
AWSAC: Amazon Web Services
for ATLAS Computing

documentation

Jan-Philip Gehrcke

Max-Planck-Institut für Physik, München
Universität Würzburg

last amended: December 16, 2008

CONTENTS

1 Abstract 1

2 Introduction 3

3 What are Amazon Web Services? 5
3.1 Simple Storage (S3) . 6
3.2 Elastic Computing Cloud (EC2) . 6
3.3 Simple DB . 7

4 Why Amazon Web Services for ATLAS Computing? 9
4.1 Why Cloud Computing with virtual machines? 9
4.2 Why Amazon Web Services? . 10
4.3 A profitable mixture - AWSAC’s main motivation 11

5 Understand and control AWS 13
5.1 Manage all services via HTTP . 13
5.2 Understand and control S3 . 16
5.3 Understand and control EC2 . 16

6 The job system: how AWSACtools work 23
6.1 Job system requirements . 23
6.2 The AWSACtools job system . 24
6.3 How to use the AWSACtools job system . 29

7 Creating an AMI for AWSAC from scratch 49
7.1 Prerequisites . 49
7.2 Set up a Scientific Linux VM for an AMI 50
7.3 Bundle, upload and register the AMI . 59
7.4 Run, optimize and rebundle the AMI on EC2 65
7.5 Modify the AMI for AWSACtools . 71

8 How to create an ATLAS Software Release EBS snapshot 75
8.1 Preparation . 75

i

8.2 Install and configure ATLAS Software Release 76
8.3 Build the snapshot . 81

9 Conclusion and Outlook 83

10 Appendix 85
10.1 awsac-all-instances-autorun . 85
10.2 awsac-autorun . 86
10.3 awsac-processjobs . 90
10.4 awsac-session . 109

ii

CHAPTER

ONE

ABSTRACT

An ATLAS Software Release is a software collection to perform computing within the
scope of the ATLAS experiment at the Large Hadron Collider (CERN, Geneva). This
documentation describes how to perform computing with an ATLAS Software Release in
Amazon’s Elastic Computing Cloud EC2. Therefore, an Amazon Machine Image
(AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4) was created.
The development is shown in detail. A proof-of-principle job system was developed. Jobs
can use the software in the normal way. The output of a job is exported to Amazon’s
Simple Storage Service S3, before the corresponding virtual machine in the cloud is
terminated. Job status information is transferred to Amazon’s SimpleDB service. Job
sessions are controlled and monitored by a client using Python scripts implementing the
Amazon Web Services API via the boto library working together with scripts embedded
in the SL4 AMI. The experience with setting up and operating the described system using
standard ATLAS job transforms is reported.

It is shown, that ATLAS Cloud Computing is a promising substitute for classical ATLAS
Computing. The basic services a computing cloud should deliver for ATLAS Cloud Com-
puting were elaborated. The benefit of a general Cloud Computing API with different
possible clouds at the back end is discussed. It seems possible to set up an EC2 style cloud
in the future, so that the advantages of Cloud Computing would be available for the price of
own hardware.

1

AWSAC: Amazon Web Services for ATLAS Computing

2 Chapter 1. Abstract

CHAPTER

TWO

INTRODUCTION

Cloud Computing with virtualization could make ATLAS Computing much more reliable
and robust. Cloud computing centralises the hardware and decentralises software. It hides
complexity from the user of the services. Services are made available in a very flexible way
via virtual servers. This results in less administration effort and staff costs in computer
centres. So the LHC physicists should find ways to use Cloud Computing to their advantage.
Using Amazon Web Services (AWS) is one obvious possibility to determine the possibilities
for ATLAS Computing in a cloud.

In summer 2008 Prof. Dr. Thomas Trefzger (Uni Würzburg, Fakultät für Physik und As-
tronomie) sent me (Jan-Philip Gehrcke) to the Max-Planck-Institut für Physik in Munich,
where I stayed for six weeks following Stefan Kluth‘s consideration to use AWS as a plat-
form for ATLAS Computing. The idea was to especially use Amazon’s so-called «Elastic
Computing Cloud» (EC2) for simulation, reconstruction and other applications an ATLAS
Software Release delivers. We call the whole topic AWSAC: Amazon Web Services for
ATLAS Computing.

At first we configured a Linux system that fulfils some special conditions simultaneously:
the complete ATLAS Software Release and the Amazon EC2 AMI Tools have to run on it
properly and it has to run on the virtual machines of the Elastic Computing Cloud correctly
itself, using the «Xenified kernel» Amazon delivers. The way we did it is described in this
documentation in every detail.

Then we started developing AWSACtools, providing an ATLAS Computing job system.
This system takes advantage of the possibility to start up as many virtual machines in
Amazon’s Elastic Computing Cloud as you need. AWSACtools consist of a client- and a
server component to manage ATLAS Computing jobs. One job is basically one shell script
completely written on your own (you can use the ATLAS Software Release‘s commands in
there, of course). It is executed as root on a virtual machine in the cloud as a sub process of
AWSACtools‘ server component. To control jobs’ statuses and to receive jobs’ results with
the client component, AWSACtools use other Amazon Web Services like Amazon SimpleDB
and Amazon Simple Storage. AWSACtools are documented here in every detail, too.

The proof-of-principle job system shows, that the approach of Cloud Computing for ATLAS
can make things really easy. At the end of the documentation the basic services a computing
cloud should deliver at least for an ATLAS Computing job system are discussed. It is argued,

3

AWSAC: Amazon Web Services for ATLAS Computing

why a general Cloud Computing API with different possible clouds at the back end is highly
desired.

4 Chapter 2. Introduction

CHAPTER

THREE

WHAT ARE AMAZON WEB
SERVICES?

Amazon Web Services (AWS) accrued in early 2006. It is part of the well-known electronic
commerce company Amazon.com. AWS emerged from Amazon.com’s enormous global com-
puting infrastructure, that has been built up for over 13 years. The objective is to offer
flexible IT infrastructure services from one source (the cloud) for customers like
companies of all sizes. These services include e.g. compute power, storage and data bases.
The most important two principles of all Amazon Web Services are:

• You pay only for what you use.

• You can instantly get as much from everything as you need.

Let me quote Amazon: «Using Amazon Web Services, an e-commerce web site can weather
unforeseen demand with ease; a pharmaceutical company can “rent” computing power to
execute large-scale simulations; a media company can serve unlimited videos, music, and
more; and an enterprise can deploy bandwidth-consuming services and training to its mobile
workforce.» https://aws.amazon.com/ is the home of Amazon Web Services (AWS), whereas
“home” has two different meanings:

• By using this URL in a browser, you can get information about AWS, manage your
AWS account, browse documentations, examples, tutorials, articles and visit forums.

• By using this URL (and sub domains) in any high-level programming language, you
can control any of the Amazon Web Services. The whole steering communication is
HTTP based and directed to the named web server at aws.amazon.com.

The most important parts of AWS are currently placed in three big computer centres at the
east cost of the USA. These centres are at three physically totally different places and form
three so-called availability zones.

In the following parts, I will name and shortly describe the three services that are used by
AWSAC.

5

AWSAC: Amazon Web Services for ATLAS Computing

3.1 Simple Storage (S3)

S3 is Amazon’s storage service. Its most important features are:

• Simple HTTP based API to store and retrieve any amount of data, at any time, from
anywhere on the web.

• Very high bandwidth and fast access from within the cloud.

• Highly reliable (automatically mirrored between the three availability zones).

S3 is not a file system. It has a bucket / object system:

• One AWS account can own up to 100 so-called buckets. The namespace of these buckets
is a public space, so one bucket name only exists one time for all AWS accounts.

• A “file” at S3 is a so-called object, placed in a bucket. The “filename” of the object is
the so-called key. Objects may contain from 1 byte to 5 gigabytes of data. The number
of objects you can store in a bucket is unlimited.

• S3 has an entire access control system for objects. Rights can be granted to specific
users or to the public.

The pricing is by storage used, traffic between S3 and “the internet” and requests. Traffic
in the cloud (e.g. between S3 and EC2) is for free.

More detailed information about S3: http://aws.amazon.com/s3/

3.2 Elastic Computing Cloud (EC2)

EC2 is Amazon’s computing power service. It provides flexible (resizeable) computing ca-
pacity in the cloud. EC2 is a virtual computing environment. It allows you to launch
and terminate virtual machines of individually configurable operating systems (stan-
dard: Linux systems; possible: Windows systems). Such a custom system can be stored in a
so-called Amazon Machine Image (AMI) containing e.g. custom applications, libraries, data
and associated configuration settings. AMIs are stored encrypted on S3. Virtual machines
at EC2 are called instances. Launching instances of a custom AMI makes it possible to
get virtual servers with a custom application environment.

Important features of EC2 are:

• Flexibility / Elasticity: EC2 can launch or terminate as many instances (virtual
servers) as you want at any time within minutes.

• EC2 is controlled via easy HTTP based APIs. So an application can automatically
scale itself up and down depending on its needs.

6 Chapter 3. What are Amazon Web Services?

AWSAC: Amazon Web Services for ATLAS Computing

• EC2 grants root access to the virtual machines and access to the console output.

• One can choose the virtual hardware before launching an instance.

• One can use so-called public AMIs of pre-configured systems or create own private
AMIs.

• After creating an own AMI one can make it public so that others can launch their own
instances of it.

• So-called Elastic Block Stores (EBS) provide persistent storage for EC2 instances. EBS
volumes exist independently from the life of an instance. This is convenient,
because the so-called instance storage - that comes automatically with an instance -
gets lost when the corresponding instance shuts down. EBS Volumes provide a
real file system and a higher performance than S3.

Pricing for EC2 is basically per “instance-hour” - whereas the instance type (the virtual
hardware) plays an important role - and traffic between instances and the internet. The
costs for EBS and other “subservices” (like Elastic IP) are calculated additionally.

More detailed information about EC2: http://aws.amazon.com/ec2/

3.3 Simple DB

SimpleDB is Amazon’s database service. As you can guess from the name, it is constructed
to be simple. The service is intended to be used from within the cloud, i.e. from EC2
instances.

Important features:

• Provides the core functionality of a database: real-time lookup and simple querying of
structured data without the complexity of a standard relational database.

• SimpleDB automatically indicates the data accordingly.

• SimpleDB is fast (from within the cloud).

• The data is stored redundantly across multiple servers and data centres (like data on
S3).

More detailed information about SimpleDB: http://aws.amazon.com/simpledb/

3.3. Simple DB 7

AWSAC: Amazon Web Services for ATLAS Computing

8 Chapter 3. What are Amazon Web Services?

CHAPTER

FOUR

WHY AMAZON WEB SERVICES FOR
ATLAS COMPUTING?

To answer this question, I at first have to argue, why scientific computing like ATLAS
Computing should profit from Cloud Computing with virtual machines in contrast to e.g.
the LHC Computing Grid (LCG) approach.

4.1 Why Cloud Computing with virtual machines?

In computer centres of the LCG the need for software maintenance (operating systems and
job systems) is very big, because unstable software and particularly user mistakes often lead
to crashed systems. Because of this, the personnel effort and costs for administration
and maintenance in the LCG is big.

So, what are the advantages of working with guest operating systems on virtual ma-
chines (VMs)?

• The user does not touch the host operating system.

• Different VMs on the same hardware work independently.

• The user can work as root without worry.

In other words:

• The user is not able to damage the host OS (bad intentions excluded).

• If one VM crashes, the other VMs on the same hardware proceed working.

• The user may “destroy” one VM, but he can just relaunch it (takes advantage of the
machine image concept)

So, when the virtual machine monitor (the software layer providing the virtualization) runs
stable, there ideally should be nothing, that could crash the host OS. From the computer

9

AWSAC: Amazon Web Services for ATLAS Computing

centre staff’s point of view, the software (the host OS) then nearly is maintenance free.
With virtual machines in a cloud, computer centres would almost only have to
care about the hardware, which would reduce personnel effort and expenses!

You perhaps ask yourself, if there is a loss of performance, when hardware stressing jobs run
on virtual machines. The solution is the open source paravirtualization Xen:

«Through paravirtualization, Xen can achieve high performance [...] which is
notoriously uncooperative with traditional virtualization techniques.»

This requires the guest operating system to be modified in a special way, which is not
a big problem, as we can see using the example of Amazon Web Services. AWS uses Xen
virtualization for EC2 and because of this, there the guest operating systems need a so-called
«Xenified kernel».

Hence, there are various advantages, Cloud Computing with virtual machines brings along.

4.2 Why Amazon Web Services?

The first reason is that a reliable technical infrastructure to give Cloud Computing a try is
currently only commercially available. The leading company in this sector is Amazon with
its Amazon Web Services. Additionally, Amazon really is interested in working together with
science. They sent out representatives / consultants to the Max-Planck-Institut, to consider
our needs and to work on an individual solution for special applications in science. So, for
Cloud Computing research purposes, AWS is ideal.

When calculating and comparing the costs for computing with AWS and with own hardware,
it is obvious, that AWS is more expensive. It is definitely excluded and not the
intention to e.g. move ATLAS Computing completely to AWS.

But there is another serious advantage, Amazon Web Services for ATLAS Computing brings
along: imagine, there is a deadline and you have to get e.g. simulation results until a fixed
point in time. Additionally imagine, that your classical computing possibilities run out of
capacity and it is foreseeable, that computing will not finish. Then it might be of very
big value for you, to occupy a huge amount of instances at EC2, so that you can
meet the deadline.

The described case is exactly the case AWS is designed for. It offers flexible, scalable and
elastic computing infrastructure, so that a company or even science gains planning reliability.
Remember, that the AWS user only pays, what he uses!

In summary, AWS offers a very good base to develop Cloud Computing for sci-
entific applications. AWS is promising in respect of missing computing capacity. Those
peaks of desired computing power can be satisfied using AWS for a short time. The resulting
cost may be less important than meeting a deadline.

10 Chapter 4. Why Amazon Web Services for ATLAS Computing?

AWSAC: Amazon Web Services for ATLAS Computing

4.3 A profitable mixture - AWSAC’s main motivation

Let me summarize:

• Cloud Computing using virtual machines would reduce personnel effort and cost.

• Computing with AWS is more expensive than with own hardware.

• AWS offers a great possibility to satisfy peaks of desired computing power

These statements implicate, that the optimal solution would be an own computing
cloud for the price of own hardware in combination with a standard Cloud Com-
puting API that is able to control the own cloud and additionally e.g. AWS. Then the
user is able to decide, in which cloud his jobs should run. Switching between clouds
becomes very easy, resulting in a very convenient solution to balance out peaks
of desired computing power.

This would be a very profitable mixture and research on this topic is exactly the main
motivation of the AWSAC project.

4.3. A profitable mixture - AWSAC’s main motivation 11

AWSAC: Amazon Web Services for ATLAS Computing

12 Chapter 4. Why Amazon Web Services for ATLAS Computing?

CHAPTER

FIVE

UNDERSTAND AND CONTROL AWS

If you want to get in AWS and want to understand the things that are important for you, then
there are many helpful sources. At first you have to know which special services you need for
your application. A summary of all Amazon Web Services can be found here. For AWSAC
the most important services are EC2 and S3. SimpleDB may perhaps be called “bonus”.
EC2 is much more complex than S3. So for me, understanding EC2 was of top priority at
the beginning. Hence, I worked myself through Amazon’s EC2 Resources. There you can
find the official documentation (including the very essential Developer Guide), great articles,
helpful tutorials and useful examples. Additionally, the AWS Forums are very convenient
for special problems and questions (great support!).

To spare you to read through everything, in this chapter I will explain the technical facts
that you should have in background while reading this documentation.

5.1 Manage all services via HTTP

AWS is using a so-called Web Service Description Language (WSDL) that strictly defines
operations and how to control their services. As stated before in chapter 2, every service is
controlled via HTTP. More exactly, a special language meeting the definitions in the WSDL
must be spoken over HTTP. For such a special language a XML structure is convenient.
This language is spoken in a conversation between the client (the one that has a special re-
quest) and the server aws.amazon.com (the one that elaborates a corresponding response).
HTTP is used as a protocol to arrange this conversation, since HTTP natively is a re-
quest/response standard between a client and a server and it should be accessible
from any internet connection.

Consider a client that wants to perform an action on AWS, e.g. on EC2. An action en-
capsulates the possible interaction between the client and EC2, consisting of a request and
response message pair. Then, simply expressed, the Web Services Description Language
(WSDL) strictly defines the special structure of this message pair. A special request from
a client must meet the corresponding entry in the WSDL. Then either AWS follows this
request and performs the requested action; or the request will be declined with a specific
error code in the response. The response, in case of success or failure, is strictly defined by

13

AWSAC: Amazon Web Services for ATLAS Computing

the WSDL, too.

The set of possible actions or valid requests defined by the WSDL for e.g. EC2 builds the
EC2 Application Programming Interface (API). One requested action is called API
call.

The AWS API is subject to constant enhancement. Sometimes a new API version is released.
Normally all changes are downwardly compatible; but to avoid any problems, each API
version has its own documentation and, most important, the client is able to define the API
version its request should be examined with.

5.1.1 Example message pairs

In this part I want to be more precise on the concrete language spoken in a conversation
between the client and the server (the language that is transported by HTTP). The request
may be formed in two different languages, while the response is always the same language.

Now let me illustrate the two possible the request/response systems, that differ in the form of
the requests: Imagine you would like to create a new Elastic Block Store volume of 800 GiB
in the availability zone “us-east-1a”. Then the two possible requests - without authentication
and other security overhead - look like

<CreateVolume xmlns="http://ec2.amazonaws.com/doc/2008-08-08">

<size>800</size>

<zone>us-east-1a</zone>

</CreateVolume>

in XML form (the so-called SOAP API) or

https://ec2.amazonaws.com/

?Action=CreateVolume

&Size=800

&Zone=us-east-1a

in HTTP Query-based form (using standard GET or POST methods to
submit parameters)

For both of these two requests the response - in case of success - is in XML form and looks
like

<CreateVolumeResponse xmlns="http://ec2.amazonaws.com/doc/2008-08-08">

<volumeId>vol-4d826724</volumeId>

<size>800</size>

<status>creating</status>

<createTime>2008-05-07T11:51:50.000Z</createTime>

14 Chapter 5. Understand and control AWS

AWSAC: Amazon Web Services for ATLAS Computing

<zone>us-east-1a</zone>

<snapshotId></snapshotId>

</CreateVolumeResponse>

As you can see, AWS informs you in detail about the requested process. The response always
contains all information that you perhaps could need to work on. In this example case, the
most essential information is the unique volume ID of the new EBS volume, which you need
to e.g. attach the volume to an EC2 instance.

Example requests and corresponding responses of all EC2 API calls are listed in the EC2
Developer Guide - API Reference (for both SOAP and Query API).

5.1.2 Authentification and security

The communication with AWS takes place between a managing client and
https://aws.amazon.com. Hence, the communication itself is encrypted.

To ensure that only you can perform actions with your account, every request contains
authentication parameters. In the case of the Query API, the two important elements of
these auth parameters are

• the so-called Access Key ID (public identifier of your account)

• a hash that was built locally from the request data itself in combination with the
so-called AWS Secret Key.

Then AWS reads out the Access Key ID from the request, looks up the corresponding Secret
Key (from a database) and recalculates the hash with the same algorithm as the client did.
When the two hashes (the one sent by the client and the one AWS calculated) match, the
request is identified as valid.

The authentication mechanism is different for different AWS and may differ between the
API types, too. E.g. when using the SOAP API for EC2, security is guaranteed by using an
X.509 certificate in combination with an RSA public/private key pair and when using the
SOAP API for S3, the mechanism is almost the same as described above (for EC2 Query
API).

To ensure security within the cloud (e.g. between virtual machines of different EC2 users)
and between the cloud and the internet, AWS has an entire configurable Network Security
concept.

5.1.3 Using the API for own applications

Since every modern high-level programming language has web service libraries (e.g. for
HTTP and XML), it is no problem to implement the AWS API. As a result, there meanwhile

5.1. Manage all services via HTTP 15

AWSAC: Amazon Web Services for ATLAS Computing

exist different modules/libraries to control AWS for e.g. Ruby, Java, PHP, Python and so
on. Some of these libraries are official libraries, released by AWS itself. With the help
of these libraries, it is possible to develop big and powerful applications on the
base of AWS!

In the case of Python, the corresponding AWS module is third-party (initiated by Mitch
Garnaat) and called boto. Information can be found here: http://code.google.com/p/boto/

I decided to use Python with boto to control AWS and to build the applications that are now
called AWSACtools. This is because the Python language in my eyes is perfect for doing
such scripting things in the easiest way.

5.2 Understand and control S3

S3 is not as complex as e.g. EC2 and you already know many important things from the S3
introduction. But it is convenient to learn some details more about S3. At this point I can’t
summarize it better than Amazon did. Please read the Core Concepts part of Amazon’s S3
Developer Guide. After this you know everything needed about the data model consisting
of buckets, objects and keys. Go on reading about Access Control Lists to learn about
the mechanism behind sharing data between AWS users or even with the public.
The rest of the S3 Developer Guide also offers interesting stuff.

5.2.1 Manage and monitor S3 with S3Fox

The S3Fox Organizer is a Firefox plug-in that has implemented the S3 API. Thus, S3Fox
has the ability to offer a graphical user interface (GUI) to the S3 interface. Sometimes it is
convenient to visualize the stored data of one or more AWS account(s) at S3. Then S3Fox
offers easy possibilities to check things.

I think that such a tool is really essential, because it may become necessary to e.g. have a
look, if a script has really done, what it should have done. So it is great for monitoring.
But you have to know that S3Fox maps the bucket and key structure on a classical directory
structure: buckets are the highest directory layer and keys containing “/” are split and
treated as directories, too. This sometimes may become confusing.

Moreover, S3Fox is helpful to administrate the Access Control Lists.

5.3 Understand and control EC2

In this part I will illuminate the relation between the different elements EC2 consists of and
explain how to deal with them using different tools.

16 Chapter 5. Understand and control AWS

AWSAC: Amazon Web Services for ATLAS Computing

5.3.1 Components and nomenclature

Amazon Machine Image (AMI):

An AMI is an encrypted image of almost all files of an operating system, including
any user-given data. The encrypted image is divided in part files. For each part
a checksum is built and logged into a manifest file. The part files together with
the manifest file build an Amazon Machine Image, which has to be uploaded to
S3 and registered (validated), before instances can be launched from this AMI.
Building an AMI is done by using special tools, that are described later. After
successful registration of an AMI, it gets an individual and unique AMI ID.
Read what Amazon says about AMIs.

General components:

In the the EC2 introduction, I already introduced the most important components
of EC2. Let me refer to the corresponding part in the EC2 Developer Guide, the
Components of EC2. Hence, an Instance is a running virtual machine in the
Elastic Computing Cloud that was started from an AMI and Instance Store is
virtual hard disk space closely connected to an instance which means that it is
lost, when the instance terminates.

Let me introduce other important components of EC2 by means of usage exam-
ples. I think that this is the easiest and clearest way. Consider the case you
want to start instance(s) with one API call (one so-called reservation). Before
sending this API call, you have to know exactly what you want:

• AMI

Choose the special system you would like to start up, defined by
its AMI ID. Find out the AMI ID of your wanted AMI. Only
registered AMIs can be launched.

• instance type

Choose between various instance types. The type must be adjusted
to your needs. These instance types have names like m1.small
and c1.xlarge. A full list of these names can be found in the EC2
Developer Guide - Instance Types. It is important to consider the
different cost / performance ratios of the different instance types.
If you e.g. like to start up a 32 bit system for high CPU stressing
applications, then you should start up c1.medium for 0.20 $ per
hour instead of m1.small for 0.10 $. This is because c1.medium
has 2 virtual cores with 2.5 EC2 Compute Units (ECU) each («One
EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-
1.2 GHz 2007 Opteron or 2007 Xeon processor») and m1.small only
has 1 core with 1 ECU. This is the fifth part of computing power
for half of the price in comparison with c1.medium.

5.3. Understand and control EC2 17

AWSAC: Amazon Web Services for ATLAS Computing

• number of instances

Carefully choose the number of instances to start up at the same
time (with the same API call). AWS has a min/max system: «If [...]
EC2 cannot launch the minimum number [of instances] you request,
no instances launch. If there is insufficient capacity to launch the
maximum number [...], EC2 launches as many as possible [...].» It is
sufficient to only define the minimal number. This always satisfied
my needs.

• security group

As you can read in the Network Security part of the EC2 Developer
Guide, you can define so-called security groups. Each group gets its
own firewall settings (everything blocked by default!). If you like
to request a reservation (start up instances), you have to specify to
which security group the reservation should belong.

• availability zone

The (currently) three availability zones describe different and phys-
ically wide divided AWS computer centres. Sometimes it is impor-
tant to strictly define in which computer centre the instances should
start up. The interaction between instances is most efficient, when
they are at the same place. And, for e.g. attaching an Elastic Block
Store volume to an instance, it is even necessary that they are in
the same availability zone.

• keypair

If you like to start up a public AMI and wish to log in via ssh,
then you don’t know root’s password. If you like to offer one of
your AMIs to the public, then you don’t want to distribute root’s
password. This is inconvenient. The solution are EC2 keypairs.
EC2 offers the possibility to create RSA keypairs for you. Each
of EC2 keypairs has a specific name. EC2 then keeps the
public keys and you keep the private keys (as files) of your EC2
keypairs. Delivering one keypair’s name within the API call to start
instances, you instruct EC2 to inject the corresponding public key
into the instance at boot time. Then you can log in as root using
the corresponding private key.

• userdata

The so-called userdata can be submitted in form of a base64 encoded
string to all instances that are started by a RunInstances API call.
All EC2 instances within this created EC2 reservation are able
to receive this string from an internal EC2 server with the static
internal IP 169.254.169.254. In case of the HTTP Query API ,
the userdata is URL limited to 8 kB, so we can’t use it to submit
files (note: when using the SOAP API , EC2 limits the userdata

18 Chapter 5. Understand and control AWS

AWSAC: Amazon Web Services for ATLAS Computing

string to 16 kB). But we can use it to make essential and necessary
information accessible for the instances within the reservation.

Some of the named parameters are optional: you must not define a keypair or
userdata; no availability zone leads to a random one, no security group leads to
the default group.

Note: Let me again explain the term reservation. Every RunIn-
stances API call instructs EC2 to start up one or more instances. All
instances started up within this one API call belong to the same reser-
vation. This reservation has a unique reservation ID. So all instances
just started have the same reservation ID. But every instance within
a reservation has an own globally unique instance ID. Additionally
each instance within a reservation has an own so-called launch in-
dex, starting from 0. This is important for developing applications,
because using launch-index and/or instance ID is the only way
to distinguish between various instances within one reserva-
tion.

Consider the RunInstances API call as valid and the requested instances as
started up. If you like to connect to one of your instances, the most impor-
tant parameter is the public DNS name. You e.g. can use this address to
connect to your instance via ssh, preconditioned that the corresponding security
group the instance is in allows external accesses on port 22.

Elastic Block Store:

As stated above, the instance storage is lost, when the corresponding instance
shuts down. In the list of instance types you can see, that this instance storage
is really big. But his doesn’t help, if you like to have persistent and fast storage
that exists independently from instances. S3 is not a file system and is sorted
out (note: there are third-party possibilities to wrap S3 and create a pseudo
file system on top of it). The solution is Elastic Block Store (EBS). An
EBS volume itself can be considered as independent EC2 component. It can be
created at any time (you have to define its size and its availability zone) and
deleted at any time. In the meanwhile it may be attached to instances (only
one instance at the same time). Within such an instance an EBS volume
appears as hard disk drive that can be mounted and formatted with any file
system.

Amazon developed an API call, that invokes a backup of a specific EBS volume
to S3. Such a backup is called snapshot. It is possible to create a new EBS
volume from an existing snapshot within seconds. Each snapshot has a unique
ID, the snapshot ID.

Read what Amazon says about EBS.

5.3. Understand and control EC2 19

AWSAC: Amazon Web Services for ATLAS Computing

5.3.2 Manage and monitor EC2

AWS has implemented its EC2 API itself using Java and Javascript. The results are the
command line tools EC2 API Tools and the Firefox plug-in Elasticfox. To create own
AMIs, Amazon delivers the EC2 AMI Tools, based on Ruby.

• EC2 API Tools:

The EC2 API Tools provide little programs for the command line for invoking
all possible EC2 API calls. Since they are command line tools, they are useful
for scripting. Each little tool with its possible command line parameters is
documented in the EC2 Developer Guide - API Tools.

The EC2 API Tools implement the SOAP API . As stated above, in 4.1.2
Authentification and security, this means that the authentication of requests
is warranted using a private key / certificate system. If you are the owner
of an AWS account, the corresponding files (certificate and key file)
can be downloaded from the AWS account management interface.

You can get the EC2 API Tools here: EC2 Developer Resources - Amazon
EC2 API Tools.

• Elasticfox:

Elasticfox grants a graphical user interface (GUI) to the EC2 API. During
development, Elasticfox became one of the most important tools for
me. Since it knows and controls the complete set of API calls, it replaced
the API Tools for me in terms of monitoring and manual EC2 management.
It is very helpful to visualize what scripts are doing, since it e.g. displays the
state of instances and EBS volumes. Launching and terminating instances
becomes very easy, like registering AMIs, creating keypairs, creating and
attaching EBS volumes and so on. Try it!

Since it implements the HTTP Query API , it only needs your AWS Secret
Key and the Access Key ID to handle your account.

Check it out at Sourceforge: http://sourceforge.net/projects/elasticfox/ or
in the EC2 Developer Resources.

• EC2 AMI Tools:

If you like to create an own Amazon Machine Image, you should adopt
the help of EC2 AMI Tools. They are command line tools, too. Usage is
explained in the EC2 Developer Guide - AMI Tools.

The tools are able to bundle an operating system into an AMI. They provide
two ways to do this:

1. bundle the needed files of a running system into an AMI

2. bundle a loopback file containing a system into an AMI

20 Chapter 5. Understand and control AWS

AWSAC: Amazon Web Services for ATLAS Computing

After having the image itself, the EC2 AMI Tools use your EC2 private key /
certificate to perform the encryption. Then, the encrypted image is divided
in part files. For each part a checksum is built and logged into the manifest
file. Additionally, the tools provide the possibility to upload everything to
S3. Registering then is done via Elasticfox or the EC2 API Tools.

Get the tools from EC2 Developer Resources - Amazon EC2 AMI Tools

5.3. Understand and control EC2 21

AWSAC: Amazon Web Services for ATLAS Computing

22 Chapter 5. Understand and control AWS

CHAPTER

SIX

THE JOB SYSTEM: HOW
AWSACTOOLS WORK

In this chapter the AWSACtools, comprising an ATLAS job system developed especially
for AWS, are described in detail. At first, the requirements are derived. Then, the developed
job system is described in two detail levels. If you do not understand everything at the first
time, then read on. The parts at the end of this chapter (containing voluminous examples)
should make things clearer.

Note: There is an extra web page to view and download AWSACtools‘ sources.

Look here: http://gehrcke.de/awsac/permstuff/AWSACtools/

6.1 Job system requirements

In this part, the requirements of the job system are discussed. What possibilities must the
job system provide? From the user‘s point of view:

The user is the one starting and controlling jobs with a client software. He
must be able to prepare computing jobs of any style with as few as possible
restrictions. Therefore he must be able to control the operating system, send any
necessary information (input) and to define the results he likes to receive in the
end (output). While a job is active, it should be possible to monitor its status.

It has to be possible to start more than one job at the same time: The job system
and the client software must provide an easy way to start a whole bunch of jobs
- a job session.

So our job system must consist of different necessary components that are introduced here.

• Job:

In order to meet the requirements stated above, our definition of a job is
the following:

23

AWSAC: Amazon Web Services for ATLAS Computing

One job is a shell script, executed as root, that runs as its
own process on an instance. The script is provided by the user
itself. Within this script, the commands of an ATLAS Software
Release and any user-given file (input) can be used. Any result files
can be defined (output).
The job shell script must be controlled by another process in order
to e.g. detect errors, which is important to realize monitoring.

• Input:

The job system must be able to deliver various user-given input files that
must be accessible from within the job shell script.

• Output:

Output files generated by the job shell script must be received by the job
system and saved reliable, e.g. on S3. These results must be accessible by
the user (the client) in the end.

• Status information:

The job should inform the job system about its status in real-time.

• Session:

A job session consists of one or more jobs, started by the user at the same
time. To realize this, we can use the possibility of EC2 reservations (start
more than one EC2 instance at the same time). A job session must be
identifiable by a unique ID, the session ID.

Following these requirements, AWSACtools, providing a job system for ATLAS Computing
with Amazon Web Services, were developed.

6.2 The AWSACtools job system

This part describes the developed job system in every detail. The sources of the AWSACtools
can be viewed and downloaded here: http://gehrcke.de/awsac/permstuff/AWSACtools/ .

6.2.1 Basics

The basic elements of the job system developed are visualized here:

24 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

As you can see, three of Amazon Web Services are used: S3, EC2 and SimpleDB.

The job controlling part of the system is the client (AWSAC jobcontrol in the picture). It is
commanded by the user. It has the following tasks:

• start job sessions

• deliver input data for jobs

• monitor jobs’ statuses

• receive results and clean up

The input is uploaded to S3, where it is accessible from EC2 instances. S3 is additionally
used for delivering an ATLAS Software Release EBS snapshot and to save the output, which
can be downloaded from the client later on. Jobs are executed on EC2 instances. They send
their status information to SimpleDB. This monitoring information can be fetched instantly
using the client machine.

The system is now described again, but one detail level higher.

6.2. The AWSACtools job system 25

AWSAC: Amazon Web Services for ATLAS Computing

6.2.2 Detailed description

The job system delivered by AWSACtools consists of various scripts. The main components
are shorty introduced here:

• awsac-session (Python): The client with the tasks described above. Can be started
in different modi: –-start, –-check, –-getresults and –-cleanup.

• awsac-autorun (shell script): Hard coded into AWSAC AMI ; integrated in system
start-up - tries to receive session information and initiates long chain of commands.

• awsac-all-instances-autorun (shell script): Delivered within job session input.
Can be modified by the user - to make the system very flexible. If it is found by
awsac-autorun, it is executed.

• awsac-processjobs (Python): Delivered within job session input (can be modified by
the user, too). Executed by awsac-all-instances-autorun. Executes and controls
the job shell scripts; manages ATLAS Software Releases (using EBS snapshots and
volumes), monitoring information (using SimpleDB) and job output (using S3).

In order to make the system more comprehensible, the next paragraphs will describe the
procession of an example job session from the beginning to the end in more detail.

1. The start process on the client:

Assume the user prepared all necessary job session information. Together
this will be the session start info file and the so-called session archive.
The former defines things like a short session description, the desired AMI
(by means of its ID) and the favoured instance type. The latter contains the
job definitions file (described later), the job shell scripts and everything
else needed on the instances.

Assume that this session information is given to the client awsac-session

–start. When it then starts the desired session, the client at first generates
a new session ID. Then it stores the session archive on S3 - using the
session ID for S3 key generation.

The session ID and some other selected essential information is put
together in a special userdata string (see 4.3.1: userdata string). Af-
ter accomplishing some checks, the client requests a new EC2 reservation
with the favoured AWSAC AMI and instance type, the right number of
instances starting up and the constructed userdata string. The right num-
ber guarantees that each job shell script of the session just started will get
its own virtual core and the userdata string ensures that each instance knows
which session it belongs to.

1. Initialization of the session on the instances:

26 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

Instances within this job session are starting up the desired special AWSAC
AMI. This AMI contains a modified rc.local, which is executed after the
linux system has booted up and initialized. From this rc.local the hard-
coded shell script awsac-autorun is executed. This happens on each in-
stance of the AWSAC AMI : it does not make any difference, if the instance
is within a job session or not. awsac-autorun tries to receive a userdata
string. If it could be received, it is stored in the so-called session infor-
mation file and the chain of conditional commands goes on with the next
steps: parse the string and - using information from the string - receive
the session archive from S3 using another small Python script. If one of
many conditions is not satisfied, the chain stops. awsac-autorun is the last
hard coded element in the chain. Now we leave the domain of pre-defined
things: within a successful session, the session archive contains another shell
script: awsac-all-instances-autorun - if it is found, it is executed by
awsac-autorun.

As you can see, the job system itself is very flexible: it still does
not exist! This means that the whole job system - beginning with
awsac-all-instances-autorun - can be defined completely by the
user. But don’t worry, the job system introduced before was realized (as
“an example job system” that can be modified by you using the same AMI).

2. What do I have to do?

Each instance within the session has downloaded and extracted the session
archive. awsac-all-instances-autorun was found and executed. This lit-
tle shell script is used to initialize the Python program awsac-processjobs,
the real worker of the server-sided part of the job system. The information
awsac-processjobs must be initialized with is summarized and explained
now.

Each job (defined in the job definitions file) should be processed only once.
So an instance has to find ans answer on the question «What do I have to
do?». It needs a way to distinguish itself from other instances and has to
select one or more jobs from the jobs definitions file that is not selected
by any other instance in the same session. As explained in the description
of EC2 reservations, each instance within a reservation has its own launch
index, which is between 0 and N-1; in the case of N launched instances.
Hence, the special job(s) selected by one special instance within the
session depend on the lauch index and on the number of virtual
cores of the instance (each job should get one core for itself).

But how to find out the launch index and the number of cores? The num-
ber of cores per instance was set by the client (from the instance type). It
was stored in the user data string, which was received by awsac-autorun.
It is now stored on the instance in the session information file. Each
instance has its own unique instance ID. This one can be fetched from
the internal EC2 server at 169.254.169.254 (like receiving userdata string).

6.2. The AWSACtools job system 27

AWSAC: Amazon Web Services for ATLAS Computing

awsac-all-instances-autorun receives this ID and stores it into the in-
stance ID file. Using the instance ID, every additional information about
an instance (like the launch index and e.g. availability zone) can be fetched
easily within a Python script, using boto.

Hence, after receiving the instance ID, awsac-all-instances-autorun ex-
ecutes awsac-processjobs with three files as parameters, containing all
necessary information: the job definitions file, the session information
file and the instance ID file.

3. Selecting jobs and start processing

Consider one instance within the session. There awsac-processjobs parses
the job definitions file, the session information file and the instance
ID file. As described above, from this information awsac-processjobs is
able to determine the jobs for this considered instance.

The user must define an EBS snapshot ID (see Elastic Block Store) for each
job. This makes it possible, to execute different jobs with different ATLAS
Release Versions. The snapshot IDs are defined in the job definitions file,
too. Hence, when awsac-processjobs knows which jobs have to be exe-
cuted on this instance, it knows which different EBS snapshots have to be
embedded into the system (in form of new EBS volumes). After detect-
ing which ATLAS Software Release snapshots are needed for this instance,
awsac-processjobs uses boto to create EBS volumes from these snapshots.
It then attaches these volumes to the current instance and mounts them into
the file system.

Maybe this won’t happen very often, but this feature makes it possible, that
e.g. two different EBS Volumes with two different ATLAS Release Versions
are available from one instance with two virtual cores, running two jobs that
demanded two different snapshot IDs.

Each job shell script will get its own sub process called by
awsac-processjobs. Every sub process gets its own working directory.

Every time the status of a job changes, a SimpleDB domain (the session ID is
the name of this domain) for this session will be created/updated using boto.
Currently, there are three possible states: running (sub process started),
saving (sub process ended, uploading results to S3) and finished. This
monitoring information can be retrieved using awsac-session –check. So
the user is able to follow the status of all his jobs in the session.

While processing the jobs, stdout and stderr of the job shell scripts are
collected into log files. stdout and stderr of awsac-processjobs itself is
written to console (console output of an instance is receivable using a special
EC2 API call, e.g. with Elasticfox) and into a log file, too.

4. Monitor status information

As stated above, awsac-session –check (together with the session ID)
retrieves the status information set by all awsac-processjobs scripts on

28 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

the different instances within the session. It gives a convenient overview
about states, returncodes, times (start, end, duration, ...) and more of all
jobs.

5. End processing jobs

Assume one special instance with a job shell script sub process just finished.
The returncode of the script is written to SimpleDB and if the job shell script
created a results.tar.bz2 in its working directory, awsac-processjobs

will save it to S3. The log file containing stdout and stderr of the script
is compressed and uploaded, too. All these output/results can be received
using awsac-session –getresults.

When all the uploading has finished, the EBS volumes will be un-
mounted, detached and deleted by awsac-processjobs. As a last step the
awsac-processjobs log file is bundled and uploaded to S3, too. Finally
awsac-processjobs terminates the instance it is running on with an EC2
API call.

6. Get results

By using awsac-session –getresults together with the session ID, the
client will receive all the compressed archives of job results and log files.

7. Clean up

By using awsac-session –cleanup together with a session ID, the client
offers the possibility to delete contents from S3 and/or SimpleDB.

6.3 How to use the AWSACtools job system

If you like to know how to use the job system step by step, you should read the next parts.

6.3.1 Build job session information files

To start a job session, the user has to call awsac-session –start –ini

sessionstartinfofile –-archive sessionarchivefile. So, the session start info
file and the session archive are needed. This part will explain the meaning and content of
these files.

session archive:

This file will be downloaded by each instance within the session. It is intended
to contain small, but essential information. It should not be used to dis-
tribute big masses of input data. The session archive must include the following:

6.3. How to use the AWSACtools job system 29

AWSAC: Amazon Web Services for ATLAS Computing

• awsac-all-instances-autorun

• awsac-processjobs

• job shell script(s)

• job definitions file (explained in the next paragraph)

Since the session archive is an easy way to make small amounts of data available
to the instances, it may be convenient to include additional files into the session
archive. This can be any script, config file, small data file or anything else small
that is e.g. needed in any job shell script.

The archive itself must be a BZ2 compressed tarball. Any other file extension
than .tar.bz2 will be declined by awsac-session.

job definitions file:

Until here, you perhaps asked yourself how to define the jobs a job session should
process. The solution is the job definitions file. A job is defined by its shell
script and the snapshot ID (see Elastic Block Store) containing the ATLAS Soft-
ware Release Version the job should use. Hence, the data format of one line in
the job definitions file is the following:

snapshotID;shellscriptname;numberofjobs

This means that one line can define more than one job. Hence, if you like to
run different copies of the same job shell script with the same ATLAS Software
Release Version, you only need one line. If you like to define jobs that differ, you
have to write more than one line.

Consider, the shell script shellscriptA.sh should run three times using snap-
shot snap1 and one time using snap2. Additionally, shellscriptB.sh should
run two times using snap1, too. The following job definitions file will achieve
this:

snap1;shellscriptA.sh;3

snap2;shellscriptA.sh;1

snap1;shellscriptB.sh;2

This file defines six jobs and should result in six simultaneously used virtual
cores.

The job definitions file must be named jobs.cfg and placed into the session
archive*.

session start information file:

This file contains various information, awsac-session –start needs to start the
job session. The information must be placed into an ini-style file. The following
format must be matched:

30 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

[startinfo]

instance_type =

ami_id =

sessionsbucket =

ec2_uid =

shortdescr =

n_jobs =

• instance_type defines the favoured EC2 instance type type. Currently
m1.small and c1.medium are supported. This implicates the number of
cores per instance (n_cpi).

• ami_id is the ID of the AWSAC AMI to start up. The AWS account
(defined by the credentials Access Key ID and Secret Key) you use with
awsac-session must have access to this AMI (e.g. an own or a public
AMI).

• sessionbucket is the S3 bucket the session stores its S3 objects in (the
session archive, all the result files, ...) Your AWS account needs full access
to this bucket.

• ec2_uid is the EC2 User ID the AMI defined in ami_id belongs to. In case
of a public AMI, this perhaps is not your UID. awsac-session needs that
to check the existence of the AMI.

• shortdescr must be a short (not longer than 8 chars) description of the job
session.

• n_jobs defines the number of jobs within the session. Hence, it defines the
number of instances n_inst to start. awsac-session will calculate n_inst

from n_jobs and n_cpi. As you can see, n_jobs should match the number
of jobs defined in jobs.cfg.

6.3.2 Detailled awsac-session manual

This part is a detailed manual for using the job system with awsac-session. Some facts
that were already explained before will be repeated.

What is a session? A job session is a bunch of jobs started with “one command”. Techni-
cally this means, that one or more EC2 instances are started within one RunInstances
API call. So within one job session there may exist only one EC2 reservation. The
number of EC2 instances n_inst in the job session depends on the number of jobs
n_jobs and the number of cores per instance n_cpi.

What is a job? A job basically is a shell script completely written on your own. One
job runs on one virtual core on one instance within a sub process of a Python script
(awsac-processjobs). If you choose instance type c1.medium (with two virtual cores

6.3. How to use the AWSACtools job system 31

AWSAC: Amazon Web Services for ATLAS Computing

per instance) for your session (all instances within one session are of the same type),
then two jobs (“/bin/sh shellscript” sub processes) will run on each EC2 instance. Of
course, there may be one instance that is only occupied by one job. Your jobs are
defined in the job definitions file in the session archive. There you must place the shell
scripts, too. Other files the instances need, can be included, here as well. Above, you
can find more details about the session archive and the job definitions file.

What does awsac-session do in detail? There are four main tasks: Start sessions
(–start commandlineoption), check sessions’ status (–check), get sessions results
(–getresults) and clean up used Amazon Web Services S3 and SimpleDB (–cleanup).
These different options are now explained in detail.

• –start –ini sessionstartinfofile –-archive sessionarchivefile:
Starts a session.

awsac-session needs some information about the session to start. This
information must be delivered within the session start info and session
archive files. How to build the content of these is described in 5.3.1 Build
job session information files.
After checking the settings in the session start info file, awsac-session

generates a session ID for the new session. It consists of the
time, the short description and some randomness (it must be a
unique identifier). Then the session archive is uploaded to S3 (to
sessionbucket/sessionid/archivefilename). The existence of the
given AMI is checked. awsac-session builds a special userdata string
(see 4.3.1: userdata string) that will submitted within the RunInstances
API call to start up the instances for the session. The string has the
following format:

session_id;sessionbucket;archivefilename;cores_per_instance

Hence, when instances of an AWSAC AMI receive this string, they know
the session ID of the session they belong to and are able to download
the session archive from S3. Of course, an instance should know by
itself how many cores it has. But by adding n_cpi to the string, it is
possible to control the number of jobs per instance from the client system.
awsac-processjobs assimilates this information and only starts as many
sub processes per instance as given here.
awsac-session checks the existence of a SimpleDB domain with the
session ID as its name. If it exists, it will be deleted. All content will
get lost. Then awsac-session asks the user, if he really wants to start
n_inst instances of the defined type with the constructed userdata string.
Choosing y causes awsac-session to send the RunInstances API call.
On success, the EC2 reservation ID is displayed.
After this a config file is written. It contains all information about the
session and is necessary for awsac-session –check, –getresults and
–cleanup. The filename of the config file contains the session ID, leading

32 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

in unique names of the produced config files. Keeping these configfiles
even after –cleanup means keeping information about a session.
Note: After the RunInstances API call mainly two different things
can happen: All now automatically following steps result in success or,
if there is a problem with e.g. the user data or the archive content, then
all instances will fail. Some recommendations:

1. always check the instances with Elasticfox. There the states of the
instances can be watched (pending or running or already shutting-
down). running means that the operating system has started booting.

2. use the console output option in Elasticfox. It allows you to see
the output of an instance. All server-sided steps should raise errors
if something went wrong. These errors can be seen in the console
output. The output is not delivered in realtime. There is some delay!

3. if there are no instances running at all (AWS credentials in Elas-
ticfox must be the same awsac-session used), then perhaps the
RunInstances API call failed. We never observed this behaviour.

• –check –config configfile: Checks SimpleDB for the state of a session.

When awsac-processjobs runs with success until starting the jobs as
sub processes, then the SimpleDB domain session ID has been created
and filled with content. awsac-session gets this information from Sim-
pleDB and prints it to the screen. The output should be self-explanatory.
The EC2 instance state switch from pending to running may last a few
minutes. Since the server-sided AWSACtools components start after init
from rc.local and then take some seconds for them self, there may
decay some minutes from –start until the first job reports something to
the SimpleDB domain of the session.
Hence, when awsac-session states that the domain session ID cannot be
found some minutes after –start, then this should be okay. A maximum
delay of about 4 minutes was experienced. Everything above 5 minutes
should raise doubts. If the domain does not exist after ~10 minutes,
then something went wrong. Check console output of the instances with
Elasticfox.
If a job makes problems (e.g. it is running for a long time and should
have finished long ago), then you should use Elasticfox to find out the
public DNS name of the instance the problematic job is running on. Use
ssh to connect to the instance. Then you have various possibilities to
debug the problem. An example of what you can do:

Look in one of the different log files and decide, whether the
job should go on or should be killed. If necessary, kill the
“/bin/sh shellscript” sub process that makes the problems. Then
awsac-processjobs should go on processing the remaining steps
until instance shut-down. This would be a clean solution, because
other jobs on the same instance are not affected.

6.3. How to use the AWSACtools job system 33

AWSAC: Amazon Web Services for ATLAS Computing

• –getresults –config configfile –outdir outputdir: Downloads all result
files from the sessionbucket.

Started with these parameters, awsac-session connects to S3 and checks
if the sessionbucket exists. If it exists, all objects in this bucket beginning
with session ID are downloaded to a directory in outputdir with the
session ID in its name.

• –cleanup –config configfile: Asks you for cleaning S3 and/or SimpleDB.

When all jobs are finished and all result files are downloaded, S3 and
SimpleDB should be cleaned up. If you choose to clean S3, then all
sessionbucket/sessionid* objects will be deleted. awsac-session in-
forms you about every deleted object. If you choose to clean SimpleDB,
then simply the whole SimpleDB domain session ID gets deleted with
all its content.

Note: awsac-session uses boto. boto gets the AWS credentials from environment
variables. Make sure that the following ones are set when running awsac-session:
AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY

6.3.3 An example run - event generation

This example shows the generation of single pions within four jobs on two c1.medium in-
stances. The jobs use ATLAS Software Release 14.2.10, which is prepared in snapshot
snap-9fd433f6. Two jobs should produce 30 pions, the other two jobs should produce 1000
pions. The .root files should be returned.

Preparation:

Okay, lets build the job shell scripts, the jobs definitions file, the session
archive and the session start information file!

The two different job shell scripts will be named gen_30.sh and gen_1000.sh.
Hence, the corresponding job definitions file, jobs.cfg, has the following content:

snap-9fd433f6;gen_30.sh;2

snap-9fd433f6;gen_1000.sh;2

This defines the four desired jobs. The first two will do the same and the last
two will do the same, too.

gen_1000.sh is presented here:

echo ATLAS JOB BEGIN: gen 1000 events

echo $(date)

echo ==

source ${ATLASDir}/14.2.10/cmthome/setup.sh -tag=14.2.10

34 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

csc_evgen_trf.py 007410 1 1000 765432

${AWSACworkingDir}/CSC.007410.singlepart_singlepi+_logE.py

EVGEN_007410_00001.pool.root > csc_evgen_trf_gen1000.log

echo ==

echo BUNDLE RESULTFILES INTO ARCHIVE

tar cjvf results.tar.bz2 EVGEN_007410_00001.pool.root csc_evgen_trf_gen1000.log

if [$? -eq 0]; then

echo "bundle successfull"

else

echo "tar error"

fi

echo ==

echo $(date)

echo ATLAS JOB END: gen 1000 events

exit

This is the content of gen_30.sh (for completeness):

echo ATLAS JOB BEGIN: gen 30 events

echo $(date)

echo ==

source ${ATLASDir}/14.2.10/cmthome/setup.sh -tag=14.2.10

csc_evgen_trf.py 007410 1 30 765432

${AWSACworkingDir}/CSC.007410.singlepart_singlepi+_logE.py

EVGEN_007410_00001.pool.root > csc_evgen_trf_gen30.log

echo ==

echo BUNDLE RESULTFILES INTO ARCHIVE

tar cjvf results.tar.bz2 EVGEN_007410_00001.pool.root csc_evgen_trf_gen30.log

if [$? -eq 0]; then

echo "bundle successfull"

else

echo "tar error"

fi

echo ==

echo $(date)

echo ATLAS JOB END: gen 30 events

exit

As you can see, at the beginning of every job shell script that like to use ATLAS
Software commands, the ATLAS Software Release must be initialized. Details
about this initialization can be found in 7.2 Install and configure ATLAS Software
Release.

6.3. How to use the AWSACtools job system 35

AWSAC: Amazon Web Services for ATLAS Computing

Details on particle generation will be delivered in
CSC.007410.singlepart_singlepi+_logE.py. This file will be stored in
the session archive. So it will be accessible from the job shell scripts at runtime!

awsac-autorun sets and uses some environment variables that can be used within
the job shell scripts, too. The environment variable AWSACworkingDir contains
the directory, where awsac-autorun stores the contents of the session archive;
ATLASDir contains the path, where one or more ATLAS Software Release versions
are mounted to by awsac-processjobs. The files results.tar.bz2 produced
by both of the job shell scripts will be collected and sorted by the job system
automatically.

From this it follows that we already have various files for
the session archive: gen_1000.sh, gen_30.sh, jobs.cfg and
CSC.007410.singlepart_singlepi+_logE.py. Together with
awsac-processjobs and awsac-all-instances-autorun the content
will be complete. Hence, additionally awsac-processjobs.py and
awsac_all_instances_autorun.sh were included (These are the real file
names of the programs at the time of creating this example). The files were
bundled into a BZ2 compressed tarball sessionarchive.tar.bz2. This may
help you to create the archive:

$ cd directory_of_session_archive_files

$ tar cjvf sessionarchive.tar.bz2 *

Additionally, this little Python script may help you with that, too (e.g. convenient
on Windows systems):

import tarfile, os

bundledir = "directory_of_session_archive_files"

tar = tarfile.open("sessionarchive.tar.bz2", "w:bz2")

for file in os.listdir(bundledir):

tar.add(os.path.join(bundledir,file),file)

tar.close()

This is not all information awsac-session needs to start a new job session,
yet. The session start info file is still missing: session.ini. In the case of the
example, the content of session.ini looks like:

[startinfo]

instance_type = c1.medium

ami_id = ami-c97591a0

sessionsbucket = atlassessions

ec2_uid = 201521871620

shortdescr = eventgen

n_jobs = 4

36 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

We want to have «four» jobs within the session and they should run on
«c1.medium» instances of the AWSAC AMI «ami-c97591a0»; owned
by AWS user «201521871620». awsac-session and awsac-processjobs

will work with the bucket «atlassessions». This example session is called
«eventgen».

Start session:

Ready to go! Type

$./awsac-session.py --start -i session.ini -a sessionarchive.tar.bz2

The output should look like

::::> AWSACtools session management v08-10-13

::::> by Jan-Philip Gehrcke

starting new session; parsing start information file...

[startinfo]

sessionsbucket = atlassessions

ami_id = ami-c97591a0

shortdescr = eventgen

ec2_uid = 201521871620

instance_type = c1.medium

n_jobs = 4

----- shortdescription of new session: EVENTGEN -----

instancetype chosen: ‘c1.medium‘ with 2 core(s) per instance.

With 4 demanded job(s)/core(s) this makes 2 instance(s) we have to start.

Unused cores: 0.

generating session ID from date, shortdescription, randomness:

081215_1646--eventgen--1816

uploading sessionarchive file to S3...

uploaded to S3 as object (bucket:‘atlassessions‘

key:‘081215_1646--eventgen--1816/sessionarchive.tar.bz2‘).

connecting to EC2 to check your AMI-ID...

found AMI ‘ami-c97591a0‘ (ATLAS/SL47-AWSAC-v03-boto957.manifest.xml)

building user-data string to be submitted to all instances...

081215_1646--eventgen--1816;atlassessions;sessionarchive.tar.bz2;2

(session_id;bucket;sessionarchivename;cores_per_instance)

6.3. How to use the AWSACtools job system 37

AWSAC: Amazon Web Services for ATLAS Computing

checking SimpleDB domain for this session...

domain does not exist: 081215_1646--eventgen--1816

In the next step EC2 will be instructed to run exactly 2 instance(s)

of given AMI (type ‘c1.medium‘) with user-data mentioned obove.

proceed? (y/n):

If you now choose y, awsac-session goes on and the EC2 reservation will be
requested. The output then looks like:

Request accepted. EC2 reservation ID: r-bc0da0d5

saving session to file... session-081215_1646--eventgen--1816.cfg

As you can see, a new file was created:
session-081215_1646–eventgen–1816.cfg.

Monitor session:

Use Elasticfox and awsac-session –check to follow the sessions process. Watch
the instances pending...

...and starting...:

After some time, you can see new attached EBS volumes of the desired snapshot
listed:

This indicates that the chain of commands was successful until
awsac-processjobs. Hence, there already should be some monitoring
information:

$./awsac-session.py --check -c session-081215_1646--eventgen--1816.cfg

The output is the follwing:

::::> AWSACtools session management v08-10-13

::::> by Jan-Philip Gehrcke

38 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

[sessionconfig]

n_jobs = 4

cores_per_instance = 2

shortdescr = eventgen

bucket = atlassessions

session_id = 081215_1646--eventgen--1816

ec2_reservation_id = r-bc0da0d5

instance_type = c1.medium

unused_cores = 0

n_instances = 2

ec2_uid = 201521871620

ami_id = ami-c97591a0

runuserdata = 081215_1646--eventgen--1816;atlassessions;sessionarchive.tar.bz2;2

============= Job 1 (status: finished) ==============

running /mnt/awsac/gen_30.sh on instance i-33f64f5a with launchindex 0

started running: 08-12-15 16:49:03

ended running: 08-12-15 16:50

returncode: 0

started saving: 08-12-15 16:50:33

ended saving: 08-12-15 16:50:39

============= Job 2 (status: saving) ==============

running /mnt/awsac/gen_30.sh on instance i-33f64f5a with launchindex 0

started running: 08-12-15 16:49:08

ended running: 08-12-15 16:50

returncode: 0

started saving: 08-12-15 16:50:51

============= Job 3 (status: running) ==============

running /mnt/awsac/gen_1000.sh on instance i-32f64f5b with launchindex 1

started running: 08-12-15 16:49:39

============= Job 4 (status: running) ==============

running /mnt/awsac/gen_1000.sh on instance i-32f64f5b with launchindex 1

started running: 08-12-15 16:49:44

The jobs with 30 event generations are a bit faster than the ones generating 1000
events.

When the jobs are over, then the EBS volumes should be listed as deleting or
deleted:

Of course, ./awsac-session.py –check -c session-081215_1646–eventgen–1816.cfg

now confirms that all jobs are finished.

6.3. How to use the AWSACtools job system 39

AWSAC: Amazon Web Services for ATLAS Computing

Get results:

Lets download the content of the sessionbucket:

$ mkdir sessionresults

$./awsac-session.py --getresults -c session-081215_1646--eventgen--1816.cfg

-o sessionresults

The output is the following:

::::> AWSACtools session management v08-10-13

::::> by Jan-Philip Gehrcke

[sessionconfig]

n_jobs = 4

cores_per_instance = 2

shortdescr = eventgen

bucket = atlassessions

session_id = 081215_1646--eventgen--1816

ec2_reservation_id = r-bc0da0d5

instance_type = c1.medium

unused_cores = 0

n_instances = 2

ec2_uid = 201521871620

ami_id = ami-c97591a0

runuserdata = 081215_1646--eventgen--1816;atlassessions;sessionarchive.tar.bz2;2

outputfolder created: /home/iwsatlas1/gehrcke/dokusession/

sessionresults/session-081215_1646--eventgen--1816

saved processjobslog_LI_0.tar.bz2

saved processjobslog_LI_1.tar.bz2

saved results_job_1.tar.bz2

saved results_job_2.tar.bz2

saved results_job_3.tar.bz2

saved results_job_4.tar.bz2

saved sessionarchive.tar.bz2

saved stdouterr_job_1.tar.bz2

saved stdouterr_job_2.tar.bz2

saved stdouterr_job_3.tar.bz2

saved stdouterr_job_4.tar.bz2

The numbering of the jobs follows the order of the definitions in the job
definitions file jobs.cfg. The awsac-processjobs log exists for each in-
stance within the session; labelled with the launch index (LI) in the file
names. All the extracted result- and log archives above can be found here:
http://gehrcke.de/awsac/permstuff/example_session/results

40 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

Warning: Since the ATLAS Software prints the current environment, the
environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY are
sent to stdout, too. These keys were removed from the log files.

Clean up:

The monitoring information on SimpleDB is no longer needed and the results
and logs were downloaded from S3.

$./awsac-session.py --cleanup -c session-081215_1646--eventgen--1816.cfg

Confirm to delete the contents. Then the output looks like:

::::> AWSACtools session management v08-10-13

::::> by Jan-Philip Gehrcke

[sessionconfig]

n_jobs = 4

cores_per_instance = 2

shortdescr = eventgen

bucket = atlassessions

session_id = 081215_1646--eventgen--1816

ec2_reservation_id = r-bc0da0d5

instance_type = c1.medium

unused_cores = 0

n_instances = 2

ec2_uid = 201521871620

ami_id = ami-c97591a0

runuserdata = 081215_1646--eventgen--1816;atlassessions;sessionarchive.tar.bz2;2

delete SimpleDB-domain 081215_1646--eventgen--1816? y/n: y

domain existed and was deleted: 081215_1646--eventgen--1816

delete S3-objects atlassessions/081215_1646--eventgen--1816/* ? y/n: y

deleted processjobslog_LI_0.tar.bz2

deleted processjobslog_LI_1.tar.bz2

deleted results_job_1.tar.bz2

deleted results_job_2.tar.bz2

deleted results_job_3.tar.bz2

deleted results_job_4.tar.bz2

deleted sessionarchive.tar.bz2

deleted stdouterr_job_1.tar.bz2

deleted stdouterr_job_2.tar.bz2

deleted stdouterr_job_3.tar.bz2

deleted stdouterr_job_4.tar.bz2

6.3. How to use the AWSACtools job system 41

AWSAC: Amazon Web Services for ATLAS Computing

6.3.4 The job system from the instances point of view

This part has the intention to make the job system more comprehensible by means
of the console output (the log) of an instance within the job session above. The
console output logfiles of both instances within the example session can be found
here: http://gehrcke.de/awsac/permstuff/example_session/consoleoutput

Now let the console output of the instance with launch index 0 explain the job
system step by step.

At first the instance starts up:

Linux version 2.6.16-xenU [...]

[...]

INIT: Entering runlevel: 4

[...]

Starting HAL daemon: [OK]

When INIT finishes, awsac-autorun starts up (invoked by rc.local):

AWSACtools: autorun (Individual Instance Startup System)

/root/awsac/awsac-autorun.sh invoked from rc.local

by Jan-Philip Gehrcke

v08-10-13

setting up environment variables...

ATLASDir: /mnt/atlas

ATLASworkingDir: /mnt/atlasworkarea

AWSACworkingDir: /mnt/awsac

SessionInfoDir: /mnt/awsac/sessioninfo

SessionInfoFile: /mnt/awsac/sessioninfo/awsac.sessinfo

SessionArchiveFile: /mnt/awsac/sessionarchive.tar.bz2

AWSACAutostartFile: /mnt/awsac/awsac_all_instances_autorun.sh

creating directories for AWSAC and ATLAS-Software in /mnt...

creating AWSACworkingDir

creating SessionInfoDir

creating ATLASDir

creating ATLASworkingDir

After creating directories and environment variables, awsac-autorun tries to
receive the userdata string:

getting user-data (should contain the sessioninfostring)...

--16:48:41-- http://169.254.169.254/latest/user-data

=> ‘/mnt/awsac/sessioninfo/awsac.sessinfo’

Connecting to 169.254.169.254:80... connected.

HTTP request sent, awaiting response... 200 OK

42 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

Length: 66 [application/octet-stream]

0% [] 0 --.--K/s

100%[====================================>] 66 --.--K/s

16:48:41 (8.99 MB/s) - ‘/mnt/awsac/sessioninfo/awsac.sessinfo’ saved [66/66]

On success, the Python script getsessionarchive uses the string information
to download the session archive:

setting AWSenvironment variables...

running getsessionarchive -i /mnt/awsac/sessioninfo/awsac.sessinfo

-o /mnt/awsac/sessionarchive.tar.bz2

to get sessionarchive from S3 bucket...

getsessionarchive.py: downloaded 081215_1646--eventgen--1816/sessionarchive.tar.bz2

from bucket atlassessions to /mnt/awsac/sessionarchive.tar.bz2

untaring sessionarchive...

awsac-processjobs.py

awsac_all_instances_autorun.sh

CSC.007410.singlepart_singlepi+_logE.py

gen_1000.sh

gen_30.sh

jobs.cfg

trying to execute AWSAC autostart shellscript...

After extracting the archive, awsac-all-instances-autorun is executed:

******* awsac_all_instances_autorun.sh *******

******* v08-12-14 *******

getting instance-id (from meta-data server)...

--16:48:42-- http://169.254.169.254/latest/meta-data/instance-id

=> ‘/mnt/awsac/sessioninfo/InstanceID’

Connecting to 169.254.169.254:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 10 [text/plain]

0% [] 0 --.--K/s

100%[====================================>] 10 --.--K/s

16:48:42 (1.59 MB/s) - ‘/mnt/awsac/sessioninfo/InstanceID’ saved [10/10]

instance id: i-33f64f5a

running /opt/bin/python /mnt/awsac/awsac-processjobs.py

--sessioninfofile /mnt/awsac/sessioninfo/awsac.sessinfo

--jobsfile /mnt/awsac/jobs.cfg --instanceID i-33f64f5a

It received the instance ID and initializes awsac-processjobs with the proper
session info and job definitions files. awsac-processjobs starts up.

****** processjobs.py start Mon Dec 15 16:48:42 2008 ******

parsing the sessioninfofile /mnt/awsac/sessioninfo/awsac.sessinfo ...

Session ID: 081215_1646--eventgen--1816 ; CoresPerInstance: 2

6.3. How to use the AWSACtools job system 43

AWSAC: Amazon Web Services for ATLAS Computing

getting information about this instance from EC2...

the ami-launch-index of this instance (i-33f64f5a) is 0

the Availability Zone of this instance is us-east-1b

parsing the jobsconfigfile /mnt/awsac/jobs.cfg ...

jobsdatadicts_list read from /mnt/awsac/jobs.cfg

my job numbers are: [1, 2]

[{’jobnr’: ’1’, ’snap_id’: ’snap-9fd433f6’, ’shscript’: ’/mnt/awsac/gen_30.sh’},

{’jobnr’: ’2’, ’snap_id’: ’snap-9fd433f6’, ’shscript’: ’/mnt/awsac/gen_30.sh’}]

prepare the creation of EBS volume(s) from the needed ATLAS Release snapshot(s)...

detected following different snap_ids: [’snap-9fd433f6’]

planing to assign snap_id(s) to following device(s):

snap-9fd433f6->/dev/sdh1

awsac-processjobs identified the jobs it has to run (from jobs.cfg and the
launch index). It built a list of needed snapshots for EBS volumes and assigned
corresponding devices. The EBS Volume(s) will be mounted in the same avail-
ability zone as the instance.

create EBS volume(s)...

instructed EC2 to create EBS from snapshot snap-9fd433f6

status: creating

status: available

attach EBS volume(s)...

instructed EC2 to attach volume vol-92e400fb to /dev/sdh1

status: attaching

status: attached

mount EBS volume(s)...

invoke mounting: subprocess.Popen() with args [’mount’, ’/dev/sdh1’, ’/mnt/atlas’]

mount subprocess ended. returncode: 0

this is the list of successfully mounted EBS - snapshots:

[’snap-9fd433f6’]

the following jobs now have their desired EBS running in system:

[{’jobnr’: ’1’, ’snap_id’: ’snap-9fd433f6’, ’shscript’: ’/mnt/awsac/gen_30.sh’},

{’jobnr’: ’2’, ’snap_id’: ’snap-9fd433f6’, ’shscript’: ’/mnt/awsac/gen_30.sh’}]

awsac-processjobs has guaranteed a successfully mounted snapshot for its jobs
1 and 2 (for all jobs it has to run). So the jobs can start working.

initialize running jobs...

creating SimpleDB jobitems...

preparing job 1...

cwd for job: /mnt/atlasworkarea/1 (created)

calling subprocess.Popen() with args: [’/bin/sh’, ’/mnt/awsac/gen_30.sh’]

runstart: updating sDB item job1

preparing job 2...

cwd for job: /mnt/atlasworkarea/2 (created)

calling subprocess.Popen() with args: [’/bin/sh’, ’/mnt/awsac/gen_30.sh’]

44 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

runstart: updating sDB item job2

wait for subprocesses to finish...

The job shell script subprocesses are started and the first monitoring information
is written to SimpleDB. awsac-processjobs now is within a waiting loop.

subprocess for job 1 ended. returncode: 0

runend: updating sDB item job1

savestart: updating sDB item job1

found /mnt/atlasworkarea/1/results.tar.bz2 (47507 Byte)

08-12-15 16:50:34: start upload. bucket:atlassessions;

key:081215_1646--eventgen--1816/results_job_1.tar.bz2

08-12-15 16:50:34: finished.

outputfile of job 1 found: /mnt/atlasworkarea/1/stdouterr_job_1.log

bundled /mnt/atlasworkarea/1/stdouterr_job_1.log to

/mnt/atlasworkarea/1/stdouterr_job_1.tar.bz2

planing to upload /mnt/atlasworkarea/1/stdouterr_job_1.tar.bz2 (314 Byte)...

08-12-15 16:50:34: start upload. bucket:atlassessions;

key:081215_1646--eventgen--1816/stdouterr_job_1.tar.bz2

08-12-15 16:50:34: finished.

saveend: updating sDB item job1

The first job finished. Monitoring information is updated. Result and log (com-
pressed) is saved to S3.

subprocess for job 2 ended. returncode: 0

runend: updating sDB item job2

savestart: updating sDB item job2

found /mnt/atlasworkarea/2/results.tar.bz2 (47574 Byte)

08-12-15 16:50:51: start upload. bucket:atlassessions;

key:081215_1646--eventgen--1816/results_job_2.tar.bz2

08-12-15 16:50:51: finished.

outputfile of job 2 found: /mnt/atlasworkarea/2/stdouterr_job_2.log

bundled /mnt/atlasworkarea/2/stdouterr_job_2.log to

/mnt/atlasworkarea/2/stdouterr_job_2.tar.bz2

planing to upload /mnt/atlasworkarea/2/stdouterr_job_2.tar.bz2 (314 Byte)...

08-12-15 16:50:51: start upload. bucket:atlassessions;

key:081215_1646--eventgen--1816/stdouterr_job_2.tar.bz2

08-12-15 16:50:52: finished.

saveend: updating sDB item job2

The same with the second job. No more jobs left to wait for.

all subprocesses ended

summary:

Jobnumber: 1

starttime: 08-12-15 16:48:56

6.3. How to use the AWSACtools job system 45

AWSAC: Amazon Web Services for ATLAS Computing

endtime: 08-12-15 16:50

executiontime: 00:01

returncode: 0

Jobnumber: 2

starttime: 08-12-15 16:49:03

endtime: 08-12-15 16:50

executiontime: 00:01

returncode: 0

This little summary informs about the finished sub processes.
awsac-processjobs successfully ran the jobs. Now it has to clean up!

unmount EBS volume(s)...

invoke unmounting: subprocess.Popen() with args [’umount’, ’/dev/sdh1’]

umount subprocess ended. returncode: 0

detach EBS volume(s)...

instructed EC2 to detach volume vol-92e400fb

status: detaching

status: available

delete EBS volume(s)...

instructed EC2 to delete volume vol-92e400fb

status: True

close processjobs-logfile...

it will then be bundled and uploaded. then EC2 will be instructed

to terminate this instance

bundled processjobs.log to processjobslog_LI_0.tar.bz2

08-12-15 16:51:02: start upload. bucket:atlassessions;

key:081215_1646--eventgen--1816/processjobslog_LI_0.tar.bz2

08-12-15 16:51:02: finished.

instructing EC2 to terminate my instance..

As you can see, awsac-processjobs leaves nothing on EC2. The last few lines
can not be seen in processjobs.log. In the following last part of the console
output, you can see the shut-down of the instance:

c

Scientific Linux SL release 4.7 (Beryllium)

Kernel 2.6.16-xenU on an i686

domU-12-31-39-01-C9-53 login: INIT: Switching to runlevel: 0

INIT: Sending processes the TERM signal

[...]

Halting system...

md: stopping all md devices.

md: md0 switched to read-only mode.

System halted.

46 Chapter 6. The job system: how AWSACtools work

AWSAC: Amazon Web Services for ATLAS Computing

This instance had a successful run within its job session and terminated itself
successfully!

6.3. How to use the AWSACtools job system 47

AWSAC: Amazon Web Services for ATLAS Computing

48 Chapter 6. The job system: how AWSACtools work

CHAPTER

SEVEN

CREATING AN AMI FOR AWSAC
FROM SCRATCH

In this chapter it is shown, how to create an AWSAC AMI: an Amazon Machine Image
(AMI) for ATLAS Computing, as it is used by the job system described in the chapter
before. The whole process is described in every detail and from scratch; in order to afford
easy reproduction.

The AMI will contain a specialized Linux system that fulfils the following requirements:

• running properly on EC2

• ATLAS Software Release runs properly on it

Note: At this point, we take the opportunity to refer to http://cernvm.cern.ch - a project
with the aim to «provide a baseline Virtual Software Appliance for use by LHC experiments
at CERN». Perhaps this will be important for the AWSAC project in the future.

7.1 Prerequisites

At first the operating system to run on EC2 has to be chosen, just like the way to create
the AMI. The decisions I made will be discussed shortly.

7.1.1 Choosing Scientific Linux 4

In general EC2 is compatible to any Linux distribution. But to make things easy, it is
recommended to use only new distributions with new software versions. This will arise the
fewest problems. One reason for this is, that most tools that are needed to control EC2 need
recent software versions. There are more reasons and you will see the emerging problems
by reading this documentation. It is important to know, that EC2 is guaranteed to run
properly with new Fedora systems. On the other hand ATLAS Software is only guaranteed
to run properly on Scientific Linux 4. With this old software one has to expect problems

49

AWSAC: Amazon Web Services for ATLAS Computing

with EC2. It seemed that nobody else tried to get it running on EC2, so I could not expect
any support.

Hence I tried to get ATLAS Software running properly on Scientific Linux 5 and Fedora
7, 8, 9. These tries exposed that the effort to obtain a running ATLAS Software Release
under these distributions is really big. I aborted these approaches and decided to get Sci-
entific Linux 4 running on EC2, since «ATLAS Software is running properly only on
Scientific Linux 4» seemed to be the strongest condition.

7.1.2 Two different ways to create an AMI

Amazon EC2 AMI Tools provide two commands to create an Amazon Machine Image.

The first command ec2-bundle-image creates an AMI through a loopback file. So you have
to push the system you want to run on EC2 into an image file step by step from another
running system on your home PC.

The second command ec2-bundle-vol creates an AMI from a running system. Using this
you can e.g. set up the system you want to run on EC2 as a virutal machine on your home
PC. Then you edit and configure this system “from inside” (the conventional way). When
you think that it is ready to run on EC2, you can bundle it to an AMI with ec2-bundle-vol

at runtime. For this the system itself needs the AMI Tools installed.

The second possibility is more convenient for our purposes. So I decided to set up a virtual
machine (VM) with Scientific Linux using VMware Player. In the following I assume that
VMware Player is successfully installed on your system.

7.2 Set up a Scientific Linux VM for an AMI

In this part I will show you the way to a new Scientific Linux (SL) VM that is ready for an
Amazon Machine Image. The process is described by means of VMplayer for virtualization
and 32 bit SL 4.7 as linux distribution.

7.2.1 Preparation

At first create a directory to put all needed files in, including the virtual disk for the Scientific
Linux system. For this reason it is necessary that there is some free disk space (at least three
times the space required by the Scientific Linux system we plan to set up - 10 GB should
be enough). In the following I assume that this new directory is /SL47ami.

There are mainly two options to get the SL packages you need during your SL installation.
If you download the CD iso files, you can install SL from these local files. But if you want
to do this, every iso file needs to be attached to the VM as IDE drive. I decided to install
the new operating system using the online repository directly. This is more convenient than

50 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

the many-iso-files-way. But, of course, we need a small iso file here, too. Download the SL
installer image (~6 MB) to the new folder:

$ wget http://ftp.scientificlinux.org/linux/scientific/47/i386/images/SL/boot.iso

A VMware virtual machines’ hard disk drive is reading from and writing to a special file in
the host filesystem. This file must be vmdk formatted. The open source machine emulator
and virtualizer QEMU brings along qemu-img that can create files of a specific size and
format these files as vmdk. After downloading and installing QEMU, you can use qemu-img
to create a new vmdk file. For our purposes a virtual harddisk drive with 10 GB storage is
big enough:

$ qemu-img create -f vmdk /SL47ami/SL47ami.vmdk 10G

Note: The size of the so-called instance storage on a running EC2 instance is not affected
by this choice later on. At this juncture it is sufficient to ensure that there is enough space
for Scientific Linux itself.

If you want to start a virtual machine with VMware Player, you have to give a configuration
file - a so-called vmx file - to the player. Create a new configuration file; e.g. SL47ami.vmx.
In this file - in essence - the virtual hardware must be configured. For our purposes the most
important hardware the VM needs is a cdrom-image drive with the SL installer “inside”,
a hard disk drive (corresponding to the created vmdk file) and an ethernet adapter. So
something like the following lines should be put into the new configuration file (working for
me):

config.version = "8"

virtualHW.version = "4"

displayName = "Scientific Linux 4.7 - minimal for AMI"

guestOS = "rhel4"

memsize = "1024"

floppy0.present = "FALSE"

ide0:0.present = "TRUE"

ide0:0.filename = "/mnt/scratch/gehrcke/virtual-disks/SL47ami.vmdk"

ide1:0.present = "TRUE"

ide1:0.deviceType = "cdrom-image"

ide1:0.startConnected = "TRUE"

ide1:0.fileName = "/home/iwsatlas1/gehrcke/virtual_SL47ami/boot.iso"

ethernet0.present = "TRUE"

ethernet0.connectionType = "nat"

7.2. Set up a Scientific Linux VM for an AMI 51

AWSAC: Amazon Web Services for ATLAS Computing

ethernet0.addressType = "generated"

ethernet0.generatedAddress = "00:0c:29:fa:b6:cb"

ethernet0.generatedAddressOffset = "0"

A large part of this should be self-explanatory. guestOS describes the operating system
class you want to run on your VM. In this case this is Red Hat Enterprise Linux 4. You
should adjust memsize (in MB) of your VM to your real hardware and to the needs of the
applications running on it. If you want to run different VMs at the same time, you should
vary the generatedAddressOffset. This avoids equaling MAC addresses.

Now the VM is ready to start up:

$ vmplayer SL47ami.vmx

Note: The VM boots up like a normal computer. Since the hard disk drive is still empty,
the virtual BIOS looks for a bootable disk in the cdrom drive. In this case then the SL
installer boots up!

7.2.2 Installing Scientific Linux

The SL installer needs to know the installation method. I chose linux text installation.
The installation menu is self-explanatory. Nevertheless I will mention every step because
some settings are really important or a bit tricky.

At first choose your language.

In the next step you can decide whether you want to install from an http/ftp online repository
or e.g. from local iso files. As I described above, I chose the online repository. http is
convenient, so choose http.

Now you have to set up TCP/IP. Try choosing DHCP config. For me this sometimes
resulted in endless waiting. The reason for this is not clear to me; I guess that there are
problems with the VMware DHCP server managing the “virtual subnet” for virtual machines
on the host system. If you encounter the same problem you can easily workaround: check out
the dhcpd.conf file corresponding to the VMnet that should provide the internet connection.
For me this was /etc/vmware/vmnet8/dhcpd/dhcpd.conf There you can get all information
you need to configure TCP/IP manually. This was fast for me, even if DHCP config did not
work properly.

In the http setup menu you have to submit the SL location on an http server omitting
“http://”. Enter the following:

website name: ftp.scientificlinux.org

Scientific Linux directory: linux/scientific/47/i386

You like to configure the installation on your own, so use the Custom Installation Type.

52 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

You also like partitioning the hard disk on your own. Choose Disk Druid. And yes, you
know that all data will be lost!

Now Disk Druid wants to know what to do. The configuration I chose is described schemat-
ically in this summary:

Add Partition:

mount point: /

ext 3

9500 MB

force primary

Add Partition:

swap

fill all available space

force primary

In the following steps I specified to use Grub, not to pass any boot options to the
kernel and not to use a grub password. The Boot Loader Configuration was OK. I
chose to install the boot loader to the MBR and acknowledged IP and Hostname
configuration.

In terms of security I chose not to use a firewall and to disable SELinux. I think
that those things are not necessary for our extremely specialized EC2 instances and may
produce problems. The EC2 Network Security regulation should care for a sufficient amount
of security. This was a fast decision and maybe I am wrong.

Now decide on additional Languages, the Time Zone and the Root Password.

In the following Package Group Selection you have to select the components your new
system should consist of. Select what you need. My minimal config is the following:

Main Tree:

select:

YUM

APT

Development Tools:

select:

all gcc-options

deselect:

Emacs

Administration Tools:

select:

all

System Tools:

select:

all

deselect:

everything else (really! we don’t need any graphics etc.)

7.2. Set up a Scientific Linux VM for an AMI 53

AWSAC: Amazon Web Services for ATLAS Computing

Note: Selecting all gcc options ensures that the compiling ATLAS Software Release appli-
cations run correctly (including KitValidation MooEvent).

Begin installation and reboot when it is done.

Done! Your new Scientific Linux VM is up and running. You can now log in as root.

As a first action do a YUM update to get the latest security updates:

$ yum update

7.2.3 Configure the system for EC2

The next big objective is to bundle and upload an AMI of our new system. For this you
have to breach some hurdles. At first you have to implement the Amazon EC2 AMI Tools
into the new system. The tools provide the command ec2-bundle-vol we want to use to
bundle the running system into an AMI. And they provide the possibility to upload the AMI
to Amazon’s Simple Storage S3 using ec2-upload-bundle. Get the AMI Tools running on
an old system like Scientific Linux 4 requires some new software. The Amazon EC2 AMI
Tools do not provide the possibility to register an AMI on EC2. So you have to install
and configure the Amazon EC2 Command-Line Tools (also called API Tools), too. But this
is not everything you have to configure: the system’s hardware detection tool kudzu needs
some modification, too, so that the system is able to boot up correctly on EC2.

Note: If you download the AMI Tools as RPM and try to install it with rpm -i

ec2-ami-tools.noarch.rpm, you will notice that some requirements/dependencies are not
met by Scientific Linux 4. I needed a newer version of tar (greater or equal to 1.15) and a
newer version of Ruby (greater or equal to 1.8.2). After some investigation I decided to in-
stall both of them from source and then to install the RPM without regarding dependencies
(see below). Maybe going around the package manager (and perhaps SRPMs) is not the
cleanest way but it is easy and it really works good, as you can see in the following parts.

Install a newer tar: Download the latest source tarball, extract it and cd to the source
directory. This will look like

$ wget http://ftp.gnu.org/gnu/tar/tar-1.20.tar.bz2

$ tar xjf tar-1.20.tar.bz2

$ cd tar-1.20

We want to brutally overwrite the the original tar. The executable’s path is /bin/tar.
So start configure with –prefix=/, compile with make and then install the new tar :

$./configure --prefix=/

$ make

$ make install

54 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

/bin/tar should now be the newer version. Test it:

$ which tar

$ tar --version

Install Ruby: Download the latest source tarball, extract it and cd to the source directory.
This will look like

$ wget ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.7.tar.bz2

$ tar xjf ruby-1.8.7.tar.bz2

$ cd ruby-1.8.7

We want to place the executable in /usr/bin. So start configure with –prefix=/usr,
compile with make and then install Ruby:

$./configure --prefix=/usr

$ make

$ make install

/usr/bin/ruby should now exist. Check it out and test your new Ruby installation:

$ which ruby

$ ruby --version

Install the AMI Tools: Download and install the RPM without regarding dependencies:

$ wget http://s3.amazonaws.com/ec2-downloads/ec2-ami-tools.noarch.rpm

$ rpm -i --nodeps ec2-ami-tools.noarch.rpm

Test it! Type ec2- and then press TAB to see the new commands available. Try e.g.

$ ec2-upload-bundle --help

The following error should be normal:

/usr/lib/site_ruby/aes/amiutil/uploadbundle.rb:1:in ‘require’:

no such file to load -- aes/amiutil/crypto (LoadError)

from /usr/lib/site_ruby/aes/amiutil/uploadbundle.rb:1

See Also:

Amazon’s Developer Guide - Bundling an AMI: «If you receive a load error when
running one of the AMI utilities, Ruby might not have found the path. To fix this, add
/usr/lib/site_ruby to Ruby’s library path, which is set in the RUBYLIB environment
variable.»

So, before using the AMI Tools, we have to add /usr/lib/site_ruby to $RUBYLIB.
This should work:

7.2. Set up a Scientific Linux VM for an AMI 55

AWSAC: Amazon Web Services for ATLAS Computing

$ export RUBYLIB=$RUBYLIB:/usr/lib/site_ruby

$ ec2-upload-bundle --help

We will set the environment variable $RUBYLIB automatically later on. The AMI Tools
are now installed properly.

Note: The API Tools need Java installed. A version of at least 1.5 is required. We will
use Yum to install it.

Install Java: Use Yum to install Java:

$ yum install java

Acknowledge to install java-1.5.0-sun-compat (in my case) and jdk.

Install and configure the API Tools: Download the API Tools as zip file and extract
it:

$ cd /root

$ wget http://s3.amazonaws.com/ec2-downloads/ec2-api-tools.zip

$ unzip ec2-api-tools.zip

The tools were extracted to a new directory e.g. /root/ec2-api-tools-1.3-24159

(with the API Tools version in the name). There is no “installation” needed, but some
further configuration.

Most of the commands provided by the tools need to know the path to “the user’s PEM
encoded RSA public key certificate file” and the path to “the user’s PEM encoded RSA
private key file”. You can download these files from AWS’ web interface after signing
up successfully for EC2. The AMI you will bundle will be your own AMI and you will
be the only one using instances of this AMI and you will almost for sure need these key
files available in running instances more often. So it is no problem and even convenient
to store these files in the virtual system and to bundle them into the AMI. scp them
from anywhere (called user@host:/path/to/.ec2) to /root/.ec2 on the SL virtual
machine:

$ mkdir /root/.ec2

$ scp user@host:/path/to/.ec2/* /root/.ec2

user@hosts’s password:

cert-***********************.pem 100% 916 0.9KB/s 00:00

pk-***********************.pem 100% 926 0.9KB/s 00:00

Note: Why chosing /root as directory for all the files? EC2 instances are
created and terminated rapidly. If you make a mistake on an instance you can just
terminate it and try again. For this reason working as root is not as dangerous as
on a “normal” system. At first I worked with different users on EC2 instances but I

56 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

realized that there was no need to. Finally the linux systems I used on EC2 only knew
one user: root. I store everything special that normally would be stored in a home

directory in /root.

The API Tools need some environment variables to be set as explained in Amazons
EC2 Getting Started Guide:

See Also:

Amazon’s Getting Started Guide - Prerequisites: «The command line tools
depend on an environment variable (JAVA_HOME) to locate the Java run-
time. This environment variable should be set to the full path of the directory
that contains a sub-directory named bin which in turn contains the java (on
Linux/Unix) or the java.exe (on Windows) executable. You might want to
simplify things by adding this directory to your path before other versions
of Java.»

See Also:

Amazon’s Getting Started Guide - Setting up the Tools: «The command line
tools depend on an environment variable (EC2_HOME) to locate supporting
libraries. You’ll need to set this environment variable before you can use the
tools. This should be set to the path of the directory into which the command
line tools were unzipped. This directory is named ec2-api-tools-A.B-rrrr (A,
B and r are version/release numbers), and contains sub-directories named
bin and lib. [...] The environment variable EC2_PRIVATE_KEY should
reference your private key file, and EC2_CERT should reference your X509
certificate.»

The best thing is to create a new file /root/AWS_SET_ENV_VARS.sh with the following
content (customize it with your file- and directory names):

export JAVA_HOME=/usr

export EC2_HOME=/root/ec2-api-tools-*.*-*****

export EC2_PRIVATE_KEY=/root/.ec2/pk-*************************.pem

export EC2_CERT=/root/.ec2/cert-*************************.pem

export PATH=$PATH:$EC2_HOME/bin

Then just source the file and the needed variables are set:

$ source /root/AWS_SET_ENV_VARS.sh

Cleanup: Keep the system clean and slim because you have to pay for the amount of data
you store on S3. Remove the archives and the folders they were extracted to that are
not needed anymore (tar-archive and dir, Ruby-archive and dir, API Tools archive)

Note: In one of the early tests I bundled this system state into an AMI and tried to
run it on EC2. But I could not connect to the running EC2- instance. Using the Amazon
EC2 Query API-call GetConsoleOutput I could read the boot log. The graphical Hardware

7.2. Set up a Scientific Linux VM for an AMI 57

AWSAC: Amazon Web Services for ATLAS Computing

Discovery Utility kudzu recognized a hardware change when booting my system on EC2 but
it did not reconfigure automatically. So eth0 could not be brought up and for this reason
there was no way to connect to the EC2 instance. The two essential lines were:

Hardware configuration timed out.Run ’/usr/sbin/kudzu’ from the command line to re-detect.

and:

Bringing up interface eth0: Device eth0 has different MAC address than expected, ignoring.

[FAILED]

VMware emulates other hardware than Xen, which is the virtualization software running on
EC2. So the change of MAC address makes sense. kudzu is able to reconfigure this, but it
needs someone to press a key within 30 seconds. Nobody can interfere with a graphical boot
application on a remote machine. This is adverse. After reading here and there and some
testing I could solve this problem as you can read in the following part.

Modify kudzu and hardware configuration:

• Remove the complete HWADDR-line from
/etc/sysconfig/network-scripts/ifcfg-eth0:

$ cd /etc/sysconfig/network-scripts

$ mv ifcfg-eth0 backup_ifcfg-eth0

$ cat backup_ifcfg-eth0 | grep --invert-match HWADDR > ifcfg-eth0

• Remove the complete class: NETWORK from /etc/sysconfig/hwconf

with e.g. vi. I deleted the following lines:

-

class: NETWORK

bus: PCI

detached: 0

device: eth0

driver: pcnet32

desc: "Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]"

network.hwaddr: 00:0C:29:FA:B6:CB

vendorId: 1022

deviceId: 2000

subVendorId: 1022

subDeviceId: 2000

pciType: 1

pcidom: 0

pcibus: 0

pcidev: 10

pcifn: 0

58 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

Note: What will happen on the next reboot (e.g. on EC2)? kudzu will recognize
network hardware that is not listed in /etc/sysconfig/hwconf, the listing of
current installed hardware. kudzu will try to configure it, but 30 seconds will
pass without doing anything. After this, the ethernet hardware itself works very
well, even without being configured by kudzu. The MAC address was deleted out
of ifcfg-eth0, so the prior problem will disappear:

Bringing up interface eth0: [OK]

For this reason connecting to the remote machine using ssh will be possible. After
logging in, manually invoking kudzu in the quiet mode will update the hardware
listing without any (graphical) problems:

$ kudzu -q

After this, another reboot will be kudzu-free with a running device eth0. So this
is the way we plan to do.

Warning: To ensure that the device eth0 is brought up properly on EC2
instance boot, this state has to be bundled before the next reboot is
done (as explained in the note-box before).

7.3 Bundle, upload and register the AMI

In the following part I will describe how to bundle the Scientific Linux virtual machine.
After bundling, we will upload the new Amazon Machine Image to Amazon’s Simple Storage
S3 using the AMI Tools. To tell EC2 that there is a new AMI stored in a S3-bucket, we will
have to register the uploaded AMI using the API Tools.

7.3.1 Bundle

As discussed in 6.1.2 Two different ways to create an AMI we will use ec2-bundle-vol to
bundle the AMI. You should at first read the help:

$ export RUBYLIB=$RUBYLIB:/usr/lib/site_ruby

$ ec2-bundle-vol --help

Note: You do not want to set all environment variables like RUBYLIB manually anymore?
Append /root/AWS_SET_ENV_VARS.sh and then source it again:

$ echo ’export RUBYLIB=$RUBYLIB:/usr/lib/site_ruby’ >> /root/AWS_SET_ENV_VARS.sh

$ source /root/AWS_SET_ENV_VARS.sh

7.3. Bundle, upload and register the AMI 59

AWSAC: Amazon Web Services for ATLAS Computing

Build the command line options for ec2-bundle-vol:

I will show you the command line options you need step by step. The AMI will
be encrypted using information from your EC2 private key and certificate. So
the first three options of every ec2-bundle-vol invoking are:

-k $EC2_PRIVATE_KEY (path to private key file)

-c $EC2_CERT (path to certificate file)

-u ************ (EC2 user id without hyphens)

Note: Set a EC2_UID environment variable. It will be usefull! Append
/root/AWS_SET_ENV_VARS.sh:

$ echo ’export EC2_UID=************’ >> /root/AWS_SET_ENV_VARS.sh

$ source /root/AWS_SET_ENV_VARS.sh

The bundle command needs to know the system architecture (one of i386,
x86_64). Our VM for ATLAS Computing is a 32bit system. You have to sub-
mit the directory to save the image to and the name of the image. The image
itself is will exist two times (once in a big image file and once in ~10 MB parts)
in the image directory. I chose /mnt because it is excluded automatically from
bundling. The name should be expressive because it will be the most important
identifier later on.

-r i386 (32bit arch)

-d /mnt (image directory)

-p SL47-AWSAC-base (image prefix/name)

Now it is important to know that the following bundle will not happen on EC2.
As stated in the help we have to deactivate inheriting instance metadata (in fact
I do not know the benefit of inheriting). And: the bundle program must generate
an fstab file. This is necessary to boot up properly on EC2.

--no-inherit (do not inherit instance metadata)

--generate-fstab (inject a generated EC2 fstab)

Invoke ec2-bundle-vol:

Warning: Before invoking the command this is the last chance to check
things and to change something before the system state is bundled.

At first check, if you really cleaned up installation files like archives or extracted
archives.

Then let me tell you that setting some other environment variables is convenient:

60 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

Note: To upload files to S3 - as it will happen when you invoke
ec2-upload-bundle in the next step - you need the so-called AWS Access Key
ID and the AWS Secret Key. Get them from your AWS webinterface and store
them as environment variables to /root/AWS_SET_ENV_VARS.sh:

$ echo ’export AWS_ACCESS_KEY_ID=******************’ >> /root/AWS_SET_ENV_VARS.sh

$ echo ’export AWS_SECRET_ACCESS_KEY=**************’ >> /root/AWS_SET_ENV_VARS.sh

$ source /root/AWS_SET_ENV_VARS.sh

Now call ec2-bundle-vol with the commandline options derived above:

$ ec2-bundle-vol -k $EC2_PRIVATE_KEY -c $EC2_CERT -u $EC2_UID

--generate-fstab --no-inherit -r i386 -d /mnt -p SL47-AWSAC-base

Note: This special set of command line options is necessary only when you
bundle an AMI at home. As soon as the image is stored on S3 and rebundled
from an EC2 instance, the bundle command looks a bit different.

You will see an output like this:

Copying / into the image file /mnt/SL47-AWSAC-base...

Excluding:

/var/lib/nfs/rpc_pipefs

/sys

/proc

/proc/sys/fs/binfmt_misc

/dev/pts

/dev

/media

/mnt

/proc

/sys

/mnt/SL47-AWSAC-base

/mnt/img-mnt

1+0 records in

1+0 records out

mke2fs 1.35 (28-Feb-2004)

NOTE: rsync with preservation of extended file attributes failed.

Retrying rsyncwithout attempting to preserve extended file attributes...

/etc/fstab:

Legacy /etc/fstab

Supplied by: ec2-ami-tools-1.3-21885

/dev/sda1 / ext3 defaults 1 1

/dev/sda2 /mnt ext3 defaults 0 0

/dev/sda3 swap swap defaults 0 0

none /proc proc defaults 0 0

none /sys sysfs defaults 0 0

Bundling image file...

7.3. Bundle, upload and register the AMI 61

AWSAC: Amazon Web Services for ATLAS Computing

Splitting /mnt/SL47-AWSAC-base.tar.gz.enc...

Created SL47-AWSAC-base.part.00

...

Generating digests for each part...

Digests generated.

Creating bundle manifest...

ec2-bundle-vol complete.

When bundling is complete, you have an Amazon Machine Image of your
Scientific Linux system in your local virtual file system. It consists of
several part files like SL47-AWSAC-base.part.00 and one manifest file like
SL47-AWSAC-base.manifest.xml. In the next step these files will simply be
uploaded to Amazon Simple Storage S3 using a command line tool Amazon de-
livers.

7.3.2 Upload

Use ec2-upload-bundle to upload the part files and the manifest file. You should read the
–help message at first. I will shortly explain the needed command line options. To interact
with Simple Storage S3, the AWS Access Key ID and the AWS Secret Key are needed.
Submit them with -a and -s. As described in the S3 introduction, files uploaded to S3 are
stored as objects in buckets. You have to submit the bucket you want to store the AMI in
with -b. Since the space of bucket names is a space all AWS users share, you have to find a
bucket name that does not exist until now. I got “ATLAS” ;). At least ec2-upload-bundle

needs to know which AMI to upload: submit the path to the manifest file with -m.

My command looks like:

$ ec2-upload-bundle -a $AWS_ACCESS_KEY_ID -s $AWS_SECRET_ACCESS_KEY

-b ATLAS -m /mnt/SL47-AWSAC-base.manifest.xml

You get an error message?

Server.RequestTimeTooSkewed(403):

The difference between the request time and the current time is too large.

Bundle upload failed.

Every HTTP request (which is calling an Amazon Web Services API command like e.g. an
upload to S3) contains a timestamp. If this client GMT differs from the server GMT by
more than 15 minutes, the server declines the request with error 403. Why does that happen
to us? Because Scientific Linux ‘s kernel base interrupt rate has been increased. Together
with virtualization this results in time running much too slow.

See Also:

62 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

http://www.gossamer-threads.com/lists/linux/kernel/494604 - there you can
learn much more details.

I tried setting the time once before starting the upload. But then the error reappeared in
the middle of the upload, because the VM’s clock really runs very slow (note: my upload
was very fast!). I did not want to modify the system with things using ntp. I needed a quick
(and dirty) solution, because uploading an AMI from “a VM at home” will happen only once
or seldom. So I wrote settimeloop.sh:

#!/bin/sh

settimeloop.sh: Get a timestring from a web server and set date using this

string. Repeat this endlessly.

while true ;

do

wget -m -nd http://gehrcke.de/awsac/permstuff/time.php

date --set="‘cat time.php‘"

sleep 10

done

using the following time.php:

<?php

echo gmstrftime("%a %b %d %H:%M:%S GMT %Y");

?>

Note: time.php will stay on my server - so you can use it! Since it delivers GMT, it
works for all timezones. The date –set command should process the delivered timestring
successfully on every english linux system.

Now create (download) /root/settimeloop.sh, make it executable and run it in a new
shell. Then re-invoke ec2-upload-bundle. Step by step:

Note: You can run settimeloop.sh in background using &, too. Then you can skip the
following new-shell-step, but you should redirect the output to a file or to /dev/null. Run
it like this: $./settimeloop.sh > looplog 2>&1 &

• Find out the inet addr (IP address) of device eth0 on your VM using ifconfig.
Open a new shellconnection to your VM from the virtualizing host system using this
IP address. For me this was (typing in a shell of my virtualizing HOST system
- not in a shell of the VM):

$ ssh root@172.16.30.137

• Download settimeloop.sh. Make it executable and run it:

7.3. Bundle, upload and register the AMI 63

AWSAC: Amazon Web Services for ATLAS Computing

$ cd /root

$ wget http://gehrcke.de/awsac/permstuff/settimeloop.sh

$ chmod u+x /root/settimeloop.sh

$./settimeloop.sh

• re-invoke ec2-upload-bundle from the primary shell of your VM (the same command
like before)

In my case the output looks like:

Uploading bundled image parts to https://s3.amazonaws.com:443/ATLAS ...

Uploaded SL47-AWSAC-base.part.00 to

https://s3.amazonaws.com:443/ATLAS/SL47-AWSAC-base.part.00.

...

Uploading manifest ...

Uploaded manifest to https://s3.amazonaws.com:443/ATLAS/SL47-AWSAC-base.manifest.xml.

Bundle upload completed.

Depending on your internet connection this may take a very long time.

Note: Sometimes you may get other errors while uploading. If the connections breaks, you
do not have to start from beginning.

While uploading various times, I got two different errors and the reason for them was not
trackable for me:

Uploaded **** to https://s3.amazonaws.com:443/****

Error: failed to upload "****", Curl.Error(56):

SSL read: error:00000000:lib(0):func(0):reason(0), errno 104.

Bundle upload failed.

Uploaded ********* to https://s3.amazonaws.com:443/********

Error: failed to upload "***********", Server.InternalError(500)

: We encountered an internal error. Please try again.

Bundle upload failed.

In every case you can resume the download. Check out ec2-upload-bundle –help: you
will see, that there is something like a “resume”-option: «–part PART: Upload the specified
part and upload all subsequent parts.» This mostly worked for me instantly. But then you
have to take care by yourself that every part file really is stored on S3 successfully. You can
recheck with the Firefox S3 Extension S3Fox.

Lets say the last part file uploaded was Uploaded *****.part.31. Then just copy the
upload command produced by ami_upload and append a –part 32:

64 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

ec2-upload-bundle -a $AWS_ACCESS_KEY_ID -s $AWS_SECRET_ACCESS_KEY -b ** -m ** --part 32

[...]

Skipping **.31.

Uploaded **.part.32 to https://s3.amazonaws.com:443/**.part.32.

[...]

Uploaded manifest to https://s3.amazonaws.com:443/**.manifest.xml.

Bundle upload completed.

When the last file, the manifest file, is uploaded, the new AMI on S3 can be registered for
use with EC2.

7.3.3 Register

To register the image you can use the API Tools command ec2-register or Elasticfox,
that was first mentioned in Manage and monitor EC2. In both cases you need to know
where your AMI manifest file is stored on S3 (bucketname/manifestfilename). This is the
command I invoked using the API Tools:

$ ec2-register -K $EC2_PRIVATE_KEY -C $EC2_CERT ATLAS/SL47-AWSAC-base.manifest.xml

EC2 checks, if the checksums listed in the manifest file correspond to the part files. On
success EC2 assigns a unique identification string (AMI ID) to the AMI you ordered to
register. The command line tool returns this AMI ID:

IMAGE ami-33d1355a

Now you have a registered AMI of your Scientific Linux system stored on S3. It is ready
to start up in Amazon’s Elastic Computing Cloud! You can shut down your local virtual
machine using shutdown -h now.

7.4 Run, optimize and rebundle the AMI on EC2

In this part I will describe how to run an EC2 instance of the new AMI. Then I will accomplish
some unique optimization/modification of the AMI and finish in rebundling so that the
modified system will be saved in a second AMI.

7.4.1 Run and connect

In a few moments you can feel as a manager of your own AMIs and EC2 instances. For this
you need a “management environment”. I think you have seen enough of the API Tools. If
you don’t have any other possibilities, you can to use them. They are convenient if you e.g.

7.4. Run, optimize and rebundle the AMI on EC2 65

AWSAC: Amazon Web Services for ATLAS Computing

want to run an EC2 command from within an instance. For this you installed and bundled
them into the AMI. You now want to run an EC2 instance of your new AMI. Of course,
you can use the API Tools to run instances. But using them for every running, terminating,
checking, registering, ... would soon get nerving.

I suppose that you have a graphical desktop environment (to read this documentation) and
that you are able to use Firefox as browser. So I recommend to use Elasticfox, as I described
in Manage and monitor EC2. Then you do not need to set up the AMI Tools on your local
system, because Elasticfox supports all essential EC2 API calls. In the following I assume
that you use Elasticfox (S3Fox for S3 Simple Storage is not bad, too) as “management
environment”.

In Elasticfox ‘s “Machine Images” list you will see all public AMIs and your AMIs. Use the
filter field to filter out most of them (e.g. look for the bucket name you stored the new AMI
in). Rightclick the new AMI and choose Launch instance(s) of this AMI. The default settings
(e.g. security group default and instance type m1.small) are okay - so click Launch.

Refresh the “Your instances” list - the instance State should be pending. This means the
AMI is processed and the virtual machine will start booting in some time (1-5 minutes). Use
the time to set up EC2 Network Security to allow external requests (from “the internet”) on
port 22 to your instances. By default every port is blocked. Do you remember the security
group setting before launching the instance? This was the default group. Change it in the
Security Groups tab of Elasticfox : for group default grant permission for traffic from CIDR

0.0.0.0/0 from port 22 to port 22 for TCP/IP. With this setting you will be able to connect
to running instances in the default group using ssh.

When the instance State changes to running this means the virtual machine of your AMI has
started booting. After waiting another 1-3 minutes, you can try to connect to the instance
using the public DNS name. Rightclick the instance in the instances list and choose Copy
Public DNS Name to clipboard. Then try connecting to your instance as root:

$ ssh root@ec2-75-101-217-23.compute-1.amazonaws.com

This should result in:

ssh root@ec2-75-101-217-23.compute-1.amazonaws.com

The authenticity of host [...]

Are you sure you want to continue connecting (yes/no)? yes

[...]

root@ec2-75-101-217-23.compute-1.amazonaws.com’s password:

Enter your root password - congratulation, you are now logged in on an virtual machine of
your own Scientific Linux system on EC2.

Note: If you can not connect to your instance for a long time, then use the Show console
output option for your instance in Elasticfox. It allows you to see the output of an instance.
The output does not get to you in realtime. There is some delay. Show console output is
very useful to debug the instance boot (in fact it is the only way).

66 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

7.4.2 Optimize

Show console output lists some errors and warnings while booting the new AMI. In this para-
graph I will describe how to remove the causes of these and how to make using the new AMI
more comfortably. Some of the things I show you are required for some special functionality,
some are for cleaning up the system and some are for comfort only. I recommend to carry
out each step.

Reconfigure hardware: As described here, there is one last step missing to solve the
Kudzu-problem completely. Execute Kudzu in quiet mode:

$ kudzu -q

Add kernel modules: After optimizing the running instance we want to bundle it into a
new AMI using ec2-bundle-vol. But this now would result in:

Could not find any loop device.

Maybe this kernel does not know about the loop device? (If so, recompile or

‘modprobe loop’.)

After some web search I found a blogpost from Scott Parkerson solving the problem.
Download the modules of the specific EC2 kernel build 2.6.16-xenU from Amazon’s
Fedora Core 4 AMI:

$ wget http://people.rpath.com/~scott/cabinet/ec2/2.6.16-xenU-modules.tar.bz2

I mirrored the file: http://gehrcke.de/awsac/permstuff/2.6.16-xenU-modules.tar.bz2

Extract the archive to / (it then places all files to /lib/modules/2.6.16-xenU) and
remove it:

$ tar xvjf 2.6.16-xenU-modules.tar.bz2 -C /

$ rm 2.6.16-xenU-modules.tar.bz2

Add the loop module:

$ modeprobe loop

Deactivate Thread-Local Storage: During the boot, the following warning appears:

** WARNING: Currently emulating unsupported memory accesses **

** in /lib/tls glibc libraries. The emulation is **

** slow. To ensure full performance you should **

** install a ’xen-friendly’ (nosegneg) version of **

** the library, or disable tls support by executing **

** the following as root: **

7.4. Run, optimize and rebundle the AMI on EC2 67

AWSAC: Amazon Web Services for ATLAS Computing

** mv /lib/tls /lib/tls.disabled **

** Offending process: init (pid=1) **

So it makes sense to deactivate tls:

$ mv /lib/tls /lib/tls.disabled

Modify runlevel 4: As you can see in console output, EC2 instances start up with runlevel
4. The current instance is overloaded with services I think you will not need. I
deactivated the following:

$ cd /etc/rc.d/rc4.d

$ mv S05kudzu backup_S05kudzu

$ mv S80sendmail backup_S80sendmail

$ mv S09isdn backup_S09isdn

$ mv S09pcmcia backup_S09pcmcia

$ mv S40smartd backup_S40smartd

$ mv S18rpcidmapd backup_S18rpcidmapd

I could have deactivated more services. Feel free to extend this list (if you know what
you are doing).

Autoset environment: In the previous paragraphs some various environment variables
were needed. They will be needed in the future, too. So we will configure the system
to automatically set the environment variables listed in /root/AWS_SET_ENV_VARS.sh

at login. At first lets check whether your /root/AWS_SET_ENV_VARS.sh is complete.
It should define the following variables (with partly different values):

export JAVA_HOME=/usr

export EC2_HOME=/root/ec2-api-tools-1.3-24159

export EC2_PRIVATE_KEY=/root/.ec2/pk-***********.pem

export EC2_CERT=/root/.ec2/cert-***********.pem

export PATH=$PATH:$EC2_HOME/bin

export RUBYLIB=$RUBYLIB:/usr/lib/site_ruby

export EC2_UID=*******************

export AWS_ACCESS_KEY_ID=*******************

export AWS_SECRET_ACCESS_KEY=*******************

Then make this file sourced when logging in as root:

$ echo source AWS_SET_ENV_VARS.sh >> /root/.bashrc

I like ll to show all files in a special way, so this is the right moment to set this alias
and/or other aliases:

$ echo "alias ll=’ls -lah --color’" >> /root/.bashrc

68 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

You may now check if all the changes you made on the running instance until here
work. reboot the instance:

$ reboot

Note: Invoking the standard reboot command keeps the current EC2-instance run-
ning. This is like restarting a computer. So all changes you made in the running
instance will not get lost. The AMI is not loaded again. This would happen when you
shut down/terminate the instance and launch a new one from the AMI. But keep in
mind that, if there are any problems while rebooting, modified data will be lost.

After some time check the console output using Elasticfox. Kudzu should say nothing,
the TLS-warning should be gone, some services should not boot up and the modprobe:

FATAL: Could not load /lib/modules/2.6.16-xenU/modules.dep-error should be
gone. Reconnect to the instance as root. By entering env you will see, that the special
environment variables from AWS_SET_ENV_VARS.sh were set automatically.

Install useful scripts: When you often rebundle an image on EC2, then typing the whole
ec2-bundle-vol- and ec2-upload-bundle-commands will get nerving. I will give
you support for this with small Python scripts which are using the automatically set
environment variables:

$ wget http://gehrcke.de/awsac/permstuff/AMIutils/root/ami_bundle

$ wget http://gehrcke.de/awsac/permstuff/AMIutils/root/ami_upload

$ wget http://gehrcke.de/awsac/permstuff/AMIutils/root/ami_delete

$ chmod u+x ami_bundle ami_delete ami_upload

I will describe the usage after the next step.

Cleanup: In the next step the instance state will be bundled into a new AMI. So this is
the right moment to look for trash like archives that are no more needed and so on.
Delete everything that is not needed any more.

7.4.3 Rebundle, upload, register

At first invoke the Python script ami_bundle I deliver for bundling:

$./ami_bundle

The usage should be self-explanatory. Enter an expressive AMI name. It should contain a
version number because you almost for sure will change the AMI in the future. Bundle the
image to /mnt. This folder is excluded from bundling. For me it looks like:

================= a script to invoke ec2-bundle-vol =================

make sure that $EC2_PRIVATE_KEY, $EC2_CERT, $EC2_UID are set

===

7.4. Run, optimize and rebundle the AMI on EC2 69

AWSAC: Amazon Web Services for ATLAS Computing

image name: SL47-AWSAC-v01

image dir: /mnt

command:

ec2-bundle-vol -k $EC2_PRIVATE_KEY -c $EC2_CERT -u $EC2_UID

-r i386 --no-inherit -d /mnt -p SL47-AWSAC-v01

execute? (y/n): y

Copying / into the image file /mnt/SL47-AWSAC-v01...

[...]

Created SL47-AWSAC-v01.part.56

Generating digests for each part...

Digests generated.

Creating bundle manifest...

ec2-bundle-vol complete.

Then invoke the Python script I deliver for uploading. The script needs to know the S3-
bucket to store the AMI in. Submit this with -b. I recommend to take the same bucket like
for the first AMI. Additionally the script needs the path to the manifest-file of the new AMI
stored in the local file system of your current instance. Use TAB so that you do not have to
type the whole path (for this reason I decided to use command line options for ami_upload).
For me this looks like this:

$./ami_upload -b ATLAS -m /mnt/SL47-AWSAC-v01.manifest.xml

=================== a script to invoke ec2-upload-bundle ======================

make sure that $EC2_HOME, $AWS_ACCESS_KEY_ID and $AWS_SECRET_ACCESS_KEY are set

usage: -b S3bucketName -m PathToImageManifest

===

command:

ec2-upload-bundle -a $AWS_ACCESS_KEY_ID -s $AWS_SECRET_ACCESS_KEY

-b ATLAS -m /mnt/SL47-AWSAC-v01.manifest.xml

execute? (y/n): y

Uploading bundled image parts to https://s3.amazonaws.com:443/ATLAS ...

[...]

Uploaded manifest to https://s3.amazonaws.com:443/ATLAS/SL47-AWSAC-v01.manifest.xml.

Bundle upload completed.

Note: If the connections breaks, you do not have to start from beginning. As described
above, there is a way to resume an upload.

70 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

The modified AMI is now stored on S3. After registering you can use it. Using Elas-
ticfox, registering is really easy: rightclick a free area in Elasticfox ‘s “Machine Images”
list and click Register a new AMI. Enter bucket/manifestPath. In my case this is
ATLAS/SL47-AWSAC-v01.manifest.xml. After confirming, the new AMI will appear in the
list.

Now you can shut down the instance of the “old” AMI:

$ shutdown -h now

7.5 Modify the AMI for AWSACtools

In the next steps the AMI should get prepared for the job system the AWSACtools deliver.
So run an instance of your latest AMI (the one bundled in the paragraph before) and log
in. AWSACtools mostly consist of Python scripts. Some of them use features of a newer
Python version than the one that comes with SL47. So we will install a second, newer
Python. AWSACtools use the Python module boto to invoke AWS API calls, as described
in 4.1.3 Using the API for own applications. We will install subversion to get the latest
version of boto. After this the server autorun components of AWSACtools will be copied to
the instance. AWSACtools will be injected into the system startup using rc.local. Then
the instance will be bundled into a new AMI.

Install newer Python: Changing the distribution delivered Python is not a good idea. So
let us install Python 2.5.2 as an alternative installation (no hard links and no manual)
to /opt/bin/python:

$ wget http://www.python.org/ftp/python/2.5.2/Python-2.5.2.tar.bz2

$ tar xjf Python-2.5.2.tar.bz2

$ cd Python-2.5.2

$./configure --prefix=/opt

$ make

$ make altinstall

$ cd ..

$ rm -rf Python-2.5.2

$ rm Python-2.5.2.tar.bz2

$ ln -s /opt/bin/python2.5 /opt/bin/python

Test the new Python:

$ /opt/bin/python

should result in something like this:

Python 2.5.2 (r252:60911, Oct 13 2008, 14:33:49)

[GCC 3.4.6 20060404 (Red Hat 3.4.6-10)] on linux2

7.5. Modify the AMI for AWSACtools 71

AWSAC: Amazon Web Services for ATLAS Computing

Install subversion: I make it short:

$ yum install subversion

Install boto: boto should be installed as a site package for the new Python. Download the
latest revision of boto to /root/boto and then create a symbolic link to this folder in
the site-packages directory of Python:

$ svn checkout http://boto.googlecode.com/svn/trunk/ /root/boto

$ ln -s /root/boto/boto /opt/lib/python2.5/site-packages

Note: /root/boto/boto is because the linked directory must contain the
__init__.py and boto‘s SVN tree has another subdirectory boto.

Now you can test boto. Run /opt/bin/python and enter:

>>> import boto

>>> conn = boto.connect_ec2()

>>> images = conn.get_all_images()

>>> print images

This will print a list of objects describing all public and your AMIs.

Note: boto uses the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY TO authenticate with AWS.

Install AWSACtools autorun: There is not much of AWSACtools that has to be bundled
into the AMI since AWSACtools are designed to be flexible. It is only the beginning
of a chain of events that will happen when a job session is started. At first download
a modified rc.local and overwrite the original one:

$ wget http://gehrcke.de/awsac/permstuff/AWSACtools/

awsac-autorun_rev001_for_chap6/etc/rc.d/rc.local

$ mv rc.local /etc/rc.d/rc.local

$ chmod u+x /etc/rc.d/rc.local

The sense of this new rc.local and of the two files downloaded in the next step is
explained in how AWSACtools work¶ .

Two more files are needed:

$ mkdir /root/awsac

$ cd /root/awsac

$ wget http://gehrcke.de/awsac/permstuff/AWSACtools/

awsac-autorun_rev001_for_chap6/root/awsac/awsac-autorun.sh

$ wget http://gehrcke.de/awsac/permstuff/AWSACtools/

awsac-autorun_rev001_for_chap6/root/awsac/getsessionarchive

This was everything.

72 Chapter 7. Creating an AMI for AWSAC from scratch

AWSAC: Amazon Web Services for ATLAS Computing

Rebundle, upload, register: Cleaned everything up? Now bundle the instance state into
a new AMI:

$ cd /root

$./ami_bundle

I chose:

image name: SL47-AWSAC-v02

image dir: /mnt

Every modification of an instance that you want to bundle in a new AMI is followed
by 6.4.3 Rebundle, upload, register ... So, do it! :)

7.5. Modify the AMI for AWSACtools 73

AWSAC: Amazon Web Services for ATLAS Computing

74 Chapter 7. Creating an AMI for AWSAC from scratch

CHAPTER

EIGHT

HOW TO CREATE AN ATLAS
SOFTWARE RELEASE EBS

SNAPSHOT

In this chapter I will lead you to an Elastic Block Store (EBS) snapshot of the ATLAS Soft-
ware Release version you wish to use on EC2. This snapshot can be used by the AWSACtools
job system, described in chapter 5 The job system: how AWSACtools work.

After launching an instance, an EBS will be created, attached to the instance and mounted
into the file system. The desired release of the ATLAS Software will be installed using
Pacman. Then a standard cmt configuration will be performed that lets you easy initialize
your jobs later on. After this, of course, the EBS content is saved into an EBS snapshot to
S3.

8.1 Preparation

I recommend to use Elasticfox to execute the following steps.

Launch an instance: At first launch an instance of e.g. your latest AWSAC AMI. Any
running EC2 instance is okay for the following.

Create EBS Volume: Use Elasticfox to create a new EBS volume. It must be in the
same availability zone like the instance just launched. The cost for the EBS
volume and also for the EBS snapshot depend on the size of the volume/snapshot.
So the size should be chosen carefully. I decided to make an EBS volume of 16 GB.
ATLAS Software takes about 8 GB. The maximum overhead then is about 8 GB - a
waste of money? I am not sure about the consequences of too few free space while
working with ATLAS Software (especially when working on a workspace that is not
on the EBS). The Kit Validation warns if there is less than 7 GB free space:

None of the following alternatives are satisfied:

[freeMegsMinimum 7000 free Megabytes at .] is not available.

75

AWSAC: Amazon Web Services for ATLAS Computing

[WARNING, less than the minimum of 7G free is required to install release,

carry on anyway?]

hasn’t been asked. Package will not be installed

This message appears after installing. I do not know what is more important - the
EBS cost or the warning. But for this documentation I decided to follow the secure
way.

Attach EBS Volume: Use Elasticfox to attach the new EBS volume to the instance just
launched. Use e.g. /dev/sdh as device name.

Mount EBS and make a file system: Connect to the instance via ssh. Create the folder
/mnt/atlas, format the new device with Ext 3 and mount it:

$ mkdir /mnt/atlas

$ mkfs.ext3 /dev/sdh

mke2fs 1.35 (28-Feb-2004)

/dev/sdh is entire device, not just one partition!

Proceed anyway? (y,n) y

[...]

$ mount /dev/sdh /mnt/atlas

Lets check, if /mnt/atlas really corresponds to /dev/sdh, the EBS:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 10321208 1845820 7951100 19% /

/dev/sda2 350891748 199372 332868096 1% /mnt

/dev/sdh 16513960 77888 15597212 1% /mnt/atlas

Install Pacman: Now we need Pacman, the installer for the ATLAS Software. Download,
extract and configure it:

$ wget http://physics.bu.edu/pacman/sample_cache/tarballs/pacman-latest.tar.gz

$ tar xf pacman-latest.tar.gz

$ cd pacman-3.26/

$ source setup.sh

8.2 Install and configure ATLAS Software Release

Install:

In the next steps, the ATLAS Software Release version 14.2.24 will be installed
to /mnt/atlas/14.2.24. So the “root” directory of the EBS volume will be
14.2.24.

76 Chapter 8. How to create an ATLAS Software Release EBS snapshot

AWSAC: Amazon Web Services for ATLAS Computing

$ mkdir /mnt/atlas/14.2.24

$ cd /mnt/atlas/14.2.24

It is time to start Pacman and to decide whether you want to perform the Kit
Validation (KV) after installation or not. If you want to:

$ pacman -allow trust-all-caches -get am-BU:14.2.24+KV

If you do not want to perform KV:

$ pacman -allow trust-all-caches -get am-BU:14.2.24

Note: I instructed Pacman to use BU (Boston University) as download source
for the ATLAS Software release, because from EC2‘s point of view this is much
faster than the CERN mirror (Amazon’s EC2 data centres are located at the
east coast).

After some time the result (with Kit Validation) should look like:

am-BU:Generic:http://atlas-computing.web.cern.ch/atlas-computing/links/

monolith//mnt/atlas/14.2.24

About to execute: ./KitValidation/*/share/KitValidation [...]

##

Atlas Distribution Kit Validation Suite

01-10-2008 v1.9.18-1

##

Alessandro De Salvo <Alessandro.DeSalvo@roma1.infn.it>

##

Testing AtlasProduction 14.2.24

athena executable [PASSED]

athena shared libs [PASSED]

Release shared libraries [PASSED]

Release Simple Checks [OK]

Athena Hello World [OK]

MooEvent compilation [OK]

/mnt/atlas/14.2.24/KV-14.2.24/tmp

DB Release consistency check [OK]

##

AtlasProduction 14.2.24 Validation [OK]

##

Now the ATLAS Software Release is stored on the EBS and ready to use.

Note: During Kit Validation of 14.2.24 I got those warnings:

8.2. Install and configure ATLAS Software Release 77

AWSAC: Amazon Web Services for ATLAS Computing

#CMT> Warning: template <src_dir> not expected in pattern install_scripts

(from TDAQCPolicy)

#CMT> Warning: template <files> not expected in pattern install_scripts

(from TDAQCPolicy)

They are not important and can be ignored:

See Also:

ATLAS Computing Workbook: «With Release 14.2.23, you might get [...] [these]
warnings which [...] can be ignored»

Configure:

Before you can start jobs using the ATLAS Software Release, you have to con-
figure the linux environment you are working on. This is done by sourcing a
setup.sh that was automatically created by the configuration management tool
cmt. This setup.sh must be sourced in any job shell script at the beginning. I
will show you how to create this setup.sh using cmt.

The command to cause cmt to create the setup.sh is cmt config. It must
be executed in a configuration directory that contains one special configuration
file, the so-called requirements file. In this file you can specify your individual
configuration that is needed by your jobs. cmt config parses the requirements

file, processes the contained information and creates the corresponding setup.sh.

See Also:

More information about the coherences stated above can be found here: ATLAS
Computing Workbook - Setting up your account:

So we at first create the configuration directory /mnt/atlas/14.2.24/cmthome,
then the requirements file and then we invoke cmt config.

$ mkdir /mnt/atlas/14.2.24/cmthome

$ cd /mnt/atlas/14.2.24/cmthome

$ vi requirements

The following content should ensure a seamless offline/standalone functionality
of the ATLAS Software Release:

set CMTSITE STANDALONE

set SITEROOT /mnt/atlas/14.2.24

macro ATLAS_DIST_AREA ${SITEROOT}

apply_tag opt

apply_tag setup

apply_tag noTest

set CMTCONFIG i686-slc4-gcc34-opt

use AtlasLogin AtlasLogin-* $(ATLAS_DIST_AREA)

78 Chapter 8. How to create an ATLAS Software Release EBS snapshot

AWSAC: Amazon Web Services for ATLAS Computing

Modify the content (e.g. the release version number) to your needs and save the
file.

See Also:

The options above, their meanings and - of course - many more options are
described here: The AtlasLogin environment setup package (especially here: The
AtlasLogin environment setup package - The Home Requirements File and here:
The AtlasLogin environment setup package - Available tags)

The next step is to use cmt to process the requirements file. But before cmt can
be used, it must be initialized itself by sourcing the corresponding setup.sh at
/mnt/atlas/14.2.24/CMT/LATEST_VERSION/mgr/setup.sh. For me this was

$ source /mnt/atlas/14.2.24/CMT/v1r20p20080222/mgr/setup.sh

Now cmt config can be invoked. This must happen in the configuration directory
where we just placed the new requirements file:

$ echo $PWD

/mnt/atlas/14.2.24/cmthome

Thats okay; we are at the right place. Now invoke cmt config:

$ cmt config

It should result in

--

Configuring environment for standalone package.

CMT version v1r20p20080222.

System is Linux-i686

--

Creating setup scripts.

Creating cleanup scripts.

Now there are some more files in the current directory (the configuration direc-
tory), produced by cmt:

$ ls

cleanup.csh cleanup.sh Makefile requirements setup.csh setup.sh

The setup.sh is the objective we were looking at. This is the file that must be
sourced at the beginning of any job shell script. Lets try it now:

$ source /mnt/atlas/14.2.24/cmthome/setup.sh -tag=14.2.24

8.2. Install and configure ATLAS Software Release 79

AWSAC: Amazon Web Services for ATLAS Computing

#CMT> Warning: template <src_dir> not expected in pattern install_scripts

(from TDAQCPolicy)

#CMT> Warning: template <files> not expected in pattern install_scripts

(from TDAQCPolicy)

Now I will show two ways to “check”, if this initialization worked properly. At
first, there now should be many executables in the $PATH beginning with csc.
Change the current directory to any (e.g. /mnt) and enter csc and press TAB
two times.

$ cd /mnt

$ csc + TAB + TAB

This should result in something like this:

csc_4d_segment_performance.exe csc_fullchain_trf.py

csc_addTruthJetMet_trf.py csc_genAtlfast08_trf.py

csc_atlasG4_trf.py csc_genAtlfast_trf.py

csc_atlfast_trf.py csc_genAtlfastTwoStep08_trf.py

csc_beamgasmix_trf.py csc_genAtlfastTwoStep_trf.py

csc_beamhalo_trf.py csc_MergeHIST_trf.py

csc_BSrecoESD_trf.py csc_mergeHIT_trf.py

csc_BSreco_trf.py csc_modgen_trf.py

csc_buildTAG_trf.py cscope

csc_cavernbkg_trf.py cscope-indexer

csc_cluster_performance.exe csc_physVal_Mon_trf.py

csc_cosmic_cluster.exe csc_physVal_trf.py

csc_cosmics_sim_trf.py csc_RDOtoBS_trf.py

csc_cosmics_trf.py csc_readasciigen_trf.py

csc_digi_reco_trf.py csc_recoAOD_trf.py

csc_digi_trf.py csc_recoESD_trf.py

csc_evgen08new_trf.py csc_reco_trf.py

csc_evgen08_trf.py csc_segment_performance.exe

csc_evgen900_trf.py csc_simseg_builder.exe

csc_evgen_input_trf.py csc_simulID_recoFastCaloSim_trf.py

csc_evgen_trf.py csc_simul_reco_trf.py

csc_evgenTruthJetMet08_trf.py csc_simul_trf.py

csc_evgenTruthJetMet_trf.py csc_writeasciigen_trf.py

The second thing is to check, if there are some ATLAS extensions loaded into
the cmt path:

$ cmt show path

This should result in something like this:

80 Chapter 8. How to create an ATLAS Software Release EBS snapshot

AWSAC: Amazon Web Services for ATLAS Computing

Add path /mnt/atlas/14.2.24/AtlasOffline/14.2.24 from initialization

Add path /mnt/atlas/14.2.24/AtlasAnalysis/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/AtlasSimulation/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/AtlasTrigger/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/AtlasReconstruction/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/dqm-common/dqm-common-00-05-00 from ProjectPath

Add path /mnt/atlas/14.2.24/AtlasEvent/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/AtlasConditions/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/AtlasCore/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/DetCommon/14.2.24 from ProjectPath

Add path /mnt/atlas/14.2.24/GAUDI/v19r9-LCG54g from ProjectPath

Add path /mnt/atlas/14.2.24/tdaq-common/tdaq-common-01-09-03 from ProjectPath

Add path /mnt/atlas/14.2.24/LCGCMT/LCGCMT_54g from ProjectPath

This should validate the content of your new job configuration directory
/mnt/atlas/14.2.24/cmthome. The EBS content is ready to get backed up
into an EBS snapshot.

8.3 Build the snapshot

There is no need to modify the EBS anymore. Unmount the corresponding hard
disk /dev/sdh:

$ umount /dev/sdh

Then use Elasticfox to detach the EBS from your instance.

Note: You should not detach it before the hard disk is unmounted!!

Then rightclick the EBS volume in Elasticfox and choose to create a snapshot.
This will last some time. You can terminate the instance in the mean time,
but you should not delete the EBS during snapshot creation! Remember/note
the snapshot ID of the new snapshot! After snapshot creation has finished,
delete the EBS volume.

Now you have a job prepared ATLAS Software Release stored on S3. Recreation
of an EBS from this snapshot is an instantaneous process, since needed data will
be loaded “to a new EBS volume” in the background.

8.3. Build the snapshot 81

AWSAC: Amazon Web Services for ATLAS Computing

82 Chapter 8. How to create an ATLAS Software Release EBS snapshot

CHAPTER

NINE

CONCLUSION AND OUTLOOK

Cloud Computing with virtual machines could be of big value for scientific applications, since
it could reduce personnel and cost effort in computer centres. This is because virtualization
facilitates computer centres to concentrate on their primary task: providing hardware and
computing power. Disturbing software problems leading in crashing machines are displaced
to the users, who - in case of virtualization - benefit from the machine image concept that
allows to just reincarnate a system from an image file.

It was argued, that the optimal solution for scientific computing would be an own computing
cloud for the price of own hardware in combination with an additional and easy accessible
commercial cloud, that offers big flexibility itself (like Amazon Web Services do). Easy
accessible means that a standard Cloud Computing API should be able to control both
computing clouds. This would bring along the huge advantage of being able to switch
between clouds in an impressively easy way, resulting in a very convenient solution to balance
out peaks of desired computing power.

Motivated by these promising assumptions, I started building a proof-of-principle job system
on top of the reliable technical infrastructure of Amazon Web Services (AWS), using the
Elastic Computing Cloud EC2 including Elastic Block Stores (EBS), the Simple Storage
Service S3 and the SimpleDB. It could be shown that it is possible to move serious scientific
computing (ATLAS Computing with an ATLAS Software Release on Scientific Linux 4)
to the cloud. Hence, ATLAS Cloud Computing is, in principle, a promising substitute for
classical ATLAS Computing in the LHC Computing Grid. This also should apply to any
other scientific computing application.

In the future, the next step is the implementation of the concrete plan to rebuild the job
system by only using the services EC2 (without EBS) and S3. This step smooths the way in
direction of cloud portability, since these two services are the basic Cloud Computing services
that should exist as basic versions in any computing cloud. This reduced job system will
be available to any other AWS user by using public Amazon Machine Images and storing
ATLAS Software Releases centrally on S3 - which will increase usability.

And - to mention the best thing at the end - there already exists an approach to set up
an EC2 style cloud with own hardware: http://workspace.globus.org. The great Nimbus
CloudKit, developed by the Nimbus people, makes it possible. Of course, Nimbus does not
support the whole EC2 API. This is the reason why the AWSAC job system must be reduced

83

AWSAC: Amazon Web Services for ATLAS Computing

to the elementary needed API calls, so that the systems will be able to match each other in
the future.

Nimbus raises hope, that it is possible to develop a general Cloud Computing API with
different possible clouds at the back end, e.g. a Nimbus Cloud for the price of own hardware
and, in addition, Amazon’s EC2 to satisfy peaks of desired computing power.

Cloud Computing is coming and should come in science, too: as recently published (here -
sorry, German only), the Steinbuch Centre for Computing - which provides the LHC Tier 1
Centre for Germany - cooperates with Intel, HP and Yahoo to explore the benefits of Cloud
Computing for scientific applications, using a huge amount of hardware.

84 Chapter 9. Conclusion and Outlook

CHAPTER

TEN

APPENDIX

10.1 awsac-all-instances-autorun

#

::::::::> awsac-all-instances-autorun (08-12-16) <::::::::

#

by Jan-Philip Gehrcke (jgehrcke@gmail.com)

Universität Würzburg, Max-Planck-Institut für Physik München

#

Copyright (C) 2008 Jan-Philip Gehrcke

#

LICENSE:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version. This program is distributed in

the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more

details. You should have received a copy of the GNU General Public

License along with this program; if not, see

<http://www.gnu.org/licenses/>.

#

read the detailled documentation at http://gehrcke.de/awsac

#

#

THIS FILE IS SOURCED AS ROOT ON ALL INSTANCES OF YOUR JOB SESSION

(invoked by awsac-autorun)

#

You should be able to use the following environment vars

(set by awsac-autorun):

export ATLASDir=/mnt/atlas

export ATLASworkingDir=/mnt/atlasworkarea

export AWSACworkingDir=/mnt/awsac

85

AWSAC: Amazon Web Services for ATLAS Computing

export SessionInfoDir=${AWSACworkingDir}/sessioninfo

export SessionInfoFile=${SessionInfoDir}/awsac.sessinfo

export SessionArchiveFile=${AWSACworkingDir}/sessionarchive.tar.bz2

export AWSACAutostartFile=${AWSACworkingDir}/awsac_all_instances_autorun.sh

#

##

echo -e "\n******* awsac-all-instances-autorun *******\n"

echo -e "\n******* v08-12-16 *******\n"

echo "# getting instance-id (from meta-data server)..."

InstanceIDFile=${SessionInfoDir}/InstanceID

wget http://169.254.169.254/latest/meta-data/instance-id -O ${InstanceIDFile}

if [$? -eq 0]; then

echo instance id: $(cat ${InstanceIDFile})

echo "running /opt/bin/python ${AWSACworkingDir}/awsac-processjobs.py --sessioninfofile ${SessionInfoFile}

/opt/bin/python ${AWSACworkingDir}/awsac-processjobs.py --sessioninfofile ${SessionInfoFile}

else

echo error while retrieving instance-id from meta-data server

if [-e ${InstanceIDFile}]; then

rm -rf ${InstanceIDFile}

fi

fi

10.2 awsac-autorun

/etc/rc.d/rc.local :

#!/bin/sh

#

This script will be executed *after* all the other init scripts.

You can put your own initialization stuff in here if you don’t

want to do the full Sys V style init stuff.

touch /var/lock/subsys/local

AWSAC’s Individual Startup System

this script MUST be invoked this way.

su -l root -c "sh /root/awsac/awsac-autorun.sh"

/root/awsac/awsac-autorun.sh :

86 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

#

::::::::> awsac-autorun (08-10-13) <::::::::

#

by Jan-Philip Gehrcke (jgehrcke@gmail.com)

Universität Würzburg, Max-Planck-Institut für Physik München

#

Copyright (C) 2008 Jan-Philip Gehrcke

#

LICENSE:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version. This program is distributed in

the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more

details. You should have received a copy of the GNU General Public

License along with this program; if not, see

<http://www.gnu.org/licenses/>.

#

read the detailled documentation at http://gehrcke.de/awsac

#

##

echo -e "***"

echo -e " AWSACtools: autorun (Individual Instance Startup System)"

echo -e " /root/awsac/awsac-autorun.sh invoked from rc.local"

echo -e " by Jan-Philip Gehrcke"

echo -e " v08-10-13"

echo -e "***\n\n"

echo "# setting up environment variables..."

export ATLASDir=/mnt/atlas

echo ATLASDir: ${ATLASDir}

export ATLASworkingDir=/mnt/atlasworkarea

echo ATLASworkingDir: ${ATLASworkingDir}

export AWSACworkingDir=/mnt/awsac

echo AWSACworkingDir: ${AWSACworkingDir}

export SessionInfoDir=${AWSACworkingDir}/sessioninfo

echo SessionInfoDir: ${SessionInfoDir}

export SessionInfoFile=${SessionInfoDir}/awsac.sessinfo

echo SessionInfoFile: ${SessionInfoFile}

export SessionArchiveFile=${AWSACworkingDir}/sessionarchive.tar.bz2

echo SessionArchiveFile: ${SessionArchiveFile}

export AWSACAutostartFile=${AWSACworkingDir}/awsac_all_instances_autorun.sh

echo AWSACAutostartFile: ${AWSACAutostartFile}

10.2. awsac-autorun 87

AWSAC: Amazon Web Services for ATLAS Computing

echo "# creating directories for AWSAC and ATLAS-Software in /mnt..."

echo creating AWSACworkingDir

mkdir ${AWSACworkingDir}

echo creating SessionInfoDir

mkdir ${SessionInfoDir}

echo creating ATLASDir

mkdir ${ATLASDir}

echo creating ATLASworkingDir

mkdir ${ATLASworkingDir}

echo "# getting user-data (should contain the sessioninfostring)..."

wget http://169.254.169.254/latest/user-data -O ${SessionInfoFile}

if [$? -eq 0]; then

echo "# setting AWSenvironment variables..."

source /root/AWS_SET_ENV_VARS.sh

echo "# running getsessionarchive -i ${SessionInfoFile} -o ${SessionArchiveFile}"

echo "# to get sessionarchive from S3 bucket..."

/opt/bin/python /root/awsac/getsessionarchive -i ${SessionInfoFile} -o ${SessionArchiveFile}

if [$? -eq 0]; then

echo "# untaring sessionarchive..."

tar xjvf ${SessionArchiveFile} -C ${AWSACworkingDir}

if [$? -eq 0]; then

echo "# trying to execute AWSAC autostart shellscript..."

if [-e ${AWSACAutostartFile}]; then

source ${AWSACAutostartFile}

else

echo ${AWSACAutostartFile} does not exist

fi

else

echo error while untaring ${SessionArchiveFile}

fi

else

echo "error in /opt/bin/python /root/awsac/getsessionarchive -i ${SessionInfoFile} -o ${SessionArchiveFile}"

fi

else

echo "error while retrieving user-data: AWSACtools: autorun end"

if [-e ${AWSACworkingDir}]; then

echo delete ${AWSACworkingDir}

rm -rf ${AWSACworkingDir}

fi

fi

/root/awsac/getsessionarchive :

-*- coding: UTF-8 -*-

#

::::::::> getsessionarchive (08-10-13) <::::::::

88 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

#

by Jan-Philip Gehrcke (jgehrcke@gmail.com)

Universität Würzburg, Max-Planck-Institut für Physik München

#

Copyright (C) 2008 Jan-Philip Gehrcke

#

LICENSE:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version. This program is distributed in

the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more

details. You should have received a copy of the GNU General Public

License along with this program; if not, see

<http://www.gnu.org/licenses/>.

#

read the detailled documentation at http://gehrcke.de/awsac

#

simple script to save session archive object from S3 to a local

file. S3 objects are described by bucket+key, so the script

needs three infos: bucket, objectkey, outputfile.

the -i argument defines a sessioninfofile that delivers these.

it must contain the following : sessID;bucket;archivefilename

#

the script then assumes that the archive lays at:

bucket/sessID/archivefilename

#

the script will write the archive to outputfile defined by -o

#

ATTENTION: at this time no bucket-names with capital

letters are supported!!!! (forbidden by boto)

#

##

import sys, boto

nArgs = len(sys.argv)

if (nArgs < 5):

sys.exit("\nargumenterror: \nusage: getsessionarchive.py -i /path/to/sessioninfofile -o outputfile

for i in range(nArgs):

if sys.argv[i] == "-i": infofile = sys.argv[i+1]

if sys.argv[i] == "-o": outfile = sys.argv[i+1]

parse the infofile for data..

10.2. awsac-autorun 89

AWSAC: Amazon Web Services for ATLAS Computing

try:

data = open(infofile).readline()

data = data.split(’;’)

sessID = ’’.join(data[0].split())

bucketname = ’’.join(data[1].split())

archivename = ’’.join(data[2].split())

except:

sys.exit(’error in sessioninfofile. expecting ‘sessID;bucket;archivefilename‘ in ’+infofile)

key = sessID+’/’+archivename

conn = boto.connect_s3()

bucket = conn.get_bucket(bucketname)

k = boto.s3.key.Key(bucket)

k.key = key

k.get_contents_to_filename(outfile)

print "getsessionarchive.py: downloaded "+key+" from bucket "+bucketname+" to "+outfile

10.3 awsac-processjobs

-*- coding: UTF-8 -*-

#

::::::::> awsac-processjobs (08-12-15) <::::::::

#

by Jan-Philip Gehrcke (jgehrcke@gmail.com)

Universität Würzburg, Max-Planck-Institut für Physik München

#

Copyright (C) 2008 Jan-Philip Gehrcke

#

LICENSE:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version. This program is distributed in

the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more

details. You should have received a copy of the GNU General Public

License along with this program; if not, see

<http://www.gnu.org/licenses/>.

#

read the detailled documentation at http://gehrcke.de/awsac

#

##

90 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

import sys

import os

import time

import subprocess

import optparse

import tarfile

import csv

import boto

VERSION = ’v2008-12-15’

set the jobs’ CWD (they create their own jobnumber-subfolder):

MAINWORKINGDIR = ’/mnt/atlasworkarea’

here we will look for the job shell scripts (AWSACworkingDir):

AWSACworkingDir = ’/mnt/awsac’

here the EBS volumes will be mounted

ATLASDIR = ’/mnt/atlas’

def main():

"""

lead through the script step by step

"""

split stdout+stderr to ’standard-stdout’ and to logfile

(with the help of ‘Tee‘-class)

logfilepath = ’processjobs.log’

log_fd = open(logfilepath,’w+’)

sys.stdout = Tee(sys.stdout, log_fd)

sys.stderr = sys.stdout

parse commandline arguments and check user given files

options = parse_args()

files = check_usergiven_files(options)

start output and get information about this instance and its jobs

timestring = time.asctime(time.localtime())

print ’\n****** awsac-processjobs.py start ’+timestring+’ ******\n’

print ’# parsing the sessioninfofile ’+files[’infofilepath’]+’ ...’

session_info_dict = parse_sessioninfofile(files[’infofilepath’])

print ’ Session ID: ’+session_info_dict[’sessID’]+’ ; ’,

print ’CoresPerInstance: ’+session_info_dict[’CoresPerInstance’]

print ’# getting information about this instance from EC2...’

thisinstance = check_instance(options.instance_id)

thislaunchindex = thisinstance.ami_launch_index

thisinstance_id = thisinstance.id

thiszone = thisinstance.placement

10.3. awsac-processjobs 91

AWSAC: Amazon Web Services for ATLAS Computing

print (’ the ami-launch-index of this instance ’

’(’+thisinstance_id+’) is ’+str(thislaunchindex))

print ’ the Availability Zone of this instance is ’+thiszone

print ’# parsing the jobsconfigfile ’+files[’jobsfilepath’]+’ ...’

jobinfodicts_list = parse_jobconfigfile(jobsfile=files[’jobsfilepath’],

launchindex=int(thislaunchindex),

cpi=int(session_info_dict[’CoresPerInstance’]))

print str(jobinfodicts_list)

handle EBS volume for this instance

print ’# prepare the creation of EBS volume(s) from ’+\

’the needed ATLAS Release snapshot(s)...’

ebs_volumes_list = init_EBSvols(jobinfodicts_list, thisinstance_id, thiszone)

ebsvolumes = EBSVolumes(ebs_volumes_list)

print ’# create EBS volume(s)...’

ebsvolumes.create_vols_from_snaps()

print ’# attach EBS volume(s)...’

ebsvolumes.attach_volumes()

print ’# mount EBS volume(s)...’

ebsvolumes.mount_volumes()

print ’# this is the list of successfully mounted EBS - snapshots:’

mounted_snap_ids_list = ebsvolumes.get_mounted_snap_ids()

print ’ ’+str(mounted_snap_ids_list)

print ’# the following jobs now have their desired EBS running in system:’

jobinfodicts_list = filter_jobs_by_snap_id(jobinfodicts_list, mounted_snap_ids_list)

print str(jobinfodicts_list)

build joblist: EVERY planned job for THIS instance gets

its ‘Job‘-object and is appended to the joblist

print ’# initialize running jobs...’

joblist = []

for jobinfodict in jobinfodicts_list:

joblist.append(Job(jobinfodict))

create an object ‘jobs‘ of class ‘Jobs‘.

Gets the joblist to contain all planned jobs. Gets session information.

jobs = Jobs(joblist=joblist,

session_id=session_info_dict[’sessID’],

bucketname=session_info_dict[’bucketname’],

launchindex=thislaunchindex,

instance_id=thisinstance_id)

92 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

run the jobs. this method will create a subprocess for each job

jobs.runjobs()

check the status of the jobs’ subprocesses. do things like stdout+err saving,

uploading result-archives etc.. look down for details.

loop ends when all subprocesses have finished.

jobs.checkjobs_loop()

print some results..

jobs.verbose()

clean up the system

print ’# unmount EBS volume(s)...’

ebsvolumes.unmount_volumes()

print ’# detach EBS volume(s)...’

ebsvolumes.force_all_detach()

print ’# delete EBS volume(s)...’

ebsvolumes.delete_all()

stop splitting stdout+stderr and save logfile of this script

print ’# close processjobs-logfile...’

print ’ it will then be bundled and uploaded. then EC2 will be instructed to terminate this

upload_processjobs_log(session_id=session_info_dict[’sessID’],

bucketname=session_info_dict[’bucketname’],

launchindex=thislaunchindex,

logfilehandle=log_fd,

logfilepath=logfilepath)

shut the system down

print ’# instructing EC2 to terminate my instance..’

terminate_this_instance(thisinstance_id)

class EBSVolumes(object):

"""

Manages a list of instances of class ‘EBSVolume‘.

Provides methods that operate on all ‘EBSVolume‘-instances.

"""

def __init__(self, ebs_volumes_list):

self.ebs_volumes_list = ebs_volumes_list

def create_vols_from_snaps(self):

10.3. awsac-processjobs 93

AWSAC: Amazon Web Services for ATLAS Computing

for ebsvolume in self.ebs_volumes_list:

ebsvolume.create()

def attach_volumes(self):

for ebsvolume in self.ebs_volumes_list:

ebsvolume.attach()

def mount_volumes(self):

for ebsvolume in self.ebs_volumes_list:

ebsvolume.mount()

def unmount_volumes(self):

for ebsvolume in self.ebs_volumes_list:

ebsvolume.unmount()

def get_mounted_snap_ids(self):

mounted_snap_ids_list = []

for ebsvolume in self.ebs_volumes_list:

if ebsvolume.mountsuccess:

mounted_snap_ids_list.append(ebsvolume.snap_id)

return mounted_snap_ids_list

def force_all_detach(self):

for ebsvolume in self.ebs_volumes_list:

ebsvolume.force_detach()

def delete_all(self):

for ebsvolume in self.ebs_volumes_list:

ebsvolume.delete()

class EBSVolume(object):

"""

One object of this class represents one physical EBS Volume.

"""

def __init__(self, snap_id, device, thisinstance_id, thiszone):

self.snap_id = snap_id

self.thiszone = thiszone

self.device = device

self.botovolumeobject = None

self.thisinstanceId = thisinstance_id

self.createsuccess = False

self.mountsuccess = False

self.attachsuccess = False

self.detachsuccess = False

94 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

def exists_snap_id(self):

"""

Check if there exists an EC2 EBS snapshot with the given ID (using boto)

@return: True or False

"""

conn = boto.connect_ec2()

snapshots = conn.get_all_snapshots()

for snapshot in snapshots:

if snapshot.id == self.snap_id:

return True

return False

def create(self):

"""

Create an EC2 EBS volume of the given snapshot ID (using boto).

Try it for some time.

"""

if self.exists_snap_id():

conn = boto.connect_ec2()

self.botovolumeobject = conn.create_volume(size=20,

zone=self.thiszone,

snapshot=self.snap_id)

print ’ instructed EC2 to create EBS from snapshot ’+self.snap_id

if self.botovolumeobject is not None:

volumestatus = self.botovolumeobject.status

volumeid_list = [self.botovolumeobject.id]

for counter in range(30):

print ’ status: ’+volumestatus

if volumestatus == ’available’:

self.createsuccess = True

break

if counter == 29:

print ’ we will no longer wait. check EBS manually...’

time.sleep(3)

conn = boto.connect_ec2()

volumes = conn.get_all_volumes(volume_ids=volumeid_list)

for volume in volumes:

volumestatus = volume.status

else:

print ’processjobs.py: snapshot ’+self.snap_id+’ does not exist’

def attach(self):

"""

Attach a created EC2 EBS volume to the given device (using boto).

Try it for some time.

"""

10.3. awsac-processjobs 95

AWSAC: Amazon Web Services for ATLAS Computing

if self.createsuccess:

conn = boto.connect_ec2()

volumestatus = conn.attach_volume(self.botovolumeobject.id,

self.thisinstanceId,

self.device)

print ’ instructed EC2 to attach volume ’+self.botovolumeobject.id+’ to ’+self.device

volumeid_list = [self.botovolumeobject.id]

for counter in range(30):

print ’ status: ’+volumestatus

if volumestatus == ’attached’:

self.attachsuccess = True

break

if counter == 29:

print ’ we will no longer wait. check EBS manually...’

time.sleep(3)

conn = boto.connect_ec2()

volumes = conn.get_all_volumes(volume_ids=volumeid_list)

for volume in volumes:

volumestatus = volume.status

def force_detach(self):

"""

Force detaching an attached EC2 EBS volume (using boto).

Try it for some time.

"""

if self.attachsuccess:

conn = boto.connect_ec2()

volumestatus = conn.detach_volume(volume_id=self.botovolumeobject.id,

instance_id=self.thisinstanceId,

force=True)

print ’ instructed EC2 to detach volume ’+self.botovolumeobject.id

volumeid_list = [self.botovolumeobject.id]

for counter in range(30):

print ’ status: ’+volumestatus

if volumestatus == ’available’:

self.detachsuccess = True

break

if counter == 29:

print ’ we will no longer wait. check EBS manually...’

time.sleep(3)

conn = boto.connect_ec2()

volumes = conn.get_all_volumes(volume_ids=volumeid_list)

for volume in volumes:

volumestatus = volume.status

def delete(self):

"""

96 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

Delete a detached EC2 EBS volume (using boto). Try it for some time.

"""

if self.detachsuccess:

conn = boto.connect_ec2()

deletestatus = conn.delete_volume(volume_id=self.botovolumeobject.id)

print ’ instructed EC2 to delete volume ’+self.botovolumeobject.id

for counter in range(30):

print ’ status: ’+str(deletestatus)

if deletestatus == True:

self.deletesuccess = True

break

if counter == 29:

print ’ we will no longer wait. check EBS manually...’

time.sleep(3)

conn = boto.connect_ec2()

deletestatus = conn.delete_volume(volume_id=self.botovolumeobject.id)

def mount(self):

"""

Mount an attached EC2 EBS volume to given device using subprocess module.

"""

if self.attachsuccess:

argumentlist = [’mount’,self.device,ATLASDIR]

mount-subprocess. collect stderr and stdout in PIPE (file-like-object)

print ’ invoke mounting: subprocess.Popen() with args ’+str(argumentlist)

sp = subprocess.Popen(args=argumentlist,

stdout=subprocess.PIPE,

stderr=subprocess.STDOUT)

returncode = sp.wait()

output = sp.stdout.read()

print ’ mount subprocess ended. returncode: ’+str(returncode)

if output:

print ’stdout+stderr: ’+output

if returncode == 0:

self.mountsuccess = True

def unmount(self):

"""

Unmount a mounted EC2 EBS volume from given device using subprocess module.

"""

if self.mountsuccess:

argumentlist = [’umount’,self.device]

umount-subprocess. collect stderr and stdout in PIPE (file-like-object)

print ’ invoke unmounting: subprocess.Popen() with args ’+str(argumentlist)

sp = subprocess.Popen(args=argumentlist,

stdout=subprocess.PIPE,

10.3. awsac-processjobs 97

AWSAC: Amazon Web Services for ATLAS Computing

stderr=subprocess.STDOUT)

returncode = sp.wait()

output = sp.stdout.read()

print ’ umount subprocess ended. returncode: ’+str(returncode)

if output:

print ’stdout+stderr: ’+output

class Job(object):

"""

An instance of class ‘Job‘ contains information about one single job.

"""

def __init__(self, jobinfodict):

self.shellscript = jobinfodict[’shscript’]

self.jobnr = jobinfodict[’jobnr’]

self.workingdir = os.path.join(MAINWORKINGDIR, self.jobnr)

self.outfilepath = os.path.join(self.workingdir,’stdouterr_job_’+self.jobnr+’.log’)

self.starttime = None

self.endtime = None

self.returncode = None

self.executiontime = None

self.my_subprocess = None

self.sdb_itemname = None

class Jobs(object):

"""

Manages all jobs (instances of class ‘Job‘) of this EC2-instance.

Provides methods for running all jobs, collecting and uploading their data to S3,

updating jobs’ status in AWS SimpleDB.

"""

def __init__(self, joblist, session_id, bucketname, launchindex, instance_id):

self.joblist = joblist

self.session_id = session_id

self.bucketname = bucketname

self.launchindex = launchindex

self.instance_id = instance_id

def sdb_create_jobitems(self):

"""

Use boto to create a new jobitem for each job in the SimpleDB domain

’session ID’. Initialize these items with some attributes.

"""

sdb = boto.connect_sdb()

domain = sdb.create_domain(domain_name=self.session_id)

for job in self.joblist:

98 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

itemname = ’job’+job.jobnr

newitem = domain.new_item(itemname)

newitem[’jobnr’] = job.jobnr

newitem[’status’] = ’pending’

newitem[’instance_id’] = self.instance_id

newitem[’launchindex’] = self.launchindex

newitem[’shellscript’] = job.shellscript

job.sdb_itemname = newitem.name

def sdb_update_job(self, job, status):

"""

Use boto to update the status of one single ‘job‘ in SimpleDB:

(re)set the attribute ’status’ and add some more information to the DB.

"""

sdb = boto.connect_sdb()

domain = sdb.create_domain(domain_name=self.session_id)

item = domain.get_item(job.sdb_itemname)

if status == ’runstart’:

item[’status’] = ’running’

item[’runstarttime’] = time.strftime(’%y-%m-%d %H:%M:%S’,time.localtime())

if status == ’runend’:

item[’status’] = ’waitforsave’

item[’runendtime’] = time.strftime(’%y-%m-%d %H:%M’,time.localtime())

item[’returncode’] = job.returncode

if status == ’savestart’:

item[’status’] = ’saving’

item[’savestarttime’] = time.strftime(’%y-%m-%d %H:%M:%S’,time.localtime())

if status == ’saveend’:

item[’status’] = ’finished’

item[’saveendtime’] = time.strftime(’%y-%m-%d %H:%M:%S’,time.localtime())

def upload_results_archive(self, jobnr):

"""

Look for results.tar.bz2 in the workingfolder ob job with ‘jobnr‘.

Upload the file to S3 using boto to

bucket/session_id/results_job_jobnr.tar.bz2

"""

for job in self.joblist:

if job.jobnr == jobnr:

tarfilepath = os.path.join(job.workingdir,’results.tar.bz2’)

if os.path.exists(tarfilepath):

print ’ found ’+tarfilepath+’ (’+str(os.path.getsize(tarfilepath))+’ Byte)’

key = self.session_id+’/results_job_’+job.jobnr+’.tar.bz2’

S3_upload_file(file=tarfilepath,

bucketname=self.bucketname,

keyname=key)

10.3. awsac-processjobs 99

AWSAC: Amazon Web Services for ATLAS Computing

else:

print ’ jobresultsarchive does not exist: ’+tarfilepath

write stdout+stderr of job into logfile. compress logfile. upload archive.

def create_upload_stdouterr_archive(self, jobnr):

"""

Look for stdout+stderr-‘outfilepath‘ of job with ‘jobnr‘.

Bundle it as bz2 and upload it to S3 using boto to

bucket/session_id/stdouterr_job_jobnr.tar.bz2

"""

for job in self.joblist:

if job.jobnr == jobnr:

if os.path.exists(job.outfilepath):

logarchived = False

try:

print ’ outputfile of job ’+job.jobnr+’ found: ’+job.outfilepath

tarfilename = ’stdouterr_job_’+job.jobnr+’.tar.bz2’

tarfilepath = os.path.join(job.workingdir,tarfilename)

tar = tarfile.open(tarfilepath, ’w:bz2’)

tar.add(job.outfilepath,os.path.basename(job.outfilepath))

tar.close()

logarchived = True

print ’ bundled ’+job.outfilepath+’ to ’+tarfilepath

except:

print ’ error in archiving log of job ’+job.jobnr

if logarchived:

print ’ planing to upload ’+tarfilepath+’ (’+str(os.path.getsize(tarfilepath))

key = self.session_id+’/’+tarfilename

S3_upload_file(file=tarfilepath,

bucketname=self.bucketname,

keyname=key)

else:

print ’ logfile of job ’+job.jobnr+’ does not exist: ’+job.outfilepath

def runjobs(self):

"""

Create one SimpleDB item for each job

Iterate through all ‘job‘s (basically shellscripts):

- create individual directory for each job /mnt/atlasworkarea/jobnr

- set this dir as cwd when calling ‘/bin/sh shellscript‘ with

subprocess.Popen() method.

- stdout and stderr of a subprocess are redirected into ‘job.outfilepath‘

Starting subprocesses this way is non-blocking.

Save ‘job‘s subprocess-objects in the ‘my_subprocess‘-attributes

Invoke SimpleDB update for running jobs

"""

print ’ creating SimpleDB jobitems...’

100 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

self.sdb_create_jobitems()

for job in self.joblist:

print ’# preparing job ’+job.jobnr+’...’

print ’ cwd for job: ’+job.workingdir,

try:

os.makedirs(job.workingdir)

print " (created)"

except OSError:

print " (exists)"

argumentlist = [’/bin/sh’,job.shellscript]

now start the subprocess. collect stderr

and stdout in PIPE (file-like-object)

print ’ calling subprocess.Popen() with args: ’+str(argumentlist)

job.starttime = time.time()

outfile = open(job.outfilepath,’w’)

job.my_subprocess = subprocess.Popen(args=argumentlist,

stdout=outfile,

stderr=subprocess.STDOUT,

cwd=job.workingdir)

print ’ runstart: updating sDB item ’+job.sdb_itemname

self.sdb_update_job(job, ’runstart’)

def checkjobs_loop(self):

"""

Wait for all subprocesses to finish.

If one finishes, upload its produced data, save returncode, update SimpleDB

"""

print ’# wait for subprocesses to finish...’

while True:

time.sleep(0.5)

are there running processes left? if not: break loop!

occupied = False

for job in self.joblist:

if job.my_subprocess is not None:

occupied = True

break

if not occupied:

print ’# all subprocesses ended’

break

check for returnstate of subprocesses...

for job in self.joblist:

if job.my_subprocess is not None:

returncode = job.my_subprocess.poll()

if returncode is not None:

job.returncode = returncode

10.3. awsac-processjobs 101

AWSAC: Amazon Web Services for ATLAS Computing

job.endtime = time.time()

print ’# subprocess for job ’+job.jobnr+’ ended.’,

print ’ returncode: ’+str(job.returncode)

print ’ runend: updating sDB item ’+job.sdb_itemname

self.sdb_update_job(job, ’runend’)

print ’ savestart: updating sDB item ’+job.sdb_itemname

self.sdb_update_job(job, ’savestart’)

self.upload_results_archive(job.jobnr)

self.create_upload_stdouterr_archive(job.jobnr)

print ’ saveend: updating sDB item ’+job.sdb_itemname

self.sdb_update_job(job, ’saveend’)

mark subprocess as finished

job.my_subprocess = None

def verbose(self):

"""

Print information about all ‘job‘s

"""

print ’# summary:’

for job in self.joblist:

job.executiontime = time.strftime("%H:%M", time.gmtime(job.endtime-job.starttime))

print ’’

outstring = ’Jobnumber: ’+job.jobnr+’\n’+\

’starttime: ’+time.strftime(’%y-%m-%d %H:%M:%S’,time.localtime(job.starttime))

’endtime: ’+time.strftime(’%y-%m-%d %H:%M’,time.localtime(job.endtime))+

’executiontime: ’+job.executiontime+’\n’+\

’returncode: ’+str(job.returncode)

print outstring

print ’----------------------’

def terminate_this_instance(thisinstance_id):

"""

Use boto to invoke ’TerminateInstances’ API-call for this EC2-instance

"""

conn = boto.connect_ec2()

for counter in range(30):

try:

termresponse = conn.terminate_instances(instance_ids=[thisinstance_id])

return

except:

print ’ terminating resulted in an error-response. try again’

time.sleep(10)

print ’ tried terminating often enough.. check it manually’

def upload_processjobs_log(session_id, bucketname, launchindex, logfilehandle, logfilepath):

102 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

"""

Set sys.stdout and sys.stderr to originals, close logfilehandler, archive the

logfile and upload it to S3 appending the launchindex to the filename.

"""

sys.stdout = sys.__stdout__

sys.stderr = sys.__stderr__

logfilehandle.close()

tarfilepath = ’processjobslog_LI_’+launchindex+’.tar.bz2’

tar = tarfile.open(tarfilepath, ’w:bz2’)

tar.add(logfilepath,os.path.basename(logfilepath))

tar.close()

print ’ bundled ’+logfilepath+’ to ’+tarfilepath

S3_upload_file(file=tarfilepath,

bucketname=bucketname,

keyname=session_id+’/’+os.path.basename(tarfilepath))

def S3_upload_file(file, bucketname, keyname):

"""

Upload given ‘file‘(name) to S3 bucket ‘bucketname‘ with the key ‘keyname‘

"""

try:

print time.strftime(’%y-%m-%d %H:%M:%S’,time.localtime())+\

’: start upload. bucket:’+bucketname+’; key:’+keyname

conn = boto.connect_s3()

bucket = conn.create_bucket(bucketname)

k = boto.s3.key.Key(bucket)

k.key=keyname

k.set_contents_from_filename(file)

print time.strftime(’%y-%m-%d %H:%M:%S’,time.localtime())+’: finished.’

except:

print ’error while uploading ’+file+’ to bucket:’+bucketname+’ ; key:’+keyname

class Tee(object):

"""

Delivers a write()-method that writes to two filedescriptors.

One should be standard-stdout and the other should describe a real file.

If sys.stdout is replaced with an instance of this ‘Tee‘-class and sys.stderr is

set to sys.stdout, all stdout+stderr of the script is collected to console and

to file at the same time.

"""

def __init__(self, stdout, file):

self.stdout = stdout

self.file = file

10.3. awsac-processjobs 103

AWSAC: Amazon Web Services for ATLAS Computing

def write(self, data):

self.stdout.write(data)

try:

self.file.write(data)

self.file.flush()

except:

pass

def filter_jobs_by_snap_id(jobinfodicts_list, mounted_snap_ids_list):

"""

Check if the snap_ids in the jobinfodicts are in the list of mounted snap_ids

@return: A list of jobinfodicts that only contains jobs with mounted snap_ids

"""

return [dict for dict in jobinfodicts_list if dict[’snap_id’] in mounted_snap_ids_list]

def parse_jobconfigfile(jobsfile, launchindex, cpi):

"""

Determine the jobs for this instance from jobsconfigfile (given by commandline).

jobsconfigfile contains information for all EC2-instances in this session.

The rows must have following format: snap_id;JobScriptname;Njobs

Read in the jobsconfigfile and save data in jobsdatadicts_list.

Grab the jobs for THIS EC2-instance from jobsdatadicts_list.

The algorithm for determining these jobs from launchindex and cores per instance

is explained below.

@return: A list of dictionaries. The list has the following format:

[{’shscript’:’/path/shellskriptA.sh’,’snap_id’:’snap-a232329’,’jobnr’:’3’},

{’shscript’:’/path/shellskriptB.sh’,’snap_id’:’snap-a232329’,’jobnr’:’4’}]

"""

jobsdatadicts_list = []

try:

filehandler = open(jobsfile)

csvreader = csv.reader(filehandler, delimiter=’;’)

for jobsdata in csvreader:

jobsdatadict = {}

jobsdatadict[’snap_id’]=jobsdata[0]

jobsdatadict[’shellscript’]=jobsdata[1]

jobsdatadict[’Njobs’]=jobsdata[2]

jobsdatadicts_list.append(jobsdatadict)

print "# jobsdatadicts_list read from "+jobsfile

except:

104 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

sys.exit("could not read in data from jobsfile "+jobsfile)

myjobinfodicts_list must be of following format:

[{’shscript’:’/path/shellskriptA.sh’,’snap_id’:’snap-a232329’,’jobnr’:’3’},

{’shscript’:’/path/shellskriptB.sh’,’snap_id’:’snap-a232329’,’jobnr’:’4’}]

myjobinfodicts_list = []

Determine my job numbers from launch index and Cores Per Instance

my_first_jobnumber = launchindex*cpi+1

my_last_jobnumber = launchindex*cpi+cpi

my_jobnumbers = range(my_first_jobnumber, my_last_jobnumber+1)

print "# my job numbers are: "+str(my_jobnumbers)

now filter my jobs out of jobs.cfg

checkjobs_begin_number = 1

for jobsdatadict in jobsdatadicts_list:

checkjobs_end_number_plus_1 = checkjobs_begin_number +\

int(jobsdatadict[’Njobs’])

jobnumbers_of_current_jobsdata = range(checkjobs_begin_number,

checkjobs_end_number_plus_1)

is one my job numbers in the list of job numbers of current job?

for myjobnumber in my_jobnumbers:

if myjobnumber in jobnumbers_of_current_jobsdata:

found a jobsdatadict containing a job for me->save jobsdata

myjobinfodict = {}

myjobinfodict[’shscript’] = AWSACworkingDir+’/’+\

jobsdatadict[’shellscript’]

myjobinfodict[’snap_id’] = jobsdatadict[’snap_id’]

myjobinfodict[’jobnr’] = str(myjobnumber)

myjobinfodicts_list.append(myjobinfodict)

in the first run of this loop the jobs 1-Njobs_first (e.g. 1-5) have

to be checked. this is the way I do:

- checkjobs_begin_number = 1

- checkjobs_end_number_plus_1=checkjobs_begin_number+Njobs_first = 6

range(1,6) returns (1,2,3,4,5) - this is the list we want!

lets declare the first 5 jobs as processed after the first loop run.

in the second run of the loop we want range(6,6+Njobs_second)

procuding the list (6,7,...,6+Njobs_second-1).

so checkjobs_begin_number must be increased by Njobs_first:

checkjobs_begin_number += int(jobsdatadict[’Njobs’])

return myjobinfodicts_list

def parse_sessioninfofile(sessioninfofile):

"""

Parse the sessioninfofile (given by commandline).

10.3. awsac-processjobs 105

AWSAC: Amazon Web Services for ATLAS Computing

The file contains information about the session this EC2-instance belongs to.

The one and only row in this file must have the following format:

sessID;bucket;sessionarchivefilename;CoresPerInstance

Read in the data and save it in a dictionary session_info_dict.

@return: dictionary session_info_dict containing session information.

"""

session_info_dict = {}

try:

data = open(sessioninfofile).readline()

data = data.split(’;’)

session_info_dict[’sessID’] = ’’.join(data[0].split())

session_info_dict[’bucketname’] = ’’.join(data[1].split())

session_info_dict[’archivename’] = ’’.join(data[2].split())

session_info_dict[’CoresPerInstance’] = str(int(’’.join(data[3].split())))

except:

sys.exit((’error in sessioninfofile. expecting ‘sessID;bucket;’

’sessionarchivefilename;CoresPerInstance‘ in ’+sessioninfofile))

return session_info_dict

def check_instance(instance_id):

"""

Check if instance_id (given by commandline) belongs to a running EC2-instance

using boto. If this EC2-instance exists, return a boto ‘Instance‘-Class object.

If not, it makes no sense to go on with the script.

@return: boto ‘Instance‘-Class object representing THIS EC2-instance

"""

conn = boto.connect_ec2()

reservations = conn.get_all_instances()

for reservation in reservations:

for instance in reservation.instances:

if instance.id == instance_id:

return instance

sys.exit(’InstanceID given by commandline was not found ’+\

’in currently running instances.’)

def check_usergiven_files(options):

"""

Check if the files given by commandline exist. ‘checkfile‘-fkt will raise errors.

@return: A dictionary containing the absolute paths of the files.

"""

infofile = None

106 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

jobsfile = None

infofilepath = checkfile(options.infofile)

jobsfilepath = checkfile(options.jobsfile)

return {’infofilepath’: infofilepath,

’jobsfilepath’: jobsfilepath}

def parse_args():

"""

Parse commandlineoptions using the optparse module and check them for the

logical consistence.

@return: optparse ‘options‘-object containing the commandlineoptions

"""

the following part configures the OptionParser...

version = ’AWSACtools: processjobs’

description = ("job system example")

parser = optparse.OptionParser(version=version,description=description)

parser.add_option(’--sessioninfofile’, dest=’infofile’,

help=’job session info file (with userdata string)’)

parser.add_option(’--jobsfile’, dest=’jobsfile’,

help=’jobs.cfg (containing jobinfo)’)

parser.add_option(’--instanceID’, dest=’instance_id’,

help=’ID of THIS instance’)

now read in the given arguments (from sys.argv by default)

(options, args) = parser.parse_args()

now check the logical consistence...

if (options.infofile is None) or \

(options.jobsfile is None) or \

(options.instance_id is None):

parser.error(’--sessioninfofile FILE and --jobsfile FILE and ’+\

’--instanceID XXX are needed!’)

everything okay until here? seems so.. return the given options.

return options

def checkfile(file):

"""

Check if a given file exists and really is a file (e.g. not a directory)

In errorcase the script is stopped.

@return: the absolute path of the file

"""

if not os.path.exists(file):

10.3. awsac-processjobs 107

AWSAC: Amazon Web Services for ATLAS Computing

sys.exit(file+’ does not exist’)

if not os.path.isfile(file):

sys.exit(file+’ must be a file’)

return os.path.abspath(file)

def init_EBSvols(jobinfodicts_list, thisinstance_id, thiszone):

"""

Creates list of correctly initialized EBSVolume-classobjects.

Detect the different snap-IDs for the instances jobs. Ideally its only one!

Store them in different_snap_ids.

Iterate through different_snap_ids:

- choose a device path from a list of possible devices that does not exist in

filesystem

- delete this device path from the list of possible devices

- Construct a new instance of ‘EBSVolume‘ with this chosen device and other

information (availabilityzone, instanceid, snapshotid)

- append this new instance of ‘EBSVolume‘ to the list ebs_volumes_list

Verbose the ebs_volumes_list

@return: ebs_volumes_list

"""

at first lets collect all different snapshot IDs

different_snap_ids = []

for jobinfodict in jobinfodicts_list:

if jobinfodict[’snap_id’] not in different_snap_ids:

different_snap_ids.append(jobinfodict[’snap_id’])

print ’ detected following different snap_ids: ’+str(different_snap_ids)

this is the list of devices we can populate with EBS

devices = [’/dev/sdh1’,’/dev/sdh2’,’/dev/sdh3’,

’/dev/sdh4’,’/dev/sdh5’,’/dev/sdh6’,

’/dev/sdh7’,’/dev/sdh8’,’/dev/sdh9’]

now create one object of EBSVolume for each individual snap_id.

assign an individual device to each individual EBSVolume.

after this loop we have a list ebs_volumes_list that contains information

about individual EBS volumes to create from ‘snap_id‘ and to mount to ‘device‘.

ebs_volumes_list = []

for snap_id in different_snap_ids:

if devices:

for possibledevice in devices:

if not os.path.exists(possibledevice):

device = possibledevice

108 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

break

devices.remove(device)

else:

sys.exit(’processjobs.py: more than 9 EBS per instance are currently not supported!’

ebs_volumes_list.append(EBSVolume(snap_id=snap_id, device=device,

thisinstance_id=thisinstance_id,

thiszone=thiszone))

print ’ planing to assign snap_id(s) to following device(s):’

for ebsvolume in ebs_volumes_list:

print ’ ’+ebsvolume.snap_id+’->’+ebsvolume.device

return ebs_volumes_list

if __name__ == ’__main__’:

main()

10.4 awsac-session

-*- coding: UTF-8 -*-

#

::::::::> awsac-session (08-10-13) <::::::::

#

by Jan-Philip Gehrcke (jgehrcke@gmail.com)

Universität Würzburg, Max-Planck-Institut für Physik München

#

Copyright (C) 2008 Jan-Philip Gehrcke

#

LICENSE:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version. This program is distributed in

the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more

details. You should have received a copy of the GNU General Public

License along with this program; if not, see

<http://www.gnu.org/licenses/>.

#

read the detailled documentation at http://gehrcke.de/awsac

#

##

import sys

10.4. awsac-session 109

AWSAC: Amazon Web Services for ATLAS Computing

import boto

import hashlib

import time

import os

import random

import optparse

import ConfigParser

VERSION = "v08-10-13"

def main():

"""

lead through the script step by step

"""

print ’\n’

print ’::::> AWSACtools session management ’ + VERSION

print ’::::> by Jan-Philip Gehrcke’

print ’\n’

options = parseargs()

files = check_usergivenfiles(options)

if options.action == ’start’:

print ’# starting new session; parsing start information file... \n’

s = Session(startinfo=parse_startinfofile(files[’startinfofilepath’]))

print ’# ----- shortdescription of new session: ’+s.shortdescr.upper()\

+’ -----\n’

s.calc_n_instances()

print (’# instancetype chosen: ‘’+s.instance_type+’‘ with ’+s.cores_per_instance+’ ’

’core(s) per instance. With ’+s.n_jobs+’ demanded job(s)/core(s) ’

’this makes ’+s.n_instances+’ instance(s) we have to start. ’

’Unused cores: ’+s.unused_cores+’.\n’)

print ’# generating session ID from date, shortdescription, randomness:\n’,

s.gen_id()

print s.session_id+’\n’

print ’# uploading sessionarchive file to S3...’

if s.s3_upload_file_to_sessionfolder(files[’archivefilepath’]):

print ’uploaded to S3 as object (bucket:‘’+s.bucket+’‘ key:‘’+s.session_id+’/’\

+os.path.basename(files[’archivefilepath’])+’‘).\n’

#s.s3_upload_datadir_to_sessionfolder(files[’datadirpath’]

print ’# connecting to EC2 to check your AMI-ID...’

110 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

s.check_image()

print ’found AMI ‘’+s.ami.id+’‘ (’+s.ami.location+’)\n’

print ’# building user-data string to be submitted to all instances...’

s.build_runuserdata(files[’archivefilepath’])

print s.runuserdata+’\n(session_id;bucket;sessionarchivename;cores_per_instance)\n’

print ’# checking SimpleDB domain for this session...’

s.sdb_delete_domain()

print ’\n# In the next step EC2 will be instructed to run exactly ’\

+s.n_instances+’ instance(s) of given AMI (type ‘’+s.instance_type\

+’‘) with user-data mentioned obove.’

if get_y_n("proceed? (y/n): ", [’y’,’n’]) == "n":

sys.exit(’Then check your settings again (-: exiting.’)

if s.ec2_runinstances():

print ’Request accepted. EC2 reservation ID: ’+str(s.ec2_reservation.id)

print ’# saving session to file...’,

print s.save_to_file()

if options.action == ’check’:

cfg = parse_configfile(files[’configfilepath’])

read_sessionstate_from_sdb(cfg[’session_id’])

if options.action == ’getresults’:

cfg = parse_configfile(files[’configfilepath’])

s3_download_files(bucketname=cfg[’bucket’],

prefix=cfg[’session_id’],

outputdir=os.path.join(files[’outputdirpath’],’session-’+cfg[’session_id

if options.action == ’cleanup’:

cfg = parse_configfile(files[’configfilepath’])

deldomain = get_y_n(’delete SimpleDB-domain ’+cfg[’session_id’]+’? y/n: ’, [’y’,’n’])

if deldomain == ’y’:

sdb_delete_domain(cfg[’session_id’])

dels3keys = get_y_n(’delete S3-objects ’+cfg[’bucket’]+’/’+cfg[’session_id’]+’/* ? y/n:

if dels3keys == ’y’:

s3_delete_keys(bucketname=cfg[’bucket’],

prefix=cfg[’session_id’])

class Session:

"""

Represents and manages one session.

"""

10.4. awsac-session 111

AWSAC: Amazon Web Services for ATLAS Computing

def __init__(self, startinfo):

self.session_id = None

self.n_instances = None

self.unused_cores = None

self.cores_per_instance = None

self.ami = None # will be a boto image object

self.runuserdata = None

self.ec2_reservation = None

self.shortdescr=startinfo[’shdescr’]

self.bucket=startinfo[’bckt’]

self.n_jobs=startinfo[’n_jobs’]

self.ami_id=startinfo[’ami_id’]

self.ec2_uid=startinfo[’ec2_uid’]

self.instance_type=startinfo[’instance_type’]

def build_runuserdata(self, archivefile):

"""

Build the user-data string and save it in attribute ‘runuserdata‘

user-data must have following form:

session_id;bucket;sessionarchivename;cores_per_instance

"""

arcfilename = os.path.basename(archivefile)

self.runuserdata = self.session_id+’;’+self.bucket+’;’+\

arcfilename+’;’+self.cores_per_instance

def calc_n_instances(self):

"""

Calculate the number of EC2-instances in this session from n_jobs and n_cpi,

the number of cores per instance.

n_cpi is obtained from the instance-type.

The number of unused cores is calculated, too (e.g. 3 jobs on c1.medium lead

to one unused core).

"""

if self.instance_type == ’m1.small’:

self.cores_per_instance = str(1)

elif self.instance_type == ’c1.medium’:

self.cores_per_instance = str(2)

n_jobs = int(self.n_jobs)

cores_per_instance = int(self.cores_per_instance)

n_instances = n_jobs / cores_per_instance

overhead = n_jobs % cores_per_instance

unused_cores = 0

if overhead:

n_instances += 1

112 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

unused_cores = cores_per_instance - overhead

self.n_instances = str(n_instances)

self.unused_cores = str(unused_cores)

def check_image(self):

"""

Check if the usergiven amiID represents an existing Amazon Machine Image.

If not, the script will quit.

"""

ownerlist = []

ownerlist.append(self.ec2_uid)

myimage = None

conn = boto.connect_ec2()

myimages=conn.get_all_images(owners=ownerlist)

for image in myimages:

if image.id == self.ami_id:

myimage = image

break

if myimage is None:

sys.exit(("desired AMI ‘"+self.ami_id+"‘ was not in the list of"

" EC2-user’s (UID: "+self.ec2_uid+") AMIs. exiting."))

self.ami = myimage

def ec2_runinstances(self):

"""

Invoke the ’RunInstances" API-call using boto.

@return: True. But: an error while API-call would result in exit.

"""

conn = boto.connect_ec2()

reservation=conn.run_instances(min_count=self.n_instances,

max_count=self.n_instances,

user_data=self.runuserdata,

image_id=self.ami_id,

instance_type=self.instance_type)

self.ec2_reservation = reservation

return True

def save_to_file(self):

"""

Save current session information to a file using ConfigParser.

Put session id in filename.

"""

filename = ’session-’+self.session_id+’.cfg’

try:

config = ConfigParser.SafeConfigParser()

10.4. awsac-session 113

AWSAC: Amazon Web Services for ATLAS Computing

config.add_section(’sessionconfig’)

config.set(’sessionconfig’, ’session_id’, self.session_id)

config.set(’sessionconfig’, ’ec2_reservation_id’, str(self.ec2_reservation.id))

config.set(’sessionconfig’, ’n_instances’, str(self.n_instances))

config.set(’sessionconfig’, ’unused_cores’, str(self.unused_cores))

config.set(’sessionconfig’, ’cores_per_instance’, str(self.cores_per_instance))

config.set(’sessionconfig’, ’runuserdata’, self.runuserdata)

config.set(’sessionconfig’, ’shortdescr’, self.shortdescr)

config.set(’sessionconfig’, ’bucket’, self.bucket)

config.set(’sessionconfig’, ’n_jobs’, str(self.n_jobs))

config.set(’sessionconfig’, ’ami_id’, self.ami_id)

config.set(’sessionconfig’, ’ec2_uid’, str(self.ec2_uid))

config.set(’sessionconfig’, ’instance_type’, self.instance_type)

fd = open(filename,’w’)

config.write(fd)

fd.close()

except:

return ’error: could not write configfile: ’+filename

return filename

def gen_id(self):

"""

Generate session id from current time, shortdescription and randomhash

"""

try: urandom = os.urandom(20)

except: urandom = time.time()

rnd = hashlib.sha1(str(random.random())+str(time.time())+str(urandom))

sessionsuffix = rnd.hexdigest()[:4]

timestring = time.strftime("%y%m%d_%H%M",time.localtime())

self.session_id = timestring+"--"+self.shortdescr[:8]+"--"+sessionsuffix

#self.session_id = "080910_1147--testsess--609f"

def sdb_delete_domain(self):

"""

Delete SimpleDB domain of current session

"""

sdb_delete_domain(self.session_id)

def s3_upload_file_to_sessionfolder(self, file):

"""

Upload a file as S3 object to sessionsbucket/sessionid/file.

@return: True (boto raises exceptions if something goes wrong)

"""

conn = boto.connect_s3()

bucket = conn.create_bucket(self.bucket)

k = boto.s3.key.Key(bucket)

114 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

k.key=self.session_id+"/"+os.path.basename(file)

k.set_contents_from_filename(file)

return True

def s3_download_file_from_sessionfolder(self, getfile, outfile):

"""

Download a file from S3 object sessionsbucket/sessionid/getfile

to outfile.

"""

conn = boto.connect_s3()

bucket = conn.create_bucket(self.bucket)

k = boto.s3.key.Key(bucket)

k.key=self.session_id+"/"+getfile

k.get_contents_to_filename(outfile)

def s3_delete_keys(bucketname, prefix):

"""

Delete S3 objects beginning with ‘prefix‘ from ‘bucketname‘.

"""

conn = boto.connect_s3()

bucketfound = False

try:

buckets = conn.get_all_buckets()

except:

print ’ error while retrieving all buckets’

if buckets:

for bucket in buckets:

if bucket.name == bucketname:

bucketfound = True

break

if not bucketfound:

print ’ bucket could not be found: ’+bucketname

else:

objectkeys = bucket.list(prefix=prefix)

for key in objectkeys:

key.delete()

print ’deleted ’+os.path.basename(key.name)

def sdb_delete_domain(domainname):

"""

Delete SimpleDB domain ‘domainname‘.

"""

sdb = boto.connect_sdb()

domains = ’’

try:

10.4. awsac-session 115

AWSAC: Amazon Web Services for ATLAS Computing

domains = sdb.get_all_domains()

except:

print ’ error while retrieving all domains’

if domains:

for domain in domains:

if domain.name == domainname:

sdb.delete_domain(domain)

print ’ domain existed and was deleted: ’+domainname

return

print ’ domain does not exist: ’+domainname

def read_sessionstate_from_sdb(session_id):

"""

Read SimpleDB domain ‘session_id‘ content and print it.

Some special keynames are hardcoded in this function.

"""

sdb = boto.connect_sdb()

domainfound = False

try:

domains = sdb.get_all_domains()

except:

print ’ error while retrieving all SimpleDB-domains’

if domains:

for domain in domains:

if domain.name == session_id:

domainfound = True

break

if not domainfound:

print ’ domain for this session could not be found: ’+session_id

else:

jobdict_list will be a list of jobdicts

jobdict_list = []

for jobitem in domain:

store all the key/value-pairs of the db-item in ‘jobdict‘

jobdict={}

for key in jobitem.keys():

jobdict[key] = jobitem[key]

jobdict_list.append(jobdict)

if jobdict_list:

lets sort the dictslist by a specific key in the dicts

I assume that the following keys exist but of course I will check it:

jobnr, status, instance_id, launchindex, shellscript, runstarttime,

runendtime, returncode, savestarttime, saveendtime

jobdict_list.sort(key= lambda x: x[’jobnr’])

for jobdict in jobdict_list:

116 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

try:

print ’============= Job ’+jobdict[’jobnr’]+’ (status: ’+jobdict[’status’]+’

except KeyError:

pass

try:

print ’running ’+jobdict[’shellscript’]+’ on instance ’+\

jobdict[’instance_id’]+’ with launchindex ’+jobdict[’launchindex’]

except KeyError:

pass

try:

print ’started running: ’+jobdict[’runstarttime’]

except KeyError:

pass

try:

print ’ended running: ’+jobdict[’runendtime’]

except KeyError:

pass

try:

print ’returncode: ’+jobdict[’returncode’]

except KeyError:

pass

try:

print ’started saving: ’+jobdict[’savestarttime’]

except KeyError:

pass

try:

print ’ended saving: ’+jobdict[’saveendtime’]

except KeyError:

pass

print ’’

def get_y_n(msg, commandlist):

"""

Get user input from stdin using raw_input() with ‘msg‘ as prompt.

Wait for any string that is in stringlist ‘commandlist‘.

@return: entered string (that is in ‘commandlist‘)

"""

while True: # wait for instring to be a known command

while True: # wait for an errorfree input

try:

instring = raw_input(msg)

break

except:

pass

if instring in commandlist:

10.4. awsac-session 117

AWSAC: Amazon Web Services for ATLAS Computing

return instring

def s3_download_files(bucketname, prefix, outputdir):

"""

Download files from S3 objects ‘bucketname‘/‘prefix‘* to ‘outputdir‘.

At first receive all buckets. Then get all objectkeys in ‘bucketname‘ with

specified ‘prefix‘. Download objects to ‘outputdir‘. Ask for overwriting.

"""

conn = boto.connect_s3()

bucketfound = False

try:

buckets = conn.get_all_buckets()

except:

print ’ error while retrieving all buckets’

if buckets:

for bucket in buckets:

if bucket.name == bucketname:

bucketfound = True

break

if not bucketfound:

print ’ bucket could not be found: ’+bucketname

else:

try:

outputdir = os.path.abspath(outputdir)

os.makedirs(outputdir)

print "outputfolder created: "+outputdir

except OSError:

print "outputfolder exists: "+outputdir

overwriteall = False

objectkeys = bucket.list(prefix=prefix)

for key in objectkeys:

outfilepath = os.path.join(outputdir,os.path.basename(key.name))

if os.path.exists(outfilepath) and not overwriteall:

instring = get_y_n(os.path.basename(key.name)+’ exists. overwrite? y/n/a: ’,[’y’

if instring == ’n’:

continue

if instring == ’a’:

overwriteall = True

key.get_contents_to_filename(outfilepath)

print ’saved ’+os.path.basename(key.name)

def parse_configfile(file):

"""

Parse given ‘file‘name for session information/configuration.

118 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

@return: return dict with special options if filecontent is as expected.

"""

config = ConfigParser.SafeConfigParser()

try:

config.readfp(open(file))

sesscfg = {}

sesscfg[’session_id’] = config.get(’sessionconfig’, ’session_id’)

sesscfg[’ec2_reservation_id’] = config.get(’sessionconfig’, ’ec2_reservation_id’)

sesscfg[’n_instances’] = config.get(’sessionconfig’, ’n_instances’)

sesscfg[’unused_cores’] = config.get(’sessionconfig’, ’unused_cores’)

sesscfg[’cores_per_instance’] = config.get(’sessionconfig’, ’cores_per_instance’)

sesscfg[’runuserdata’] = config.get(’sessionconfig’, ’runuserdata’)

sesscfg[’shortdescr’] = config.get(’sessionconfig’, ’shortdescr’)

sesscfg[’bucket’] = config.get(’sessionconfig’, ’bucket’)

sesscfg[’n_jobs’] = config.get(’sessionconfig’, ’n_jobs’)

sesscfg[’ami_id’] = config.get(’sessionconfig’, ’ami_id’)

sesscfg[’ec2_uid’] = config.get(’sessionconfig’, ’ec2_uid’)

sesscfg[’instance_type’] = config.get(’sessionconfig’, ’instance_type’)

config.write(sys.stdout)

except:

sys.exit((’error while parsing ’+file+’ for configuration options.\n’

’expecting section [startinfo] with following options:\n’

’session_id,ec2_reservation_id,n_instances,unused_cores,cores_per_instance,\n’

’runuserdata,shortdescr,bucket,n_jobs,ami_id,ec2_uid,instance_type’))

return sesscfg

def parse_startinfofile(file):

"""

Check configuration file for options.

Write the parsed data to stdout.

@return: information as strings without whitespaces

"""

config = ConfigParser.SafeConfigParser()

try:

config.readfp(open(file))

sessinfo = {}

sessinfo[’shdescr’] = ’’.join(config.get(’startinfo’,’shortdescr’).split())

sessinfo[’n_jobs’] = ’’.join(config.get(’startinfo’,’n_jobs’).split())

sessinfo[’bckt’] = ’’.join(config.get(’startinfo’,’sessionsbucket’).split())

sessinfo[’ami_id’] = ’’.join(config.get(’startinfo’,’ami_id’).split())

sessinfo[’ec2_uid’] = ’’.join(config.get(’startinfo’,’ec2_uid’).split())

sessinfo[’instance_type’] = ’’.join(config.get(’startinfo’,’instance_type’).split())

config.write(sys.stdout)

10.4. awsac-session 119

AWSAC: Amazon Web Services for ATLAS Computing

except:

sys.exit((’error while parsing ’+file+’ for configuration options.\n’

’expecting section [startinfo] with following options:\n’

’shortdescr,n_jobs,sessionsbucket,ami_id,ec2_uid,instance_type’))

return sessinfo

checks if the script really can work with user-given options.

logical consistence has already been checked before, so lets look if

the given files and directories exist the way we need it.

returns dictionary of files and directories with absolute pathes.

def check_usergivenfiles(options):

"""

Check if the files given by commandline exist. ‘check_file‘-fkt will raise errors.

@return: A dictionary containing the absolute paths of the files.

"""

archivefilepath = None

configfilepath = None

startinfofilepath = None

outputdirpath = None

datadirpath = None

if options.action == ’start’:

archivefilepath = check_file(options.archivefile)

if not os.path.basename(archivefilepath).endswith("tar.bz2"):

sys.exit(("The session archive file has to be a bz2 compressed tarball. The file "

"you submitted does not end with ’tar.bz2’. So I suppose wrong content."))

startinfofilepath = check_file(options.startinfofile)

if options.datadir is not None:

datadirpath = check_dir(options.datadir)

if options.action == ’check’:

configfilepath = check_file(options.configfile)

if options.action == ’getresults’:

outputdirpath = check_dir(options.outputdir)

configfilepath = check_file(options.configfile)

if options.action == ’cleanup’:

configfilepath = check_file(options.configfile)

return {’archivefilepath’: archivefilepath,

’configfilepath’: configfilepath,

’startinfofilepath’: startinfofilepath,

’outputdirpath’: outputdirpath,

’datadirpath’: datadirpath}

def parseargs():

"""

Parse commandlineoptions using the optparse module and check them for the

120 Chapter 10. Appendix

AWSAC: Amazon Web Services for ATLAS Computing

logical consistence. Generate help- and usage-output.

@return: optparse ‘options‘-object containing the commandlineoptions

"""

the following part configures the OptionParser...

version = ’AWSACtools session management’ + VERSION

description = ("AWSAC session management" + VERSION + " - start sessions, check status "

"of sessions, get result data and clean up used AWS")

usage = ("%prog [--start || --check || --getresults || --cleanup]\n\t\t"

"[-a A -i I (-d D) || -c C || -c C -o O || -c C]\n\t\t"

"type -h, --help for help and --version for versionoutput")

dhelp = (’directory to grab additional session data from. this data will be made’

’ available to the instances by uploading it to S3.’

’ (-d is optional for ‘start‘) WARNING: CURRENTLY NOT SUPPORTED’)

parser = optparse.OptionParser(usage=usage,version=version,description=description)

parser.add_option(’-a’, ’--archive’, dest=’archivefile’,

help=’session archive file (needed for session ‘start‘)’)

parser.add_option(’-i’, ’--ini’, dest=’startinfofile’,

help=’session startinformation file (needed for session ‘start‘)’)

parser.add_option(’-d’, ’--data’, dest=’datadir’,

help=dhelp)

parser.add_option(’-c’, ’--config’, dest=’configfile’,

help=’session config file (needed for ‘check‘, ‘getresults‘, ‘cleanup‘)’)

parser.add_option(’-o’, ’--outdir’, dest=’outputdir’,

help=’directory to save results in (needed for ‘getresults‘; dir must exist

parser.add_option(’--start’, action=’store_const’, const=’start’, dest=’action’,

help=’start new session (needs ARCHIVEFILE and STARTINFOFILE set - may have

parser.add_option(’--check’, action=’store_const’, const=’check’, dest=’action’,

help=’check status of an existing session (needs CONFIGFILE set)’)

parser.add_option(’--getresults’, action=’store_const’, const=’getresults’, dest=’action’,

help=(’get result data of an existing session ’

’(needs CONFIGFILE and OUTPUTDIR set)’))

parser.add_option(’--cleanup’, action=’store_const’, const=’cleanup’, dest=’action’,

help=’deletes all s3 objects of an existing session (needs CONFIGFILE set)

now read in the given arguments (from sys.argv by default)

(options, args) = parser.parse_args()

now check the logical consistence...

if options.action is None:

parser.error(’one of [--start || --check || --getresults || --cleanup] must be set!’)

elif options.action == ’start’:

if (options.archivefile is None) or (options.startinfofile is None):

parser.error(’when --start is set, -a ARCHIVEFILE and -i STARTINFOFILE are needed!’)

elif options.action == ’check’:

if (options.configfile is None):

parser.error(’when --check is set, -c CONFIGFILE is needed!’)

10.4. awsac-session 121

AWSAC: Amazon Web Services for ATLAS Computing

elif options.action == ’getresults’:

if (options.configfile is None) or (options.outputdir is None):

parser.error(’when --getresults is set, -c CONFIGFILE and -o OUTPUTDIR are needed!’)

elif options.action == ’cleanup’:

if (options.configfile is None):

parser.error(’when --cleanup is set, -c CONFIGFILE is needed!’)

everything okay until here? seems so.. return the given options.

return options

def check_file(file):

"""

Check if a given file exists and really is a file (e.g. not a directory)

In errorcase the script is stopped.

@return: the absolute path of the file

"""

if not os.path.exists(file):

sys.exit(file+’ does not exist’)

if not os.path.isfile(file):

sys.exit(file+’ must be a file’)

return os.path.abspath(file)

def check_dir(dir):

"""

Check if a given dir exists and really is a dir (e.g. not a file)

In errorcase the script is stopped.

@return: the absolute path of the directory

"""

if not os.path.exists(dir):

sys.exit(dir+’ does not exist’)

if not os.path.isdir(dir):

sys.exit(dir+’ is not a directory’)

return os.path.abspath(dir)

if __name__ == "__main__":

main()

122 Chapter 10. Appendix

