similar to work in [2] and 

performing training in frequency domain. 
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