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46 Exercise 1/13

T-61.5100 Digital image processing, Exercise 1, Sep 24, 2013

To maximise the benefit you obtain from these exercises, please try to work on the problems
home before the exercise session. At the exercise session, the course assistant will present you
the model solutions to the problems. You should not use so much time on problems marked
demo; it is sufficient if you look at the problem and just think about it a little. The point in
those problems is in what the solution teaches you, you are not required to be able to achieve
the solution by yourself (and it may sometimes be difficult if the problem is stated vaguely).

The exercises are not mandatory. They are only to aid you in the learning process. The solutions
need not be handed in or returned otherwise, and you do not need to present solutions yourself.
Consequently, you cannot earn extra points for the exam from the exercises.

1.demo The Mach bands phenomenon is an example of how the human perception of brightness
is not a simple function of of intensity (see Fig. 2.7 in the course book). How could the
“Mexican-hat” function (see Fig. 1(a) below) be used to “explain” this phenomenon? As
a simplification you can use the approximated function in Fig. 1(b) in one dimension.

Figure 1(a) Figure 1(b)

2.demo Suppose that a flat area with centre at (x0, y0) is illuminated by a light source with intensity
distribution

i(x, y) = Ke−[(x−x0)
2+(y−y0)2].

The reflectance r(x, y) of the area is 1 and K = 255. If the resulting image is digitized
using n bits of intensity resolution, and the eye can detect an abrupt change of eight shades
of intensity between adjacent pixels, what value of n will cause visible false contouring?

3. Consider the two image subsets S1 and S2 shown below. For V = {1}, determine how
many (a) 4-connected, (b) 8-connected, and (c) m-connected components there are in S1
and S2. Are S1 and S2 adjacent?

S1 S2
0 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 1 0 0 1
1 0 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1

4. In the image above, compute the D4- and D8-distances between the two points marked
with rectangles. Also compute the Dm-distance given V = {1}.
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5. Assume that we have many noisy versions gi(x, y) of the same image f(x, y), i.e.

gi(x, y) = f(x, y) + ηi(x, y)

where the noise ηi is zero-mean and all point-pairs (ηi(x, y), ηj(x, y)) are uncorrelated
between each image version. Then we can reduce noise by taking the mean of all the noisy
images

ḡ(x, y) =
1

M

M∑

i=1

gi(x, y).

Prove that
E{ḡ(x, y)} = f(x, y)

and

σ2ḡ(x,y) =
1

M
σ2η(x,y)

where σ2η(x,y) is the variance of η and σ2ḡ(x,y) the variance of ḡ(x, y).
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T-61.5100 Digital image processing, Exercise 1, Sep 24, 2013

1.

In the early visual system there are cells with an excitatory effect in the centre and an inhibitory
effect in the surrounding area. This can be roughly approximated by the “Mexican hat”-function
in one dimension. For this problem we use the simplest possible “hat”:

h(i) =







−0.25, when i = ±1
1, when i = 0
0, otherwise

(1)

0 32-1-2-3 1

An edge is modelled by a step function:

f(i) =

{
0, when i < 0
1, otherwise

(2)

30 2-1-2-3 1

Convolution is used:

g(x) =

∞∑

i=−∞
h(i)f(x− i) =

1∑

i=−1

h(i)f(x− i) (3)

And we have

g(−3) = 0, g(−2) = 0, g(−1) = −0.25, g(0) = 0.75, g(1) = 0.5, g(2) = 0.5 (4)

30 2-1-2-3 1

Thus, we see a darker and a lighter bands near the edge. In two dimensions these would be seen
as a moat and a wall.
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2.

In the simple image formation model (book section 2.3.4) the image is the product of the
illumination i(x, y) and the reflectance r(x, y), which is now given as:

f(x, y) = i(x, y)r(x, y) = 255e−[(x−x0)2+(y−y0)2], (5)

and the cross section of the image looks like this

X,Y

255

X ,Y0 0

Quantisation with n bits means that we discretise the intensity so that the smallest change is
∆G = 255+1

2n . This is what the quantised picture might look like:

X,Y

255

G

X ,Y0 0

Since the eye is able to perceive a sudden change of 8 intensity levels, we see a false contour,
when ∆G equals 8 or is larger, i.e.

∆G ≥ 8
255 + 1

2n
≥ 8

256

8
≥ 2n (6)

log2 32 ≥ log2 2
n

5 ≥ n.

So when n ≤ 5 a false contour can be seen.
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3.

A connected component (see book section 2.5.2) is a set in which all its pixels are connected with
each other. Two pixels are connected if there is a path between them, i.e. a chain of pixels which
all belong to the set and are adjacent in each step of the chain. Adjacency, in turn, means that
two pixels are neighbours (e.g. 4-neighbours) and both belong to the set V . Here V = {1}.

a) 4-connected components, i.e. where we use 4-neighbourhood to define adjacency:

0 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1

S1: 1, S2: 3

1 1

S 1 S

0

1 1 0 0

0

2

00 1 0

0 0

0

0 0 0 0

1

1 1

0 1 0

0

0

0 1 1 1

0

b) 8-connected components, i.e. with 8-adjacency:

0 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1

S1: 1, S2: 1
S 21

0

0 0 1 1

S

0

0 1 0

0 0 1

0

0 0 0 0

0

0 1 0 0

1 1

1

0 1 1 1

0 0 1
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c) M-connected components, i.e. with mixed adjacency:

0 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1

S1: 1, S2: 1
S 1 S 2

1

1 0 0

0 0 1

1

0 1 0

0 0

0

0 0 0 0

1

1 1

0 1 0 0

0

0

0 1 1 1

0

The answer is the same as in b), but now there exists only one possible path connecting each
pixel-pair.

Adjacency of subsets

Follow-up question: are S1 and S2 adjacent in a), b) or c) ?

Two subsets are adjacent if there are two pixels (one in each set) which are adjacent (as pixels).

a): S1 and S2 are not adjacent, since no pixel of S2 that belongs to V is a 4-neighbour of any
pixel in S1 that belongs to V .

b) and c): In both cases S1 and S2 are adjacent, thanks to the pixels that have been circled in
the figures.
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4.

D4 (“City-block”) and D8 (“Chess-board”) distances do not depend on V but only on the
coordinates of the two points.

D4(p, q) = |xp − xq|+ |yp − yq| = 6 + 3 = 9 (7)

D8(p, q) = max(|xp − xq|, |yp − yq|) = max(6, 3) = 6 (8)

D4(p, q) = |xp − xq|+ |yp − yq| = . . . (9)

D8(p, q) = max(|xp − xq|, |yp − yq|) = . . . (10)

(11)

0 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1

The Dm distance is defined as the shortest m-path (path defined with m-adjacency) between
the two points. In this case, the distance will depend on the values of the pixels along the path,
as well as the values of their neighbours because only pixels in V can be adjacent.

0 0 0 0 0 0 0 1 → 1 0
ր

1 0 0 1 0 0 1 0 0 1
↑

1 0 0 1 0 1 → 1 0 0 0
ր

0 0 1 → 1 → 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1
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0 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1

Dm(p, q) = 7 (12)

We could also calculate the lengths of the 4- and 8-paths between p and q. Note however that
these are not the same as the D4 and D8 distances. In fact, what would happen in we calculated
the 4- and 8-path lengths for the current example?
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5.

The noisy image is now given as

gi(x, y)
︸ ︷︷ ︸

noisy image

= f(x, y)
︸ ︷︷ ︸

original image

+ ηi(x, y)
︸ ︷︷ ︸

noise

,

where noise has zero mean and it is uncorrelated, i.e.

E {ηi(x, y)} = 0,

and, for i 6= j,

E {ηi(x, y)ηj(x, y)} = 0.

When we average the noisy images

ḡ(x, y) =
1

M

M∑

i=1

gi(x, y)

we get for the expectation

E {ḡ(x, y)} = . . .

E {ḡ(x, y)} = E

{

1

M

M∑

i=1

gi(x, y)

}

= E

{

1

M

M∑

i=1

f(x, y) +
1

M

M∑

i=1

ηi(x, y)

}

=

1

M

M∑

i=1

E {f(x, y)}+ 1

M

M∑

i=1

E {ηi(x, y)}
︸ ︷︷ ︸

=0 (zero mean)

= f(x, y)

and for the variance

σ2ḡ(x,y) = E
{

(ḡ − E {ḡ})2
}

= . . .
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σ2ḡ(x,y) = E
{

(ḡ − E {ḡ})2
}

= E







(

1

M

M∑

i=1

(f + ηi)− f

)2





= E







(

1

M

M∑

i=1

ηi

)2





=

1

M2
E







(
M∑

i=1

ηi

)2





=

1

M2
E







M∑

i=1



η2i +
M∑

j=1, j 6=i
ηiηj










=

1

M2






M∑

i=1




E{η2i }
︸ ︷︷ ︸

=σ2
η

+
M∑

j=1, j 6=i
E{ηiηj}
︸ ︷︷ ︸

=0









 =

1

M
σ2η,

since the noise had zero mean and it was uncorrelated.
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T-61.5100 Digital image processing, Exercise 2, Oct 1, 2013

Computer exercise: Image enhancement in the spatial domain

1. Set up your workspace.

It is easiest to create a separate directory for your exercise and use that as the “home” di-
rectory for Matlab. You can create a new directory, for example with the name “dip”, using
the command mkdir dip in the terminal, or by clicking Places → Home Folder in the top left
menu-area. Then in the new window click File → Create Folder and type the name, e.g. “dip”
and press Enter.

Matlab can be started by the command matlab & in the terminal, or by selecting it from the
Applications menu. If you do this exercise at home on your own computer you can also use
Octave, the free software alternative to Matlab. There are some instructions on how to use that
on the course Noppa page.

Tip: For more advanced users: if you don’t the need the graphical interface, Matlab is
much quicker if you start in text-mode like this: matlab -nodesktop -nosplash. This
is also good if you run Matlab over the network, e.g. from at home over ssh. However, if
you are unfamiliar with Matlab maybe the graphical mode is easier to start with.

Now in Matlab you need to move to the correct directory: cd dip. You can check the current
working directory with the command pwd.

2. Open and display an image

Now open a web browser (e.g. Firefox) to download the images2.zip file, which is an archive
package that contains all the images and Matlab files needed:

https://noppa.aalto.fi/noppa/kurssi/t-61.5100/viikkoharjoitukset

You should then be able to extract the files from the ZIP archive by double clicking on the
file and choosing “extract” or similar option, or by using the unzip command from the Linux
command line. Make sure that the files end up in the “dip” directory that we created for this
exercise so that Matlab can find them.

Load the first image into Matlab by the following command:

I=double(imread(’10.png’))/255;

The function imread reads in the image called 10.png into the matrix I. Here we also convert
the image in to a real-valued matrix (with double precision) and convert the range from [0, 255]
to [0, 1]. This is not always neccessary, but is usually a good idea. You can check the size of the
matrix, and thus the image, by:
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[M,N]=size(I)

Now you also have the number of rows, i.e. height of the image, in M and the number of columns,
i.e. width of the image, in N. You can inspect for example the top left 10 × 20 pixel corner of
the image by:

I(1:20,1:10)

This now shows the grey scale values of the first 20 rows and 10 columns. This is not very
informative for a human, but gives a hint of what the computer is “seeing”!

Typically in image processing (except in the Gonzalez-Woods book!) the first coordinate value
is the x-dimension, and the second the y-dimension. Since Matlab expresses everything with
matrices it uses the matrix notation where the first value is the row-index (“y-coordinate”)
and the second value is the column index (“x-coordinate”). So in Matlab the coordinates are

reversed! Also remember that in Matlab the first index is 1, not 0 as in most programming
languages (such as C or Python).

Finally display the image in figure 1:

subplot(2,2,1)

imshow(I)

title(’image I’)

The command subplot creates a grid of 2 × 2 smaller figures or subplots, the third parameter
says which figure of those four we are using, in this case figure 1. The command imshow actually
shows the image and title is just to display a title above the image.

Tip: In future exercises we commonly will have images which have been manipulated and
may not always have the correct range [0, 1]. The command imshow is very sensitive to
this, and this has often caused problems for students. For convenience, Mats Sjöberg – the
previous course assitant – has made a very simple image displaying function showim which
scales the image values before passing it to the standard imshow function. This helper
function can be found on the course exercise page in Noppa in the same ZIP package as
the images. Simply copy the file showim.m to your working directory and it can be used
as any other function:

showim(I)

where I is any matrix that can be displayed as an image.
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Tip: Now when you are going to do more involved things in Matlab, it might be a
good idea to write the code into a separate file that you can then run in Matlab in
one go. Simply open a new file in a text editor, named for example dip2.m. Just type
the Matlab commands into this file and save it to the directory that was created in
the beginning (e.g. dip). Matlab also has a built in editor, just click the icon “New M-file”.

In Matlab you can try out different things, and when you have figured out the correct
command you can copy & paste it into the text file. You can then run all the commands
in the text file in one go in Matlab just by typing dip2 and pressing enter.

3. Histogram equalisation

As you can see the image 10.png displays a 10 euro bill with a low contrast. This can be checked
by looking at the histogram (in figure 2):

subplot(2,2,2)

imhist(I)

title(’histogram of I’)

• How can you see that the image has a low contrast just by looking at the histogram?

Matlab has a built in function for histogram equalisation: histeq. To see the help listing and
all options of a command just type help in front of it. For example try help histeq. On the
last few rows the help also suggests other related commands that might be useful. In this case
for example imhist that we have already used. Now equalise the histogram of the image and
display the new image J in figure 3:

J=histeq(I);

subplot(2,2,3)

imshow(J)

title(’image J’)

What can you say about the contrast of the new image J compared to the old one I? Again, it
is instructive to look at the histogram:

subplot(2,2,4)

imhist(J)

title(’histogram of J’)

• What can you say about the new histogram compared to the old one, how does this explain
the change in contrast?

• Section 3.3.1 in the course book explains histogram equalisation, in the continuous form we
are doing the transformation from intensity level r to s by:
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s = T (r) = (L− 1)

∫ r

0
pr(w)dw. (1)

When the probability density functions for r and s are known, the new distribution is given as
ps(s) = pr(r)

∣
∣dr
ds

∣
∣ (result from probability theory).

Since,

ds

dr
=
dT (r)

dr
= (L− 1)

d

dr

[∫ r

0
pr(w)dw

]

= (L− 1)pr(r) (2)

we get

ps(s) = pr(r)

∣
∣
∣
∣

1

(L− 1)pr(r)

∣
∣
∣
∣
=

1

L− 1
(3)

which is a constant, i.e. a completely uniform distribution. But why is the histogram in our
Matlab/Octave programme still not completely uniform?

4. Spatial filtering

Now we start with a new image. It is always good to clear all old variables in Matlab, this can
be done with clear all. (Octave prefers clear -v.) Starting a new text file might also be a
good idea.

Now open the image noisycat.png in the same way as before and display it. You can se a
furry cat sitting on a checkered cloth. Unfortunately the image has a lot of noise. On the left
side of the image there is so called “salt & pepper” noise, which means random black and white
pixels. On the right side there is Gaussian noise, which is random noise with the values normally
distributed.

You can now try to fix this by applying different kinds of filters. This can be done with the
Matlab function imfilter (try help imfilter). You should try with different kinds of masks,
with size 3× 3 or more. A mask is simply a matrix in Matlab that is convolved over the image
matrix. For example a simple mask that only copies the central pixel (i.e. actually does nothing):

H = [0 0 0;

0 1 0;

0 0 0];

J=imfilter(I,H);

Try at least some kind of averaging masks, for example the average over the 8-neighbourhood.
Remember to normalise the mask so that its sum is always 1!

Also try a non-linear spatial filter, for example median filtering with medfilt2.
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Again, if you want to see many images at the same time, you can use subplot to create many
smaller images, or you can simply create a new figure for each image if you don’t mind moving
all the windows around. This can be done by clicking on the “New figure” icon in the image
window or by the figure command.

• How do the different filters perform with the different kinds of noise (i.e. the left and right
side of the image)? What about the different patterns of the image, for example the cat’s fur or
the checkered cloth?

•Why does certain filters work better on certain kinds of noise, and in certain areas of the image?

The original noiseless image can be found in cat.png if you wish to compare to that. It is not
possible to restore the image to perfect shape, but the quality can be improved.

• If you have the original image available, how could you numerically compare the quality of
different filtering methods?
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T-61.5100 Digital image processing, Exercise 3, Oct 8, 2013

Image enhancement in the frequency domain

1. Fourier transform the sequence f(0) = 2, f(1) = 3, f(2) = 4, f(3) = 4. Then calculate the
inverse Fourier transform and compare the result with the original sequence.

2. Suppose that you form a low-pass spatial filter that averages the 4-neighbours of a point
(x, y), but excludes the point (x, y) itself.

(a) Find the equivalent filter H(u, v) in the frequency domain for an N ×N sized image.

Hint: Calculate G(u, v) = F{g(x, y)}, and remember that the Fourier transform F
is a linear operator. Once you have G(u, v) you can solve H(u, v) from G(u, v) =
H(u, v)F (u, v).

(b) Show that H(u, v) is a low-pass filter.

Hint: look at what values |H(u, v)| has at the origin (0, 0) and how it changes when
moving away from the origin.

(c) Consider also the phase response φ(u, v) = argH(u, v).

The phase response is the phase angle φ(u, v) of H(u, v) = |H(u, v)|ejφ(u,v), since
H(u, v) in general is a complex value (i.e. with a real and imaginary part).

However, in this exercise, what can we say about the imaginary part?

Im{H(u, v)} = . . .

and then,

φ(u, v) = argH(u, v) = . . .

3.demo A Gaussian low-pass filter in the frequency domain has the transfer function

H(u, v) = Ae−(u2+v2)/2σ2
.

Show that the corresponding filter in the spatial domain has the form

h(x, y) = A2πσ2e−2π2σ2(x2+y2).

4. Show that the continuous Fourier transform of the continuous convolution of two functions
is the product of their Fourier transforms. For simplicity, assume 1-D functions. That is,
show that for functions f(x) and g(x),

F {f(x) ∗ g(x)} = F{f(x)}F{g(x)}
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T-61.5100 Digital image processing, Exercise 3, Oct 8, 2013

1.

The discrete Fourier transform and the inverse transform:

F (u) =
1

N

N−1∑

x=0

f(x)e−j2πux/N , f(x) =
N−1∑

u=0

F (u)ej2πux/N

Note: The version of the Fourier transform that we adopt here differs from the one presented
in the book by the fact that we scale the values by the length of the sequence. This does not
affect the theory in any way, one only needs to know if scaling was done when performing the
inverse transform (note that we do not scale there but the scaling is done in the book).

The sequence is now f(0) = 2, f(1) = 3, f(2) = 4, f(3) = 4. The Fourier-transform is done using
4 points =⇒ N = 4:

F (0) =
1

4

3∑

x=0

f(x)e0 =
1

4
[f(0) + f(1) + f(2) + f(3)] =

1

4
(2 + 3 + 4 + 4) =

13

4
= 3.25

F (1) =
1

4

3∑

x=0

f(x)e−j2πx/4 =
1

4
[f(0)e0 + f(1)e−jπ/2 + f(2)e−jπ + f(3)e−j3π/2]

=
1

4
[2e0 + 3e−jπ/2 + 4e−jπ + 4e−j3π/2]

=
1

4
[2 + 3(cos(π/2)− jsin(π/2)) + 4(cos(π)− jsin(π)) + 4(cos(3π/2)− jsin(3π/2))]

=
1

4
[2 + 3(−j) + 4(−1) + 4(j)] =

1

4
(−2 + j)

F (2) =
1

4

3∑

x=0

f(x)e−j2π2x/4 =
1

4
(f(0)− f(1) + f(2)− f(3)) = −1

4

F (3) =
1

4

3∑

x=0

f(x)e−j2π3x/4 =
1

4
(f(0) + jf(1)− f(2)− jf(3)) = −1

4
(2 + j)

Then we do the inverse transform:

f(0) =

3∑

u=0

F (u)e0 = F (0) + F (1) + F (2) + F (3) =
13

4
+

1

4
(−2 + j)− 1

4
− 1

4
(2 + j) = 2

f(1) =
3∑

u=0

F (u)ej2πu/4 =
13

4
+

1

4
(−2 + j)ejπ/2 − 1

4
ejπ − 1

4
(2 + j)ej3π/2 = 3

f(2) =

3∑

u=0

F (u)ej2π2u/4 =
13

4
+

1

4
(−2 + j)(−1)− 1

4
− 1

4
(2 + j)(−1) = 4

f(3) =
3∑

u=0

F (u)ej2π3u/4 =
13

4
+

1

4
(−2 + j)(−j)− 1

4
(−1)− 1

4
(2 + j)j = 4

The result is thus the original sequence.
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2.

The spatial average is

g(x, y) =
1

4
[f(x, y + 1) + f(x+ 1, y) + f(x, y − 1) + f(x− 1, y)] .

We need the following property of the Fourier transform (see Table 4.31 in the book):

F {f(x− x0, y − y0)} = exp [−j2π(ux0 + vy0)/N ]F (u, v) = e−j2πux0/Ne−j2πvy0/NF (u, v)

a)

G(u, v) =
1

4

[

e−j2πv/N + e−j2πu/N + ej2πv/N + ej2πu/N
]

F (u, v) = H(u, v)F (u, v).

Because
e−jx = cosx− j sinx and ejx = cosx+ j sinx

we get

H(u, v) =
1

2

[

cos
2πu

N
+ cos

2πv

N

]

that is the filter transfer function in the frequency domain. (H(u, v) is real because the filter is
symmetric!)

b) |H(0, 0)| = 1 and |H| decreases as a function of distance from the origin. This is the
characteristic of a low-pass filter. In fact this happens monotonically in the directions of u and
v axis only; in the diagonal directions also the higher frequencies are emphasized:

∣
∣
∣
∣
H(±N

2
,±N

2
)

∣
∣
∣
∣
= |−1| = 1

Look at the images!

c) The phase response can be calculated from H(u, v). Because Im{H(u, v)} = 0, then the
phase response is 0 when Re{H(u, v)} > 0, and π where Re{H(u, v)} < 0:

argH(u, v) =

{
0, if (|u|+ |v|)/N ≤ 0.5
π, if (|u|+ |v|)/N > 0.5

Look at the images!

So H retains (but turns) “the chessboard” (u = v = N/2) but averages the horizontal and
vertical lines in images.

1Third Edition
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3.

We start with only one variable and show first that, if

H(u) = e−u
2/2σ2

then

h(x) =

∞∫

−∞

e−u
2/2σ2

ej2πuxdu =
√
2πσe−2π2x2σ2

.

We can express the integral in the preceding equation as

h(x) =

∞∫

−∞

e−
1

2σ2 [u
2−j4πσ2ux]du.

We now make use of the identity

e−
(2π)2x2σ2

2 e
(2π)2x2σ2

2 = 1.

Inserting this identity in the preceding integral yields

h(x) = e−
(2π)2x2σ2

2

∞∫

−∞

e−
1

2σ2 [u
2−j4πσ2ux−(2π)2σ4x2]du = e−

(2π)2x2σ2

2

∞∫

−∞

e−
1

2σ2 [u−j2πσ2x]2du.

Next we make the change of variable r = u − j2πσ2x. Then, dr = du and the above integral
becomes

h(x) = e−
(2π)2x2σ2

2

∞∫

−∞

e−
r2

2σ2 dr.

Finally, we multiply and divide the right side of this equation by
√
2πσ:

h(x) =
√
2πσe−

(2π)2x2σ2

2 [
1√
2πσ

∞∫

−∞

e−
r2

2σ2 dr].

The expression inside the brackets is recognized as a Gaussian probability density function,
whose integral from −∞ to ∞ is 1. Therefore,

h(x) =
√
2πσe−2π2σ2x2 .

With this result as background, we now move into two-dimensional case. By substituting directly
into definition of the inverse Fourier transform we have:

h(x, y) =

∞∫

−∞

∞∫

−∞

Ae−(u2+v2)/2σ2
ej2π(ux+vy)dudv =

∞∫

−∞





∞∫

−∞

Ae(−
u2

2σ2+j2πux)du



 e(−
v2

2σ2+j2πvy)dv

By using the obtained result for the one-dimensional case, we now have the final result:

h(x, y) = (A
√
2πσe−2π2σ2x2)(

√
2πσe−2π2σ2y2) = A2πσ2e−2π2σ2(x2+y2).
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4.

Convolution:

f(x) ∗ g(x) =
∫ ∞

−∞
f(α)g(x− α) dα

The Fourier transform of a delay:

F{g(x− α)} = G(u) · e−j2πuα

By direct substitution into the definition, we get

F{f(x) ∗ g(x)} =

∫ ∞

−∞

[∫ ∞

−∞
f(α)g(x− α) dα

]

e−j2πux dx

=

∫ ∞

−∞
f(α)

[∫ ∞

−∞
g(x− α)e−j2πux dx

]

dα = G(u)

∫ ∞

−∞
f(α)e−j2πuα dα = G(u)F (u)

This is a very practical result, since it is often easier to calculate separately the transforms
of f and g by FFT, multiply them and calculate the inverse transform than to calculate the
convolution straight from the definition.
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T-61.5100 Digital image processing, Exercise 4, Oct 17, 2013

Image enhancement in the frequency domain

This computer exercise assumes that you already know the basics of image processing in Matlab.
E.g. opening an image (imread) and showing it on the screen (imshow or showim provided with
the images). If you have forgotten something you can always check back to the first computer
exercise (exercise no 2 on the course Noppa page).

1. Fourier analysis of periodic noise

Open the two images car.png and noisycar.png. The first one is the original grey-scale
image of a car, and the second one has been corrupted by vertical lines of noise (periodical and
sinusoidal noise). Look at the two pictures to confirm this.

Now, calculate the 2D discrete Fourier-transform of both images using the Matlab-function fft2.
For the purpose of visualisation it is useful to shift the origo of the transformed image to the
centre. Matlab has a handy function for this: fftshift.

To plot the Fourier transform we use the absolute value (the transform itself is imaginary):

imshow(abs(F_shift),[ ])

• The first parameter to imshow is the absolute value of the shifted Fourier-transformed
image.

• The second parameter of the imshow command gives the limits of the image values. Since
these are now out of the normal image range (typically 0 . . . 255 in Matlab) we have to
specify them explicitly in the second parameter. Giving an empty vector [ ] is a handy
shortcut to giving the minimum and maximum of the matrix values. (See help imshow

for a longer explanation.) (Alternatively use the provided function showim which does the
scaling itself.)

You may notice that you cannot see anything more than a white dot in the middle, this is because
the peak in the middle is so strong that the lower values are almost black in comparison. A
typical solution is to use a logarithmic scale, i.e. just take the log of all values. Try doing this!

If you compare the two Fourier spectra (i.e. from the original image and from the image with
the noise), you should notice a difference. It might be difficult to see initially since the centre
peak is so strong.

Hint: the Fourier of a cosine-function is two impulses with equal distance from the origin (one
positive, the other negative).

The differences between the Fourier spectra of the images must be because of the noise. Con-
sidering this, how might one remove the noise by filtering in the Fourier-domain?
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2. Constructing filters in the frequency domain

The purpose is now to blur the image car.png by low-pass filtering. We will try two different
filters: the ideal lowpass filter (ILPF) and a Gaussian lowpass filter (GLPF).

Start by getting the size of the image P ×Q if the image is in matrix I:

[Q,P] = size(I)

You should have Q = 224, P = 400. Again because Matlab uses matrix convention, i.e. rows ×
columns, they are in the oppsite order of the typical width × height, i.e. the image is of size
400× 224 in this case.

Next we need to create a matrix D with the distance values from the centre evaluated at each
point. This can be done using the equation (from Eq. 4.8-2 in the course book):

D(u, v) =
[
(u− P/2)2 + (v −Q/2)2

]1/2

In Matlab:

[u,v] = meshgrid(0:P-1,0:Q-1);

D=((u-P/2).^2 + (v-Q/2).^2).^0.5;

The matrix D should now be zero in the middle and have increasing values with increasing
distance from the middle. You can visualise the matrix for example by imshow(D,[ ]) or show
a 3D version by mesh(D). If Matlab is slow with mesh, it might be because the matrix is quite
big. You can sample only every five element of the matrix in the mesh like this:

mesh(D(1:5:end,1:5:end))

The 3D mesh can be rotated with the image tools in Matlab to see from different angles.

Now the ideal lowpass filter (Eq. 4.8-1):

H(u, v) =

{
1 if D(u, v) ≤ D0

0 if D(u, v) > D0

can be easily generated, for example for D0 = 30:

D0=30

H_ideal = double(D<=D0);

Visualise the filter again using both imshow and mesh.

Do the same for the Gaussian lowpass filter (Eq. 4.8-6).

H(u, v) = exp

(

−D
2(u, v)

2D2
0

)

.

In Matlab:

H_gauss = exp(-(D.^2)./(2*D0^2));

And visualise it in the same way. How do the filters differ in the frequency (Fourier) domain?
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3. Applying the filters

Now Fourier transform the image car.png and shift it so that the origin is in the centre of the
image. (This was done already in section 1.) Applying a filter in the frequency domain is now
simply a matter of multiplying each element of the matrices:

G_ideal=H_ideal.*F_shift;

To display the transformed image, we need to first reverse the shifting using ifftshift, then
do the inverse Fourier transform ifft2 back to the spatial (image) domain:

g_ideal=real(ifft2(ifftshift(G_ideal)));

Just to be safe we also take the real part only – due to rounding errors some imaginary parts
might still be left. The image can now be plotted as normally. Do you notice any problems with
the image?

Try the same with the Gaussian filter. Can you see any difference? If so, why?

Hint: in the same way as with the transformed images you can also translate the filter matrices
(H ideal and H gauss) to the image domain with the inverse transform and display them using
imshow or mesh.

4. Remove periodic noise

Now, since we have learned how to construct filters in the Fourier domain, we can try to fix the
periodic noise in section 1 from noisycar.png. What kind of filter would be ideal for this case?
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T-61.5100 Digital image processing, Exercise 5, Oct 29, 2013

Image enhancement in the frequency domain

1. Suppose that you are given a set of images generated by an experiment dealing with the
analysis of stellar events. Each image contains a set of bright, widely scattered dots corre-
sponding to stars in a sparsely occupied section of the universe. The problem is that the
stars are barely visible, owing to superimposed illumination resulting from atmospheric
dispersion. If these images are modeled as the product of a constant illumination com-
ponent with a set of impulses, give an enhancement procedure based on homomorphic
filtering designed to bring out the image components due to the stars themselves.

2.demo Investigate what the Butterworth low-pass filters look like in the spatial domain. Let the
cutoff frequency be D0 = N/6. Generate the spatial masks of size 3× 3 and 5× 5 of order
n = 1 and n = 2.

Image restoration

3.demo During acquisition, an image undergoes uniform linear motion in the vertical direction for
a time T1. The direction of motion then switches to the horizontal direction for a time
interval T2. Assuming that the time it takes the image to change directions is negligible,
and the shutter opening and closing times are negligible also, give an expression for the
blurring function, H(u, v).

4.demo Cannon [1974] suggested the power spectrum equalization filter R(u, v) based on the
premise of forcing the power spectrum of the restored image to equal the power spec-
trum of the original image:

Sf̂ (u, v) = |R(u, v)|2Sg(u, v) = Sf (u, v).

Find |R(u, v)|, the magnitude response of the restoration filter.

5. Find magnitude responses for the

(a) inverse filter

(b) power spectrum equalization filter

(c) Wiener filter

in the points (u, v) of frequency domain, where signal power spectrum Sf (u, v), noise
Sn(u, v) power spectrum and magnitude response of point spread function (PSF) H(u, v)
have the following values:

|H(u, v)| Sf (u, v) Sn(u, v)
H 0 N • signal power zero
H S 0 • no noise
1.0 3000.0 0.01 • close to uv-origin
0.7 0.7 0.01 • low frequencies
0.01 0.005 0.01 • high frequencies



Exercise 5/13 71

6. (a) Show that the application of a 3×3-sized local mean mask can be replaced by 1×3 and
3×1 masks applied sequentially. Compare the amount of additions that are needed
in both cases.

(b) Compare the amounts of additions and multiplications that are needed in a general
case, where a N×N mask is replaced by 1×N and N×1 masks and masks’ coefficients
are not equal to ones.

(c) Depict the 3×3 Sobel gradient masks. Show for one of the Sobel masks that it can
be separated as above into two one-dimensional masks.

(d) Is it possible to separate the 3×3 discrete Laplace-operator?
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T-61.5100 Digital image processing, Exercise 5, Oct 29, 2013

1.

Let us assume that there is only a single star that is modeled as an impulse δ(x − x0, y − y0)
where (x0, y0) are the coordinates of the star. A discrete impulse is defined as:

δ(x− x0, y − y0) =

{
1 when (x, y) = (x0, y0)
0 otherwise

K is the illumination and ǫ the reflectance of the sky. Then the image model is

f(x, y) = K(δ(x− x0, y − y0) + ǫ)

Homomorphic filtering:

f(x, y) → ln → F → H(u, v) → F−1 → exp → g(x, y)

So, first we take the logarithm of the image:

ln f(x, y) = lnK + ln(δ(x− x0, y − y0) + ǫ) = lnK + ln ǫ+ δ(x− x0, y − y0)(ln(1 + ǫ)− ln ǫ).

Then we Fourier transform:

H(u, v) = F{ln f(x, y)} = F{lnKǫ}+ F{δ(x− x0, y − y0)(ln(1 + ǫ)− ln ǫ)}

= C1δ(u, v) + C2e
−j2π(ux0

M
+

vy0
N

),

where C1 = lnKǫ and C2 = ln(1 + ǫ)− ln ǫ.

From this result, it is evident that the contribution of illumination is an impulse at the origin
of the frequency plane. It can be cancelled by high-pass filtering the image (e.g. using a notch
filter). Extension of this development to multiple impulses (stars) is straightforward. The filter
will be the same.
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2.

In principle the filter H(u, v) corresponds to a mask h(x, y) of the same size as the image
(e.g. N ×N). However, this would be very inefficient, so we try to generate a smaller m ×m-
sized spatial mask ĥ(x, y) instead, so that it’s corresponding filter Ĥ(u, v) is as close to H(u, v)
as possible in the sense of the squared error.

Let ĥ be the mask ordered as an m2-sized vector, i.e. a vector with one column of m2 rows,

ĥ =













ĥ(0, 0)
...

ĥ(0, N − 1)

ĥ(1, 0)
...

ĥ(N − 1, N − 1)













The Fourier transform is linear. Let the complex transformation matrix be F, and the trans-
formed mask (N2-sized complex vector) be Ĥ:

Ĥ = Fĥ.

Now we want Ĥ to be as close as possible to the Butterworth filter H (also N2-sized complex
vector). In effect we want to minimize the error function,

E(ĥ) = ‖Ĥ−H‖2 = ‖Fĥ−H‖2.
The minimum can be found where the partial derivative vanishes:

∂E(ĥ)
∂ĥ

= 0.

Since for any matrix, ‖A‖2 = ATA,

E(ĥ) = ‖Fĥ−H‖2

= (Fĥ−H)T (Fĥ−H)

= (ĥTFT −HT )(Fĥ−H)

= ĥTFTFĥ− ĥTFTH−HTFĥ+HTH

= ĥTFTFĥ− 2ĥTFTH+HTH

∂E(ĥ)
∂ĥ

= 2FTFĥ− 2FTH

= 2FT (Fĥ−H)

The derivative is zero when Fĥ−H = 0, i.e.

Fĥ = H

FTFĥ = FTH

ĥ = (FTF)−1FTH

ĥ = F†H,

where F† = (FTF)−1FT is the pseudo-inverse of F.

The Matlab-code spatial.m that generates the spatial mask for the Butterworth filter will be
published on the course Noppa page.
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Results:

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0404 0.0736 0.0404

0.0736 0.2075 0.0736

0.0404 0.0736 0.0404

0.0576 0.0800 0.0576

0.0800 0.1196 0.0800

0.0576 0.0800 0.0576

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0067 0.0130 0.0156 0.0130 0.0067

0.0130 0.0404 0.0736 0.0404 0.0130

0.0156 0.0736 0.2075 0.0736 0.0156

0.0130 0.0404 0.0736 0.0404 0.0130

0.0067 0.0130 0.0156 0.0130 0.0067

0.0107 0.0244 0.0318 0.0244 0.0107

0.0244 0.0576 0.0800 0.0576 0.0244

0.0318 0.0800 0.1196 0.0800 0.0318

0.0244 0.0576 0.0800 0.0576 0.0244

0.0107 0.0244 0.0318 0.0244 0.0107

Solid line: the frequency response of the Butterworth filter.

Dotted line: the frequency response of the spatial mask.

Left column: n = 1. Right column: n = 2.

Notice that in both cases the 3×3 mask is included in the 5×5 mask. This is a general property
that comes from the orthogonality. If the mask size is increased, the obtained frequency response
approaches the frequency response of the Butterworth filter.
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3.

Because the motion in the x- and y-directions are independent (motion is in the vertical (x)
direction only at first, and then switching to motion only in the horizontal (y) direction) this
problem can be solved in two steps. The first step is identical to the analysis that resulted in
Eq. (5.6-10), which gives the blurring function due to vertical motion only:

H1(u, v) =
T1
πua

sin(πua)e−jπua,

where we are representing linear motion by the equation x0(t) = at/T1. The function H1(u, v)
would give us a blurred image in the vertical direction. That blurred image is the image that
would then start moving in the horizontal direction and to which horizontal blurring would be
applied. This is nothing more than applying a second filter with transfer function

H2(u, v) =
T2
πvb

sin(πvb)e−jπvb,

where we assumed the form y0(t) = bt/T2 for motion in the y-direction. Therefore, the overall
blurring transfer function is given by the product of these two functions

H(u, v) =
T1T2

(πua)(πvb)
sin(πua)sin(πvb)e−jπuae−jπvb,

and the overall blurred image is

g(x, y) = F−1[H(u, v)F (u, v)]

where F (u, v) is the Fourier transform of the input image.

4.

The power spectrum of the restored image f̂ is given by

Sf̂ (u, v) = |R(u, v)|2Sg(u, v).

The restoration filter should force the power spectrum of the restored image to equal the power
spectrum of the original image:

Sf̂ (u, v) = Sf (u, v).

We can easily solve |R(u, v)| from the first equation: |R(u, v)| =
√
Sf (u, v)/Sg(u, v), but we need

to calculate Sg(u, v) first. Let’s drop the indexing (u, v) for brevity, and use the degradation
model: G = HF +N :

Sg = |G|2 = G∗G = (HF +N)∗(HF +N) = (F ∗H∗ +N∗)(HF +N)

= F ∗H∗HF + F ∗H∗N +N∗HF +N∗N

= |H|2|F |2 + |N |2 +H∗(✘✘✘❳❳❳F ∗N) +H(✘✘✘❳❳❳N∗F )

= |H|2Sf + Sη

where the cross-terms vanish because the image and the noise are uncorrelated (i.e. F ∗N = 0.
Sη(u, v) is the power spectrum of the noise. We can now insert this into the equation for |R(u, v)|:

|R(u, v)| =
√

Sf (u, v)

|H(u, v)|2Sf (u, v) + Sη(u, v)
=

√
√
√
√

1

|H(u, v)|2 + Sη(u,v)
Sf (u,v)
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5.

Filter Expression Magnitude response

Inverse F̂ (u, v) = G(u,v)
H(u,v) |HINV(u, v)| = 1

|H(u,v)|

PSE (exer. 4) - |HPSE(u, v)| =
√

1

|H(u,v)|2+Sη(u,v)

Sf (u,v)

Wiener F̂ (u, v) =

[

H⋆(u,v)

|H(u,v)|2+Sη(u,v)

Sf (u,v)

]

G(u, v) |HWIENER(u, v)| = |H(u,v)|
|H(u,v)|2+Sη(u,v)

Sf (u,v)

Let us substitute the given values into these equations:

|H(u, v)| Sf (u, v) Sη(u, v) |HINV(u, v)| |HPSE(u, v)| |HWIENER(u, v)|
H 0 N 1/H 0 0

H S 0 1/H 1/H 1/H

1.0 3000 0.01 1.0 ≈ 1.0 ≈ 1.0

0.7 0.7 0.01 ≈ 1.43 ≈ 1.41 ≈ 1.38

0.01 0.005 0.01 100.0 ≈ 0.71 ≈ 0.005

6.

a) The 3×3-sized local mean mask is (scaling is omitted for simplicity)

1 1 1

1 1 1

1 1 1

The part of an image that falls under the mask is given as

a b c

d e f

g h i

The mask response in position e is e∗ = 1 · a+1 · b+1 · c+1 · d+1 · e+1 · f +1 · g+1 · h+1 · i
= a+ b+ c+d+e+f +g+h+ i. If we are using the mask 1 1 1 , the responses in positions
b, e, and h are b′ = a+ b+ c, e′ = d+ e+ f , and h′ = g + h+ i. When we then apply the mask
1 1 1 T , the response in position e is e′′ = b′+e′+h′ = (a+b+c)+(d+e+f)+(g+h+i) = e∗.

With a 3×3 mask we have 8 additions for each mask position. With a 1×3 mask we have 2
additions for each position. Thus using 1×3 and 3×1 masks takes a total of 4 additions for each
position which is half the number of additions needed with a 3×3 mask.

b) In a general case we have N2−1 additions and N2 multiplications with a N×N mask. Using
the separate masks takes 2(N − 1) additions and 2N multiplications.
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c) The 3×3 Sobel gradient masks are

Gx =

-1 -2 -1

0 0 0

1 2 1

Gy =

-1 0 1

-2 0 2

-1 0 1

Gx measures horizontal edges and Gy vertical edges.

Let us use the Gx mask. The response in position e is e∗ = (g+2h+i)−(a+2b+c). With a one-
dimensional difference mask −1 0 1 T the responses in positions d, e, and f are d′ = g− a,

e′ = h− b, and f ′ = i− c. When we then apply the mask 1 2 1 the response in position e
is e′′ = (g − a) + 2(h− b) + (i− c) = (g + 2h+ i)− (a+ 2b+ c) = e∗. Gy mask can be used in
the same way.

d) The 3×3 discrete Laplace-operator is

0 −1 0

−1 4 −1

0 −1 0

In order to separate the 3×3 discrete Laplace-operator, we must find two 3×1 vectors
a b c T and d e f T whose outer product

ad bd cd

ae be ce

af bf cf

were the Laplace mask. For example, ad = 0. If we choose a = 0 then also ae = 0 which is not
valid. If d = 0 then bd = 0 which is also not valid. So, we cannot separate the mask into two
one-dimensional vectors.
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T-61.5100 Digital image processing, Exercise 6, Nov 5, 2013

Morphological image processing

1. How can the given object be cleaned up by using morphological operations? (The outline
of the “box” in the image should be closed.)

0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 0 0

0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0

2. (a)demo Give a morphological algorithm for converting an 8-connected binary boundary to an
m-connected boundary. You may assume that the boundary is fully connected and
that it is one pixel thick.

(b) Does the operation of your algorithm require more than one iteration with each
structuring element? Explain your reasoning.

(c) Is the performance of your algorithm independent of the order in which the structuring
elements are applied? If your answer is yes, prove it; otherwise give an example
that illustrates the dependence of your procedure on the order of application of the
structuring elements.

3. Give the structuring element and morphological operation(s) that produced each of the
results shown in images (a) through (d). Show the origin of each structuring element
clearly. The dashed lines show the boundary of the original set and are included only for
reference. Note that in (d) all corners are rounded.

(a) (b) (c) (d)

4. Sketch or explain what the sets C,D,E, F would
look like when the following sequence of opera-
tions is applied to a given image: C = A ⊖ B;
D = C ⊕ B; E = D ⊕ B; F = E ⊖ B, where
B is the structuring element. The initial set A
consists of all the image components shown in
white. Note that this sequence of operations is
simply the opening of A by B, followed by the
closing of that opening by B. You may assume
that B is round and just large enough to enclose
each of the noise components.
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1.

One solution is to use the morphological operation called “closing”. Closing is defined as dilation
followed by erosion:

A •B = (A⊕B)⊖B.

Dilation of A by B is the set of all points z such that B̂ (B’s reflection about its origin) and A
overlap by at least one element,

A⊕B = {z|[(B̂)z ∩A] ⊆ A}.

Erosion of A by B is the set of all points z such that B is contained in A,

A⊖B = {z|(B)z ⊆ A}.

The structuring element B that we choose for this exercise is

✁❆• •
• •

The origin is marked with the cross. B’s reflection about its origin, is then called B̂:

• •
• ✁❆•

The result of dilation of the image A by B is

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 0

0 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0

The previous image after erosion is

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0

0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0
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2.

a) With reference to the discussion in Section 2.5.2, m-connectivity is used to avoid multiple
paths that are inherent in 8-connectivity. In one-pixel-thick, fully connected boundaries, these
multiple paths manifest themselves in the four basic patterns shown here:

The solution to the problem is to use the hit-or-miss transform to detect the patterns and
then to change the center pixel to 0, thus eliminating the multiple paths. A basic sequence of
morphological steps to accomplish this is as follows:

X1 = A⊛B1

Y1 = A ∩Xc
1

X2 = Y1 ⊛B2

Y2 = Y1 ∩Xc
2

X3 = Y2 ⊛B3

Y3 = Y2 ∩Xc
3

X4 = Y3 ⊛B4

Y4 = Y3 ∩Xc
4

where A is the input image containing the boundary.

b) Only one pass is required. Application of the hit-or-miss transform using a given Bi finds
all instances of occurrence of the pattern described by that structuring element.

c) The order does matter. For example, consider the sequence of points shown in next figure
and assume that we are traveling from left to right. If B1 is applied first, point a will be deleted
and point b will remain after application of all other structuring elements. If, on the other hand,
B3 is applied first, point b will be deleted and point a will remain. Thus, we would end up with
different (but of course, acceptable) m-paths.
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3.
(a) Erode by a small rectangular structuring element. Note that the origin of the element is

in the lower right corner (shown by small black dot.)

(b) Erode the original set with the tall rectangular structuring element shown.

(c) First erode the image shown down to thin lines using the rectangular structuring element.
Then dilate this result with the circular structuring element.

(d) First dilate the original set with the large disk shown. Then erode the resulting image
with a disk of half the diameter of the disk used for dilation.

Below are zoomed in images of how the dilation and erosion of an angle occurs with a circular
element. Again, the dashed line is the original border and the new border is filled.
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erosion with a circular structuring element
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4.

The solution is shown in the next figure. Although the images shown could be sketched by hand,
they were done in MATLAB. The structuring element was chosen to be just large enough to
encompass all the noise elements, as given in the problem statement.

The images shown in the figure are: (a) erosion of the original, (b) dilation of the result, (c)
another dilation, and finally (d) an erosion.

The first erosion (image (a)) should take out all noise elements that do not touch the rectangle,
should increase the size of the noise elements completely contained within the rectangle, and
should decrease the size of the rectangle. If worked by hand, one might not realise that some
imperfections are left along the boundary of the object. In this case, this is not an important
issue because it is scale-dependent, and nothing is said in the problem statement about this.

The first dilation (image (b)) should shrink the noise components that were increased in erosion,
should increase the size of the rectangle, and should round the corners.

The next dilation (c) should eliminate the internal noise components completely and further
increase the size of the rectangle.

The final erosion (image (d)) should then decrease the size of the rectangle back to the original
size. Note, however, the rounded corners!
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Wavelets

1. Construct a fully populated approximation pyramid and corresponding prediction residual
pyramid for the image

F =







1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16






.

Use 2× 2 block neighbourhood averaging for the approximation filter and omit the inter-
polation filter (see Figure 7.2 in the textbook).

2.demo Compute the one-dimensional discrete wavelet transform (DWT) of function f(0) = 1,
f(1) = 4, f(2) = −3, and f(3) = 0 with starting scale j0 = 1. Then compute the inverse
transform.

3. Show how ϕ1,0(x) and ϕ1,1(x) can be formed using ϕ0,0(x) and ψ0,0(x).

4.demo From ϕ0,0(x), ψ0,0(x), ψ1,0(x) and ψ1,1(x) form the transform matrix H that can be used
in multiresolution processing of a 4× 4-sized image.

5. By using the matrix from the previous exercise, calculate the transform T = HFHT ,
where the analysed image is

F =







0 0 0 0
1 1 1 0
1 1 1 0
1 1 1 0






.

6. Compute the Haar transform T = HFHT of the 2× 2 image

F =

[
3 −1
6 2

]

.

Also compute the inverse Haar transform F = HTTH of the obtained result.

7. Draw wavelet ψ3,3(x) for the Haar wavelet function. Write an expression for ψ3,3(x) in
terms of the Haar scaling function.
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1.

A mean approximation pyramid is formed by forming 2 × 2 block averages. Since the starting
image is of size 4 × 4, J = 2, and F is placed at level 2 of the mean approximation pyramid.
The level 1 and level 0 approximations are achieved by taking 2× 2 block averages over F and
subsampling. The completed mean approximation pyramid is







1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16







[
3.5 5.5
11.5 13.5

]
[
8.5
]
.

Since no interpolation filtering is specified, pixel replication is used in the generation of the
mean prediction residual pyramid levels. Level 0 of the prediction residual pyramid is the lowest
resolution approximation, [8.5]. The level 2 prediction residual is obtained by upsampling the
level 1 approximation and subtracting it from the level 2 (original image). Thus, we get







1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16






−







3.5 3.5 5.5 5.5
3.5 3.5 5.5 5.5
11.5 11.5 13.5 13.5
11.5 11.5 13.5 13.5






=







−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5
−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5






.

Similarly, the level 1 prediction residual is obtained by upsampling the level 0 approximation
and subtracting it from the level 1 approximation.

[
3.5 5.5
11.5 13.5

]

−
[
8.5 8.5
8.5 8.5

]

=

[
−5 −3
3 5

]

.

The mean prediction residual pyramid is therefore







−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5
−2.5 −1.5 −2.5 −1.5
1.5 2.5 1.5 2.5







[
−5 −3
3 5

]
[
8.5
]
.
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2.

The DWT transform pair is given as

Wϕ(j0, k) =
1√
M

∑

x

f(x)ϕj0,k(x)

Wψ(j, k) =
1√
M

∑

x

f(x)ψj,k(x),

and the inverse transform as

f(x) =
1√
M

∑

k

Wϕ(j0, k)ϕj0,k(x) +
1√
M

∞∑

j=j0

∑

k

Wψ(j, k)ψj,k(x).

Now M = 4, J = 2, and j0 = 1, so the summations in the above formulas are performed over
x = 0, 1, 2, 3, j = 1, and k = 0, 1. Using Haar functions and assuming that they are distributed
over the range of the input sequence, we get for the scaling functions

ϕ1,0(x) =
√
2ϕ(2x)

ϕ1,1(x) =
√
2ϕ(2x− 1),

where ϕ(x) =

{

1 0 ≤ x < 1

0 otherwise

and below is shown the three functions with the four sampling points, i.e. from where we should
read values for x = 0, 1, 2, 3:

ϕ0,0(x) = ϕ(x) ϕ1,0(x) ϕ1,1(x)

22

1

1

1 1
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Similarly for the wavelet functions

ψ1,0(x) =
√
2ψ(2x)

ψ1,1(x) =
√
2ψ(2x− 1),

where ψ(x) =







1 0 ≤ x < 0.5

−1 0.5 ≤ x < 1

0 otherwise

and the functions with the four sampling points:

ψ0,0(x) = ϕ(x) ψ1,0(x) ψ1,1(x)

2 2

1

1

−1

1

−  2 −  2

1

Now we can calculate the transform,

Wϕ(1, 0) =
1

2
[f(0)ϕ1,0(0) + f(1)ϕ1,0(1) + f(2)ϕ1,0(2) + f(3)ϕ1,0(3)]

=
1

2
[(1)(

√
2) + (4)(

√
2) + (−3)(0) + (0)(0)] =

5
√
2

2

Wϕ(1, 1) =
1

2
[f(0)ϕ1,1(0) + f(1)ϕ1,1(1) + f(2)ϕ1,1(2) + f(3)ϕ1,1(3)]

=
1

2
[(1)(0) + (4)(0) + (−3)(

√
2) + (0)(

√
2)] =

−3
√
2

2

Wψ(1, 0) =
1

2
[f(0)ψ1,0(0) + f(1)ψ1,0(1) + f(2)ψ1,0(2) + f(3)ψ1,0(3)]

=
1

2
[(1)(

√
2) + (4)(−

√
2) + (−3)(0) + (0)(0)] =

−3
√
2

2

Wψ(1, 1) =
1

2
[f(0)ψ1,1(0) + f(1)ψ1,1(1) + f(2)ψ1,1(2) + f(3)ψ1,1(3)]

=
1

2
[(1)(0) + (4)(0) + (−3)(

√
2) + (0)(−

√
2)] =

−3
√
2

2

so that the DWT is 5
√
2/2, −3

√
2/2, −3

√
2/2, −3

√
2/2.
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The inverse transform is then calculated:

f(x) =
1

2
[Wϕ(1, 0)ϕ1,0(x) +Wϕ(1, 1)ϕ1,1(x) +Wψ(1, 0)ψ1,0(x) +Wψ(1, 1)ψ1,1(x)],

so we get

f(0) =

√
2

4
[(5)(

√
2) + (−3)(0) + (−3)(

√
2) + (−3)(0)] =

2(
√
2)2

4
= 1

f(1) =

√
2

4
[(5)(

√
2) + (−3)(0) + (−3)(−

√
2) + (−3)(0)] =

8(
√
2)2

4
= 4

f(2) =

√
2

4
[(5)(0) + (−3)(

√
2) + (−3)(0) + (−3)(

√
2)] =

−6(
√
2)2

4
= −3

f(3) =

√
2

4
[(5)(0) + (−3)(

√
2) + (−3)(0) + (−3)(−

√
2)] =

0(
√
2)2

4
= 0
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3.

How can we express ϕ1,0(x) as a weighted sum of ϕ0,0(x) and ψ0,0(x), i.e. what is a and b in

ϕ1,0(x) = a · ϕ0,0(x) + b · ψ0,0(x), or

2

1

= a
1

1

+ b
1

1

−1

?

The answer is a = b =
√
2
2 . Let’s check some points:

ϕ1,0(0) =

√
2

2
ϕ0,0(0) +

√
2

2
ψ0,0(0) =

√
2

2
1 +

√
2

2
1 =

√
2,

ϕ1,0(
1

2
) =

√
2

2
ϕ0,0(

1

2
) +

√
2

2
ψ0,0(

1

2
) =

√
2

2
1 +

√
2

2
(−1) = 0,

ϕ1,0(1) =

√
2

2
ϕ0,0(1) +

√
2

2
ψ0,0(1) =

√
2

2
0 +

√
2

2
0 = 0.

Now, what about ϕ1,1(x) similarly as a weighted sum,

ϕ1,1(x) = a · ϕ0,0(x) + b · ψ0,0(x), or

2

1

= a
1

1

+ b
1

1

−1

?

The answer is a =
√
2
2 , b = −

√
2
2 . Some checks:

ϕ1,0(0) =

√
2

2
ϕ0,0(0)−

√
2

2
ψ0,0(0) =

√
2

2
1−

√
2

2
1 = 0,

ϕ1,0(
1

2
) =

√
2

2
ϕ0,0(

1

2
)−

√
2

2
ψ0,0(

1

2
) =

√
2

2
1−

√
2

2
(−1) =

√
2,

ϕ1,0(1) =

√
2

2
ϕ0,0(1)−

√
2

2
ψ0,0(1) =

√
2

2
0−

√
2

2
0 = 0.
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4.

The transform matrix H for a 4× 4 image is formed from sampling four points of each function,

ϕ0,0(x) ψ0,0(x) ψ1,0(x) ψ1,1(x),

1

1

1

1

−1

2

1

−  2

2

−  2

1

.

H =
1

2







1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√
2 −

√
2







5.

Finally we can calculate the transform matrix T by inserting H and the given F into the
equation:

T = HFHT

=

(
1

2

)2







1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√
2 −

√
2













0 0 0 0
1 1 1 0
1 1 1 0
1 1 1 0













1 1
√
2 0

1 1 −
√
2 0

1 −1 0
√
2

1 −1 0 −
√
2







=
1

4







3 3 3 0
−1 −1 −1 0

−
√
2 −

√
2 −

√
2 0

0 0 0 0













1 1
√
2 0

1 1 −
√
2 0

1 −1 0
√
2

1 −1 0 −
√
2







=
1

4







9 3 0 3
√
2

−3 −1 0 −
√
2

−3
√
2 −

√
2 0 −2

0 0 0 0






.
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6.

The 2× 2 Haar transformation matrix is

H2 =
1√
2

[
1 1
1 −1

]

.

Then we get

T = HFHT = (
1√
2
)2
[
1 1
1 −1

] [
3 −1
6 2

] [
1 1
1 −1

]

=

[
5 4
−3 0

]

.

Next we compute the inverse Haar transform. First, the transpose of the 2 × 2 Haar transfor-
mation matrix is computed:

HT =
1√
2

[
1 1
1 −1

]

= H.

Then,

F = HTTH = (
1√
2
)2
[
1 1
1 −1

] [
5 4
−3 0

] [
1 1
1 −1

]

=

[
3 −1
6 2

]

.

7.

The set {ψj,k(x)} of wavelets is defined as

ψj,k(x) = 2j/2ψ(2jx− k).

From this definition we obtain

ψ3,3(x) = 23/2ψ(23x− 3) = 2
√
2ψ(8x− 3).

Using the Haar wavelet function definition,

ψ(x) =







1 0 ≤ x < 0.5

−1 0.5 ≤ x < 1

0 elsewhere,

we obtain the following plot.

To express ψ3,3(x) as a function of scaling functions, we notice that any wavelet function can be
expressed as a sum of shifted, double-resolution scaling functions,

ψ(x) =
∑

n

hψ(n)
√
2ϕ(2x− n).
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Employing this result and the Haar wavelet vector defined in the textbook in Example 7.6
(hψ(0) = 1/

√
2 and hψ(1) = −1/

√
2), we get

ψ(8x−3) =
∑

n

hψ(n)
√
2ϕ(2(8x−3)−n) = 1√

2

√
2ϕ(16x−6)+

−1√
2

√
2ϕ(16x−7) = ϕ(16x−6)−ϕ(16x−7).

Then, since ψ3,3 = 2
√
2ψ(8x− 3),

ψ3,3 = 2
√
2ψ(8x− 3) = 2

√
2ϕ(16x− 6)− 2

√
2ϕ(16x− 7).



92 Exercise 8/13

T-61.5100 Digital image processing, Exercise 8, Nov 12, 2013

Wavelets and multiresolution processing

This computer exercise assumes that you already know the basics of image processing in Matlab
or Octave. E.g. opening an image (imread) and showing it on the screen (imshow or showim

provided with the images). If you have forgotten something you can always check back to the
first two computer exercises (exercise no 2 and no 4 on the course Noppa page).

1. Image pyramids

Open the image livingroom.png (which displays a very “modern” living room). The task is to
create the first four levels of an image pyramid starting with the full 256 × 256 and sampling
down three times. See the system scheme in Fig. 7.2 (included as fig7 2.png in ZIP package).
For the approximation we use 2× 2 neighbourhood averaging, i.e. convolve (conv2) with a 2× 2
averaging mask. For the prediction residual you can simply use the difference between the
original image and the averaged one (i.e. no need to first downsample and then upsample).

For repetitive actions you can use a for loop in Matlab:

for i=1:N

...

end

where i will loop over the values from 1 to N. Replace the “. . . ” with whatever should be done
for each value of i, i.e. i=1, i=2, and so on up to i=N.

A useful Matlab/Octave function in this case is downsample(X,2) which downsamples the matrix
X along each column, i.e. it removes every second row. For example:

1 2 3 4
//5 //6 //7 //8
9 10 11 12

///13 ///14 ///15 ///16

When you need to downsample along the rows instead you simply transpose the input and
output by using Matlabs transpose-operator (’) like this:

downsample(X’,2)’

Example:

1 //2 3 //4
5 //6 7 //8
9 ///10 11 ///12
13 ///14 15 ///16
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2. Two-dimensional discrete wavelet transform

There is a ready-made package in Matlab for wavelet processing, but it is not easy to understand
what it is doing “behind the scenes”. It is much more instructive and fun (?) to do it “by hand”!

You can try on any of the downloaded images (livingroom.png, cameraman.png, weird.png),
and try them all once you have finished your program. Look at the diagram in Fig.7.24 how to
do it (included as fig7 24.png in ZIP package).

We start with the simplest of wavelet functions, the Haar function. For the Haar function set
the following variables:

ld = [1 1]/sqrt(2);

hd = [-1 1]/sqrt(2);

The ld and hd are the familiar low-pass and high-pass filters that make up the Haar transform.
They are however order-reversed (due to the convolution) as is also indicated by the negative
indices in the DWT diagram.

Now just follow the scheme in the diagram. The ⋆hψ indicates convolution with the hd variable,
while ⋆hϕ indicates convolution with the ld. Remember that in the first step we are doing the
convolution and downsampling along the rows, i.e. every second column is removed after the
downsampling. In the second step we are working along the columns.

Just to get you going, here is how to do the first two steps in the diagram scheme. The top branch
does convolution between the input image and the high-pass filter hψ, and then downsampling
along the rows:

Ih = downsample(conv2(I, hd, ’same’)’,2)’;

The bottom branch does convolution with the low-pass filter hϕ and then downsampling:

Il = downsample(conv2(I, ld, ’same’)’,2)’;

Now you have to do the following steps yourself. Remember that the convolutions and down-
sampling should now be done along the columns!

After this plot the resulting one-scale decomposition, i.e. the four matrices Wϕ,W
H
ψ ,W

V
ψ and

WD
ψ . If you have done everything correctly the first one should be a smaller version of the

original (the approximation). The second should show horizontal details (such as vertical lines),
the third one vertical details, and the last one diagonal components (but this is hard to see).

The last step is just to reconstruct the image again from its wavelet components by doing the
inverse transform as in Fig. 7.24(c). This is now relatively easy, just “reverse” the thinking of
the forward transform. You will need the upsample(X,2) function which works as one would
expect. It inserts zeros along each column. The coefficients for the reconstruction Haar wavelet
are:

lr = [1 1]/sqrt(2);

hr = [1 -1]/sqrt(2);

Display the original image and the reconstructed image and compare them. If everything goes
well they should look the same.

If you have time you can try more complex wavelets, e.g. simply by changing the values of the
decomposition coefficients (ld, hd) and reconstruction coefficients (lr, hr). These can be easily
copied and pasted into your Matlab-code from the web page http://wavelets.pybytes.com/.
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T-61.5100 Digital image processing, Exercise 9, Nov 26, 2013

Image compression

1. An image has 8 grey scale values a1, . . . a8, whose probabilities are 0.6, 0.2, 0.08, 0.06, 0.02,
0.02, 0.01 and 0.01, respectively. Construct the Huffman code for this image, considering
the fixed grey scale values as the symbols. Calculate the entropy and compare it to
the average word length. Also calculate the efficiency and the compression ratio when
compared to the plain binary 3-bit code.

2.demo Devise an algorithm for decoding the following LZW encoded line:

39 39 126 126 256 258 260 259 257 126

Since the dictionary that was used during encoding is not available, the code book must
be reproduced as the output is decoded.

3. Show the bit planes for the following 4× 4 image in both direct binary code and in Gray
code. Only three bits are needed. Is there a significant difference between the results? If
so, why?

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

4. Predictive coding (Fig 8.41) for the grey level line

30 29 29 28 20 15 12 10 9 8 9 10 11 11 11 11 11

Create delta modulation code (DM), when α = 1 and error is coded using values ±2. Com-
pare required number of bits to corresponding lossless coding. What are the disadvantages
of DM?
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T-61.5100 Digital image processing, Exercise 9, Nov 24, 2013

1.

The Huffman code is constructed as follows. In the beginning, each symbol is its own “tree”
whose weight is the probability of the symbol. Then with each step we combine two “lightest”
trees (if there are several possibilities, we can choose any of them). The weight of the new tree
is the sum of the weights of the combined trees. This procedure is repeated until we end up
with only one tree. See Figure 1.

Now the binary code of each symbol is the path from the root node to the symbol node. The
top path is marked with ’0’ and to the bottom path with ’1’. So we obtain:

a1 = 0

a2 = 10

a3 = 111

a4 = 1100

a5 = 11011

a6 = 110100

a7 = 1101010

a8 = 1101011

The entropy is

H = −
8∑

i=1

P (ai) log2 P (ai) = −[0.6 log2 0.6 + · · ·+ 0.01 log2 0.01] = 1.80 bits/symbol

and the average word length is:

Lavg =
∑

k

l(rk)p(rk)

= 0.6 · 1 + 0.2 · 2 + 0.08 · 3 + 0.06 · 4 + 0.02 · 5 + 0.02 · 6 + 0.01 · 7 + 0.01 · 7
= 1.84.

It can be seen that the average word length of the Huffman code is quite close to the entropy,
which is the smallest code word length theoretically possible (Shannon’s first theorem). The
efficiency of the coding tells us how close we are to the theoretical minimum:

η =
nH

Lavg
=

1 · 1.80
1.84

≈ 0.98

In fact the Huffman code is optimal when we are restricted to encode one symbol at a time
(n = 1).

We can also calculate the compression ratio when moving from a representation of b = 3 bits to
one of on average b′ = 1.84 bits:

C =
b

b′
=

3

1.84
≈ 1.63.

and efficiency:

η =
nH

b
=

1 · 1.80
3

≈ 0.56.
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a
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7
0.01

a
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0.01
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0.6
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Figure 1: The Huffman tree in exercise 1.
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2.

The input to the LZW decoding algorithm is

39 39 126 126 256 258 260 259 257 126

The starting dictionary, to be consistent with the coding itself, contains 512 locations - with
the first 256 corresponding to grey level values 0 through 255. The decoding algorithm begins
by getting the first encoded value, outputting the corresponding value from the dictionary, and
setting the “recognized sequence” to the first value. For each additional encoded value, we

(1) output the dictionary entry for the pixel value(s),

(2) add a new dictionary entry whose content is the “recognized sequence” plus the first
element of the encoded value being processed, and

(3) set the “recognized sequence” to the encoded value being processed.

For the given input, the sequence of operations is:

Recognized Encoded Value Pixels Dict. Address Dict. Entry

39 39
39 39 39 256 39-39
39 126 126 257 39-126
126 126 126 258 126-126
126 256 39-39 259 126-39
256 258 126-126 260 39-39-126
258 260 39-39-126 261 126-126-39
260 259 126-39 262 39-39-126-126
259 257 39-126 263 126-39-39
257 126 126 264 39-126-126

Note, for example, in row 5 of the table that the new dictionary entry for location 259 is 126-39,
the concatenation of the currently recognized sequence, 126, and the first element of the encoded
value being processed - the 39 from the 39-39 entry in dictionary location 256. The output is
then read from the third column of the table to yield

39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126

where it is assumed that the decoder knows or is given the size of the image that was received.
Note that the dictionary is generated as the decoding is carried out.
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3.

First we need the direct binary and Gray codes. The Gray code can be generated from the
direct code by using the exclusive OR operator ⊕:

gm−1 = am−1

gi = ai ⊕ ai+1 0 ≤ i ≤ m− 2

decimal direct Gray

1 001 001
2 010 011
3 011 010
4 100 110

original image

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

direct code Gray code

bit 2

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

bit 1

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

bit 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0
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4.

The encoder:

image
Quantizer

Predictor

α

Compressed
.

−

Original
image

Symbol encoder
+

.
^

+
+

nfn

f

f

en enn Σ

Σ

The predictor:
f̂n = αḟn−1, α = 1

The quantizer:

ėn =

{
+2, when en ≥ 0
−2, when en < 0

The initial values are f0 = ḟ0 = 30.

fn 29 29 28 20 15 12 10 9 8 9 10 11 11 11 11 11

f̂n 30 28 30 28 26 24 22 20 18 16 14 12 10 12 10 12
e −1 +1 −2 −8 −11 −12 −12 −11 −10 −7 −4 −1 +1 −1 +1 −1
ė −2 +2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 +2 −2 +2 −2

ḟ 28 30 28 26 24 22 20 18 16 14 12 10 12 10 12 10

15

10

20

30

n
100 5

It can be seen from the above image that DM cannot follow rapid changes and it will produce
noise even in flat areas. The encoding will thus lose information.

In lossless or information preserving coding the error must be encoded exactly. If the predictor
is given as

f̂n = αfn−1 = fn−1

then the error is
en = fn − f̂n = fn − fn−1.

The largest change will determine the code length. In the example the largest change is 20−28 =
−8. So we need 4 bits to encode the change if it is assumed that the change can also happen in
another direction to +7. In DM only one bit is required.
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T-61.5100 Digital image processing, Exercise 10, Dec 5, 2013

Image compression

1. Where should the two reconstruction levels be placed for the optimal 2-level quantiser, if
the probability density function is

p(s) =







s+ 1, when −1 < s < 0,
1− s, when 0 ≤ s < 1,
0 otherwise

?

2.demo Inspect the encoder in Figure 8.21(a) in the textbook and ignore the symbol encoder part,
because it causes no error. Let x = (x1, x2, . . . , xn) be a subimage to be encoded. Trans-
formed image y will be formed from x so that first some linear orthonormed transformation
is applied (for example, Fourier transformation) y′ = Ax. After this, y will be replaced by
m first components of y′ and the result is given to the quantizer. Let the average quadratic
truncation error e2m = E

{
‖y − y′‖2

}
, the quantization error e2q = E

{
‖v − y‖2

}
, and the

total error e2T = E
{
‖v − y′‖2

}
be defined as where v is the output of the quantizer. Let

us assume that truncation and quantization errors are uncorrelated and thus additive.

(a) Show that the truncation error equals to the energy corresponding to the excluded
components of y′ e2m =

∑n
i=m+1E{y′i

2}
(b) Show that from the fact that truncation and quantization errors are uncorrelated

follows e2T = e2m + e2q

Image segmentation

3. Segment the image shown below using the split and merge procedure. Let Q(R)=TRUE
if all pixels in region R have the same intensity. Show the quadtree corresponding to your
segmentation.

N

N

4.demo Assume that the image consists of small, non-overlapping bubbles, which have a mean
grayscale value of m1 = 150 and a variance σ21 = 400. The background has mean m2 = 25
and variance σ22 = 625. The bubbles take up about 20 % of the image. Show a method
based on thresholding which separates the bubbles from the background.
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T-61.5100 Digital image processing, Exercise 10, Dec 5, 2013

1.

The probability density function of the input values was given as:

p(s) =







s+ 1, when − 1 < s < 0
1− s, when 0 ≤ s < 1
0, otherwise

p(s)

st1-t1

The optimal quantiser is created by setting the reconstruction levels (codebook values) ti so that
the mean square quantisation error e2q is minimised,

e2q = E
{
(s− ti)

2
}
=

L/2
∑

i=1

∫ si

si−1

(s− ti)
2p(s)ds, si =







0, i = 0
ti+ti+1

2 , i = 1, . . . L2 − 1

∞, i = L
2

.

Here we have L = 2, i.e. simple Delta modulation (DM) coding. Thus, s0 = 0, s1 = ∞, and
only a single level, t1, needs to be solved. Now, the mean square error reduces to just a single
integral:

e2q =

∫ ∞

0
(s− t1)

2p(s)ds.

To find the minimum of that we need to solve where the derivative with regard to t1 is zero (see
page 602 in the course book):

∫ ∞

0
(s− t1)p(s) ds = 0.

Let’s calculate the integral . . .

∫ ∞

0
(s− t1)p(s) ds =

∫ 1

0
(s− t1)(1− s) ds+

∫ ∞

1
(s− t1) · 0 =

∫ 1

0
(−s2 + (1 + t1)s− t1) ds =

−1

3
+

1 + t1
2

− t1

Then put that back into the equation, and solve for t1:

−1

3
+

1 + t1
2

− t1 = 0

t1 = 2(−1

3
+

1

2
) =

1

3
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2.

The encoder is the following:

TruncateTransform QuantizerSubimage

x =










x1
x2

...

xn










y′ =










y′1
y′2

...

y′n










y =








y1
y2
...
ym








v =








v1
v2
...
vm








a) The average truncation (mapping) error:

e2m = E
{
‖y − y′‖2

}
= E

{
n∑

i=1

(yi − y′i)
2

}

=
n∑

i=1

E
{
(yi − y′i)

2
}

=

m∑

i=1

E{(yi − y′i
︸ ︷︷ ︸

0

)2}+
n∑

i=m+1

E{(0− y′i
︸ ︷︷ ︸

(⋆)

)2} =

n∑

i=m+1

E
{

y′i
2
}

.

(⋆) The components that were left out were set as zeros.

b)

e2T = E
{
‖v − y′‖2

}
= E

{
‖(v − y) + (y − y′)‖2

}

= E
{
‖v − y‖2 + 2(v − y)T (y − y′) + ‖y − y′‖2

}

= E{‖v − y‖2}+ 2E{(v − y)T (y − y′)}+ E{‖y − y′‖2}

(v − y) is the quantization error and (y − y′) the truncation (mapping) error. These are now
uncorrelated, so E{(v − y)T (y − y′)} = 0. Thus

e2T = E{‖v − y‖2}+ E{‖y − y′‖2} = e2q + e2m
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3.

The split and merge algorithm is given in the course book (section 10.4.2), repeated here a bit
more clearly:

1. Initialise, R = R0 = the whole image as one region. Also make R as the single root node
of the quadtree.

2. Split any regionRi, for whichQ(Ri) = FALSE, in to four disjoint quadrantsRi1, Ri2, Ri3, Ri4.
Also add these four as child nodes to the Ri node in the quadtree.

3. Merge any adjacent regions Rj and Rk for which Q(Rj ∪Rk) = TRUE.

4. If no further splits or merges are possible, stop, otherwise go to step 2.

So, after the first split step (step 2.) the given image is divided into four regions:

RR

R

3

2

4

1 R

R

R1 R R R2 3 4

In step 3. there are no regions to merge, so we go back to step 2 . . .

Now each region is further split into four regions:

R R R R

R14

21 22

23 2413 RR R

11 12

R 34

R

R43R

R3231

4433

41R R42

R

R

R1 R R R2 3 4

R11 R R R

R R R R

R R R R

R RR R

12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
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Now (for step 3.) the border regions (R11, R12, . . . ) are all homogenous with the same intensity
and can therefore be merged into one region. The regions R14 and R23 are also homogenous
with the same gray-scale value and are merged as well:

R33

R41 R42

R34

R31

R4443R

R32

R R R R

RRR R

11 12

13 14

21 22

23 24

R

R1 R R R2 3 4

R11 R R R

R R R R

R R R R

R RR R

12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

However, the regions R32 and R41 are not homogeneous and must be divided further, so we go
back to step 2. again. Here is a zoomed-in image of the further division:

323

322321

R

R

414413

412411

324
R

R

RR

RR

R

R R R

21

141312

RR RR

R

432 RRR

11 R

RRR
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These regions are all homogeneous and can be merged (step 3.) into the two main regions from
the previous step, and we are done:
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4.

The probability distribution for gray levels in class i is

pi(z) =
1√
2πσi

exp

[

−(z − µi)
2

2σ2i

]

The probability p(z) for the gray level z in the image is the joint probability of the gray levels of
the bubbles and the background, p(z) = P1p1(z)+P2p2(z). Pi is the a priori probability for the
class i, i.e., the probability that a pixel belongs to class i without knowing its gray level value.
So,

p(z) = P1
1√
2πσ1

exp

[

−(z − µ1)
2

2σ21

]

+ P2
1√
2πσ2

exp

[

−(z − µ2)
2

2σ22

]

T

m2 m1

If the threshold is T , the probability for the error is (see Figure)

E(T ) = E1(T ) + E2(T ) = P1

∫ T

−∞
p1(z)dz + P2

∫ ∞

T
p2(z)dz

The error function is minimized by setting its derivative to zero, E′(T ) = P1p1(T )−P2p2(T ) = 0,
and we obtain

P1p1(T ) = P2p2(T ).

Because the exponentials may be tricky, we take the logarithm on both sides:

lnP1p1(T )− lnP2p2(T ) = ln
P1√
2πσ1

− (T − µ1)
2

2σ21
− ln

P2√
2πσ2

+
(T − µ2)

2

2σ22
= 0,

⇔ −σ22(T 2 − 2Tµ1 + µ21) + σ21(T
2 − 2Tµ2 + µ22) + 2σ21σ

2
2 ln

σ2P1

σ1P2
= 0

⇔ (σ21 − σ22)T
2 + 2(µ1σ

2
2 − µ2σ

2
1)T + σ21µ

2
2 − σ22µ

2
1 + 2σ21σ

2
2 ln

σ2P1

σ1P2
= 0.

When we now place the given values in the equation and observe also that P1/P2 = 20%/80% =
0.25, we obtain −225T 2 − 167500T − 1.4506 · 107 = 0, and the final result is T1 ≈ 100 and
T2 ≈ 644. The larger solution is due to the fact that the distribution of the bubbles is sharper
(the variance is smaller) and on the right it will go (again!) under the distribution of the
background.
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T-61.5100 Digital image processing, Exercise 11, Dec 10, 2013

Colour image processing

This computer exercise assumes that you already know the basics of image processing in Matlab
or Octave. E.g. opening an image (imread) and showing it on the screen (imshow). If you have
forgotten something you can always check back to the previous computer exercises (Exercise no
2, 4 and 8 on the course Noppa page).

1. Colour space representations

Open the image cbars.png and store into a matrix as usual:

I=double(imread(’cbars.png’))/255;

Display the image with the normal imshow method — you should see eight bars with different
colours against a grey background. Also check the size of the matrix I (use the size command).
What is unusual compared to the grey-scale images in previous exercises?

You can extract the ith component image by normal indexing: I(:,:,i). Display the three
component images as separate grey-scale images. Can you tell what colour representation Mat-
lab/Octave uses by default?

Next, convert the image into the HSI colour space (H=hue, S=saturation, I=intensity).

Hint: try the rgb2hsv function — Matlab/Octave uses the name HSV for the HSI colour
space (V=value). Display the three HSI component images, how do they compare to the RGB
components?

Now do the same operations with a more realistic colour image, motorcycle.png.1

2. Component-wise filtering

Many grey-scale image processing methods can be trivially generalised to colour images by
simply performing the processing on each colour component image separately.

Try blurring the images used in the previous task by using the same method as in Exercise 2
(imfilter) — but separately for each component image for red, green and blue. You can for
example use fspecial to generate a 5×5 averaging mask. To do filtering for a given component
i you can use indexing, for example:

J(:,:,i)=imfilter(I(:,:,i), f, ’same’);

where f is the filter mask. Display the resulting colour image.

Next try the same for the images represented in the HSI colour space. Remember to convert
back to RGB before displaying, by using the hsv2rgb function. What can you say about the
result? Does it make sense to blur all components for HSI? How can we produce a better result?

1This image is from the mirflickr database, taken by Sonietta46 on Flickr, distributed under the Creative

Commons Attribution License.
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3. Colour edge detection

Again, we’ll start with the image cbars.png, and then try the same processing with the more
realistic image motorcycle.png.

First, calculate the gradient vectors of the RGB component images separately:

∇R =

[
∂R

∂x
,
∂R

∂y

]

,∇G =

[
∂G

∂x
,
∂G

∂y

]

, and ∇B =

[
∂B

∂x
,
∂B

∂y

]

.

You can approximate the partial derivatives by convolving with the 3× 3 Sobel masks (see e.g.
help fspecial).

Then, show the gradient magnitudes for each component separately as grey-scale images, e.g.
for the R component:

‖∇R‖ =

√
∣
∣
∣
∣

∂R

∂x

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂R

∂y

∣
∣
∣
∣

2

.

Also, calculate and display the gradient sum by adding the gradient lengths for each component:

Gsum = ‖∇R‖+ ‖∇G‖+ ‖∇B‖

Compare with the separate colour components and the original image.

Is there another way to calculate the gradient of the 3D colour vector?


