
SmartSVN 6.6 Manual

syntevo GmbH, www.syntevo.com

2011

Contents

1 Introduction 9

2 Project Window 10
2.1 User Interface . 10
2.2 Perspectives . 10
2.3 Projects . 11
2.4 Directory Tree and File Table . 11

2.4.1 Directory States/Directory Tree . 11
2.4.2 File States/File Table . 11
2.4.3 State Filters . 12
2.4.4 Double Click . 12
2.4.5 Refresh . 13

2.5 Menus . 13
2.5.1 Project . 14
2.5.2 Edit . 14
2.5.3 View . 15
2.5.4 Modify . 16
2.5.5 Change Set . 17
2.5.6 Tag+Branch . 17
2.5.7 Query . 17
2.5.8 Properties . 18
2.5.9 Locks . 18
2.5.10 Repository . 19
2.5.11 Tools . 19
2.5.12 Window . 19
2.5.13 Help . 21

2.6 Changes view . 22

3 Commands 29
3.1 Check Out . 29
3.2 Import into Repository . 31
3.3 Updating . 32

3.3.1 Update . 32
3.3.2 Update More . 32
3.3.3 Update Exclude . 33

1

Contents

3.3.4 Switch . 33
3.3.5 Relocate . 33

3.4 Local Modifications . 33
3.4.1 Add . 33
3.4.2 Remove . 34
3.4.3 Ignore . 34
3.4.4 Delete Physically . 34
3.4.5 Create Directory . 35
3.4.6 Rename . 35
3.4.7 Move . 35
3.4.8 Detect Moves . 35
3.4.9 Copy . 36
3.4.10 Copy From Repository . 36
3.4.11 Copy To Repository . 37
3.4.12 Copy Within Repository . 37
3.4.13 Revert . 37
3.4.14 Mark Resolved . 38
3.4.15 Mark Replaced . 39
3.4.16 Clean Up . 39
3.4.17 Fix . 40

3.5 Commit . 41
3.6 Merging . 44

3.6.1 Merge . 45
3.6.2 Merge from 2 Sources . 46
3.6.3 Reintegrate Merge . 46
3.6.4 Apply Patch . 47

3.7 Properties . 47
3.7.1 Edit Properties . 47
3.7.2 Set or Delete Property . 47
3.7.3 MIME-Type . 48
3.7.4 EOL-Style . 48
3.7.5 Keyword Substitution . 49
3.7.6 Executable-Property . 49
3.7.7 Externals . 49
3.7.8 Ignore Patterns . 50
3.7.9 Bugtraq-Properties . 50
3.7.10 Merge Info . 51

3.8 Tags and Branches . 51
3.8.1 Tag-Branch-Layout . 51
3.8.2 Add Tag . 52
3.8.3 Tag Multiple Project Roots . 53
3.8.4 Add Branch . 53
3.8.5 Tag Browser . 53
3.8.6 Configure Layout . 54

3.9 Queries . 54

c© 2011 syntevo GmbH, www.syntevo.com 2

Contents

3.9.1 Show Changes . 54
3.9.2 Compare with HEAD . 54
3.9.3 Compare with HEAD . 54
3.9.4 Compare with Revision . 55
3.9.5 Compare 2 Files . 55
3.9.6 Compare Repository Directories . 55
3.9.7 Log . 55
3.9.8 Revision Graph . 56
3.9.9 Annotate . 57
3.9.10 Create Patch . 57
3.9.11 Create Patch between URLs . 58

3.10 Locks . 58
3.10.1 Scan Repository . 58
3.10.2 Lock . 59
3.10.3 Unlock . 59
3.10.4 Show Info . 59
3.10.5 Change ’Needs Lock’ . 59

3.11 Remote State . 59
3.11.1 Refresh Remote State . 60
3.11.2 Clear Remote State . 60

3.12 Change Sets . 61
3.12.1 Move to Change Set . 61
3.12.2 Move Up . 62
3.12.3 Move Down . 62
3.12.4 Delete . 62
3.12.5 Edit Properties . 62

3.13 Tools . 62
3.13.1 Export Backup . 63
3.13.2 Conflict Solver . 63
3.13.3 Canonicalize URLs . 63
3.13.4 Set Up Local Repository . 63

3.14 Common Features . 64
3.14.1 Recursive/Depth options . 64
3.14.2 Revision input fields . 64
3.14.3 Repository path input fields . 65
3.14.4 Tag input fields . 65
3.14.5 File/directory input fields . 65

4 Repository Browser 66
4.1 Repository menu . 66
4.2 Edit menu . 67
4.3 View . 68
4.4 Modify . 68

4.4.1 Create Directory . 68
4.4.2 Remove . 68

c© 2011 syntevo GmbH, www.syntevo.com 3

Contents

4.4.3 Copy/Move . 68
4.5 Query menu . 69
4.6 Window menu . 69
4.7 Help menu . 69

5 Transactions 70
5.1 Transactions frame . 70

5.1.1 Grouping of revisions . 71
5.1.2 Watched URLs . 71
5.1.3 Read/Unread revisions . 72
5.1.4 Display Settings . 72
5.1.5 Transaction menu . 72
5.1.6 Edit menu . 72
5.1.7 View menu . 73
5.1.8 Modify menu . 73
5.1.9 Query menu . 73
5.1.10 Repository menu . 74
5.1.11 Window menu . 74
5.1.12 Help menu . 74

5.2 Project Transactions . 74
5.2.1 Settings . 75

5.3 Log Cache . 75
5.3.1 Manage Log Caches . 76
5.3.2 Storage . 76

6 Repository Profiles 77
6.1 Profiles . 77

6.1.1 Add . 78
6.1.2 Edit . 80

6.2 Proxies . 80
6.3 Tunnels . 80
6.4 Passwords . 80

7 Projects 82
7.1 Managing working copies . 82
7.2 Project Manager . 83
7.3 Project Settings . 83

7.3.1 Text File Encoding . 83
7.3.2 Refresh/Scan . 84
7.3.3 Working Copy . 84
7.3.4 Default Settings . 86

8 Subwindows 87
8.1 Text Editor . 87

8.1.1 Settings . 87
8.1.2 File menu . 87

c© 2011 syntevo GmbH, www.syntevo.com 4

Contents

8.1.3 Edit menu . 87
8.1.4 View menu . 88
8.1.5 Go To menu . 88
8.1.6 Window menu . 88

8.2 File Compare . 88
8.2.1 Comparison . 88
8.2.2 Settings . 89
8.2.3 File menu . 89
8.2.4 Edit menu . 89
8.2.5 View menu . 90
8.2.6 Go To menu . 90
8.2.7 Window menu . 90

8.3 Properties Compare . 90
8.3.1 File menu . 91
8.3.2 Edit menu . 91
8.3.3 Window menu . 91

8.4 Compare Repository Directories . 91
8.4.1 Compare menu . 91
8.4.2 Edit menu . 91
8.4.3 View menu . 91
8.4.4 Window menu . 92

8.5 Conflict Solver . 92
8.5.1 File menu . 92
8.5.2 Edit menu . 92
8.5.3 View menu . 92
8.5.4 Go To menu . 93
8.5.5 Window menu . 93

8.6 Revision Compare . 93
8.6.1 File menu . 93
8.6.2 Edit menu . 93
8.6.3 View menu . 94
8.6.4 Go To menu . 94
8.6.5 Window menu . 94

8.7 Log . 94
8.7.1 Log menu . 95
8.7.2 Edit menu . 95
8.7.3 View menu . 96
8.7.4 Modify menu . 96
8.7.5 Query menu . 96
8.7.6 Window menu . 97
8.7.7 File Export . 97

8.8 Revision Graph . 97
8.8.1 Merge Information . 98
8.8.2 Search . 99
8.8.3 Branch Filter . 99

c© 2011 syntevo GmbH, www.syntevo.com 5

Contents

8.8.4 Graph menu . 100
8.8.5 Edit menu . 100
8.8.6 View menu . 100
8.8.7 Modify menu . 101
8.8.8 Query menu . 101
8.8.9 Window menu . 101

8.9 Annotate . 101
8.9.1 Annotate menu . 102
8.9.2 Edit menu . 102
8.9.3 View menu . 102
8.9.4 Revision menu . 102
8.9.5 Go To menu . 102
8.9.6 Window menu . 102

8.10 Merge Preview . 103
8.10.1 Merge menu . 103
8.10.2 Edit menu . 103
8.10.3 View menu . 103
8.10.4 Window menu . 103

9 Preferences 104
9.1 On Start-Up . 104
9.2 Project . 104
9.3 User Interface . 104
9.4 Commit . 105
9.5 Conflict Solver . 106
9.6 Open . 106
9.7 Refresh . 107
9.8 Revision Graph . 108
9.9 Built-in Text Editors . 108
9.10 File Comparators . 108

9.10.1 External Comparators . 108
9.10.2 External Viewers . 109

9.11 External Tools . 109
9.11.1 Directory Command . 109

9.12 Transactions . 110
9.13 Spell Checker . 110
9.14 Shell Integration (Windows) . 111

9.14.1 Status Cache . 111
9.15 Shell Integration (Mac OS) . 111
9.16 Check for Update . 112
9.17 Customize . 112

9.17.1 Accelerators . 112
9.17.2 Context Menus (not always available) 112
9.17.3 Toolbar (not always available) . 113

c© 2011 syntevo GmbH, www.syntevo.com 6

Contents

10 Shell Integration 114
10.1 Commands (Windows and OS X 10.5) . 114
10.2 Commands (OS X 10.6) . 114
10.3 Output Window . 115

10.3.1 File menu . 115
10.3.2 Edit menu . 115
10.3.3 Window menu . 115

10.4 Overlay Icons . 115
10.5 Server Mode . 116
10.6 Windows Shell Integration . 116
10.7 Mac OS X Finder integration . 117
10.8 Tray Icon . 118
10.9 Status Cache . 118

11 Plugins 120
11.1 JIRA Plugin . 120

11.1.1 Workflow . 120
11.1.2 Requirements . 121

11.2 Remove Empty Directories . 121
11.3 Quick Update . 122
11.4 Plugin-API . 122
11.5 Send Support Email . 122
11.6 Hide Menu Items . 122
11.7 Merge Info Column . 122
11.8 Tag Multiple . 123
11.9 Commit Message Templates . 123
11.10Pre-commit hooks . 123

12 Installation and Files 124
12.1 Location of SmartSVN’s settings directory 124
12.2 Notable configuration files . 124
12.3 Company-wide installation . 125
12.4 Command line arguments . 126
12.5 JRE search order (Windows) . 126

13 System properties/VM options 127
13.1 General properties . 127
13.2 SVN properties . 127
13.3 User interface properties . 129
13.4 Transaction-related properties . 131
13.5 JIRA plugin properties . 133
13.6 Other properties . 134
13.7 Specifying VM options and system properties 135

c© 2011 syntevo GmbH, www.syntevo.com 7

Contents

14 xMerge add-on 137
14.1 Introduction . 137
14.2 A sample use-case . 137
14.3 User Interface . 138
14.4 Known Limitations . 140

c© 2011 syntevo GmbH, www.syntevo.com 8

Chapter 1

Introduction

SmartSVN is a graphical Subversion (SVN) client. Its target audience are users who
need to manage a number of related files in a directory structure, to control access in a
multi-user environment and to track changes to the files and directories. Typically areas
of application are software projects, documentation projects or website projects.

Acknowledgments

We want to thank all users, who have participated in the Early Access/Beta Program of
SmartSVN and in this way helped to improve it by reporting bugs and making feature
suggestions.

Special thanks goes to the SVNKit developers (http://www.svnkit.com) who provide
the excellent Subversion base library SVNKit onto which SmartSVN has been built and
to the whole SVN developer community at subversion.apache.org for making Subversion
the most powerful version control system available today.

9

Chapter 2

Project Window

The Project Window is the central place when working with SmartSVN. In the center
of the window, the main Directories and Files view shows the SVN file system of your
currently opened project (working copy). Various SVN commands on these directories
and files are provided by the menu bar and the toolbar.

2.1 User Interface

In the bottom left area of the Project Window the Output view shows logged output
from executed SVN commands. Depending on the command, there can be several SVN
operations available for the logged files and directories.

In the bottom right the Transactions view (Section 5.2) collects and displays log infor-
mation from the repository. The Changes view (Section 2.6) shows the local modifications
of the currently selected file.

Always exactly one of the four views is “active” which is displayed by its highlighted
title. We will also refer to the active view as the view which “has the focus”. Menu bar
actions (as well as toolbar buttons) are always referring to the currently active view.

At the very bottom of the Project Window the status bar displays various kinds
of information. The first and largest section contains information on the currently se-
lected menu item, operation progress or the repository URL of the currently selected
file/directory. The second section displays information on your current selection from the
Directories or the Files frame, or no information if neither of these views is active. The
third section displays information on the Refresh state (see 2.4.5) of the project and the
fourth section is used for progress display during the execution of SVN operations. It may
either show a percentual progress of the operation completion or the total amount of sent
and received bytes during this operation.

2.2 Perspectives

The layout of the Project Window can be arranged with the mouse by dragging the
splitters between the various views. By dragging their titles, they can be undocked from

10

Chapter 2. Project Window

one position and docked to another position. Views provide toolbar buttons to maximize
and minimize resp. auto-hide them.

A complete layout configuration is called a Perspective. There are two perspectives
available: the Main Perspective and the Review Perspective. The Main Perspective
is primarily intended for giving you an overview of your project and repository state
(Transactions). The Review Perspective is intended to in more detail review file content
changes, e.g. before committing them. Both perspectives can be re-configured to your
needs and you may switch between them in the Window menu. Use Reset to Default
to reset the currently selected perspective to its default layout.

2.3 Projects

SmartSVN internally manages your SVN working copies by “SmartSVN projects”, as
basically described in Section 7.

One Project Window shows one project at a time. To work with multiple projects at
the same time, you can open multiple Project Windows by clicking Window|New Project
Window. Already existing projects can be opened in a Project Window by Open or closed
by Close.

2.4 Directory Tree and File Table

The directory tree and the file table show the local directories/files below the project’s
root directory. .svn-directories and ignored directories and files within other ignored
directories are not displayed.

2.4.1 Directory States/Directory Tree

The directory tree shows the project’s directories and their SVN states, which are denoted
by different icons. The primary directory states are listed in Table 2.1. Every primary
state may be combined with additional states listed in Table 2.2. In case of a versioned
directory, the corresponding revision number is displayed after the name of the directory.
The revision will be omitted if it’s equal to its parent directory revision. If the directory
hasn’t been checked out with depth Fully recursive (see 3.14.1), the check out depth will
be displayed in parantheses, too. The tooltip shows detailed SVN information for the
corresponding directory, similar to the contents of the file table, see below.

To speed search the directory tree for a certain directory, click into the tree (so the
Directories view gets active) and start typing the directory name. This will make a
small popup come up, which displays the characters you have already entered. Wildcard
symbols ’*’ and ’%’ can be used with the usual meaning.

2.4.2 File States/File Table

The file table shows the project’s files with their SVN states and various additional in-
formation. The primary file states are listed in Table 2.5 and Table 2.6. Every primary

c© 2011 syntevo GmbH, www.syntevo.com 11

Chapter 2. Project Window

state may be combined with additional states listed in Table 2.7. The rest of this sec-
tion explains configuration options for the file table. They are always related only to the
current project and are also stored with the current project.

File Attributes

Tip Certain table columns require to access additional file system files
when scanning the file system and therefore slow down scanning.
The note within the View|Table Columns dialog gives you infor-
mation on which columns these are.

Name Filters

The toolbar of the file table contains the Filter input field, which can be used to restrict
the displayed files to a certain file name pattern. By default, simple patterns, including
the wildcard symbols ’*’ and ’%’ are supported. You can also use ’ !’ at the beginning
of a pattern to invert it. For example, “!*.txt” will show all files which don’t have .txt
extension.

From the attached drop-down menu you can reset the filter by Show All what simply
clears the filter Filter field. You can also select to work with Regular Expressions instead
of simple patterns. For details on the supported regular expression constructs refer to
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html. With
Save Pattern you can save a pattern. Once a pattern is saved it will be displayed in the
top of the drop-down menu. It can be used by selecting it and removed again by Remove
Pattern.

Similar to the directory tree, the speed search is also available for the file table.

2.4.3 State Filters

With the menu items in the View menu, you can also set filters to display only files which
meet certain criteria. Refer to the View menu (see 2.5.3) for details. By default, these
file filters will also be applied on the directories. You can change this behaviour in the
Preferences (see 9.3) by Use View-menu file filters also for directories.

2.4.4 Double Click

By default, double-clicking a file in the file table, the file will be “opened” in one of various
ways, depending on its file state:

• For an unchanged file which is remotely changed (see Section 3.11), the Compare
with HEAD (see 3.9.2) command is invoked.

• An unchanged, unversioned or added file is opened with the file editor, see the
Edit|Open command (Section 2.5.2) for further details.

• A conflicting file is opened with the Conflict Solver (Section 8.5).

c© 2011 syntevo GmbH, www.syntevo.com 12

Chapter 2. Project Window

• All other files are opened by comparing them (Section 3.9.1).

If, for example, you want to always open (Section 2.5.2) the file independent of its
state by double-clicking it, assign the <Enter>-keystroke accelerator (Section 9.17.1) to
the Query|Open menu item.

2.4.5 Refresh

The contents of the directory tree and the file table are initialized when a project is opened
by reading at least the contents of the root directory into memory. Whether the complete
project shall also be read into memory at project startup or not can be configured in the
project settings (Section 7.3).

The scanning and refreshing of the project’s directories and files is in general performed
in the background, so you can immediately start to work after opening a project and you
may continue to work while the project is refreshed. If a Refresh is currently processed,
the status bar shows a Refreshing text and symbol.

The scanning is performed breadth-first, so you will immediately have the complete
root directory refreshed. When scanning a large working copy, you can force SmartSVN to
give certain subdirectories a priority in being scanned: Just select the (already scanned)
directory in the Directories tree you would like to have scanned recursively as soon as
possible. SmartSVN will then reorganize its breadth-first strategy accordingly. The same
holds true for file selections: SmartSVN will give priority in scanning their common parent
directory (and the path up to the root).

When changes to known (i.e in memory) files or directories occur from within SmartSVN,
they are refreshed automatically. In case of external changes, an explicit refresh via
View|Refresh or by the corresponding toolbar button is required. You can configure the
kind of refresh (“depth”) within the application preferences (Section 9.7).

Tip The initial scanning/refresh is in general much slower than subse-
quent refreshes due to the system disk cache. On Windows, you
can enable the Status Cache (see 10.9) to get a first “preview” of
your working copy quickly. This preview also allows to perform
most of the commands, so you can start certain SVN operations
even before the file system has been scanned.

2.5 Menus

This section summarizes actions which are available from the various Project Window
menus.

Note You may use the Hide Menu Items plugin (see 11.6) to remove
certain menu items from the menu.

c© 2011 syntevo GmbH, www.syntevo.com 13

Chapter 2. Project Window

2.5.1 Project

• Check Out, see Section 3.1.

• Open Working Copy, see Section 7.

• Edit Working Copy, see Section 7.

• Remove Working Copy, see Section 7.

• Import into Repository, see Section 3.2.

• Open, see Section 7.

• Close, see Section 7.

• Project Manager, see Section 7.2.

• Settings, see Section 7.3.

• Default Settings, see Section 7.3.

• Exit exits SmartSVN.

2.5.2 Edit

• Stop stops the currently running operation. Depending on the type of operation,
this action might not be applicable. On the other hand, while an operation is
running, most other actions are not applicable.

• Reveal in Finder (Mac OS only) brings the Finder process to front and selects the
currently selected file/directory.

• File Filter positions the cursor in the file table’s filter field.

• Select Committable Files selects all committable files in the file table. Because
SmartSVN allows to automatically add unversioned or remove missing files for a
commit, such files are also selected.

• Select Directory selects the deepest common directory for all selected files in the
file table.

• Select in Project selects the currently selected files/directories from the Transac-
tions (see 5.2) view or the Output area in the file table/directory tree.

• Copy Name copies the name of the selected file/directory to the system clipboard.
If multiple files are selected, all names will be copied, each on a new line.

• Copy Path copies the path of the selected file/directory to the system clipboard. If
multiple files are selected, all paths will be copied, each on a new line.

c© 2011 syntevo GmbH, www.syntevo.com 14

Chapter 2. Project Window

• Copy Relative Path copies the path of the selected file/directory relative to the
project root directory to the system clipboard. If multiple files are selected, all
paths will be copied, each on a new line.

• Copy URL copies the repository URL of the selected file/directory to the system
clipboard. If multiple files are selected, all URLs will be copied, each on a new line.

• Copy Message copies the message of the currently selected revision in the Trans-
actions (see 5.2) view. If multiple revisions are selected, all messages will be copied,
each on a new line.

• Use Customize to customize accelerators, context menus and the toolbar (see Sec-
tion 9.17).

• Preferences shows the application preferences (see Section 9).

2.5.3 View

• Table Columns lets you specify which file attributes will be displayed in the file
table, see Table 2.3 and Table 2.4. Also, the order of the table columns can be
defined here, alternatively to rearranging them directly in the file table. Select
Make this configuration the default to have the selected configuration applied to
every new project. Use Reset to reset the table column layout to the default.

• Refresh, see Section 2.4.5.

• Files From Subdirectories enables the recursive view showing not only files from
the currently selected directory but also those from subdirectories.

• With Unchanged Files unchanged files are displayed. It is sometimes convenient
to hide them, as they don’t matter for most of the SVN commands.

• With Unversioned Files unversioned files (also within unversioned directories) are
displayed.

Note Unversioned Files option does in no way affect the unversioned
files itself or their SVN state. Certain operations, which can work
on unversioned files, will consider them anyway. Parent directories
of unversioned files will continue to display Direct/Indirect Local
Changes state. To actually ignore such files on the SVN-level you
can use the Ignore command (see 3.4.3).

• With Ignored Files ignored files within versioned directories will be displayed. Files
from ignored directories are never displayed.

• With Files Assigned to Change Set selected, files which are already assigned to a
Change Set (see 3.12) will be displayed. Otherwise, those file will not be displayed,
to give a better overview on which files are not yet assigned to Change Sets. This
option has no effect if the selected directory is a Change Set itself or part of a
Change Set.

c© 2011 syntevo GmbH, www.syntevo.com 15

Chapter 2. Project Window

• With Remote Changed Files selected, files will be displayed which are remotely
changed (see Table 3.3). Typically, this option has no effect when Unchanged Files
is selected, because these files are shown anyway. An exception here are files which
only exist remotely, i.e. files which are in Remote state.

• Reset Layout will reset the Project Window layout (docking states).

2.5.4 Modify

• Update, see Section 3.3.1.

• Update More, see Section 3.3.2.

• Switch, see Section 3.3.4.

• Relocate, see Section 3.3.5.

• Merge, see Section 3.6.1.

• Merge from 2 Sources, see Section 3.6.2.

• Reintegrate Merge, see Section 3.6.3.

• Apply Patch, see Section 3.6.4.

• Commit, see Section 3.5.

• Add, see Section 3.4.1.

• Remove, see Section 3.4.2.

• Ignore, see Section 3.4.3.

• Delete Physically, see Section 3.4.4.

• Create Directory, see Section 3.4.5.

• Rename, see Section 3.4.6.

• Move, see Section 3.4.7.

• Detect Moves, see Section 3.4.8.

• Copy, see Section 3.4.9.

• Copy From Repository, see Section 3.4.10.

• Copy To Repository, see Section 3.4.11.

• Copy Within Repository, see Section 3.4.12.

• Revert, see Section 3.4.13.

c© 2011 syntevo GmbH, www.syntevo.com 16

Chapter 2. Project Window

• Mark Resolved, see Section 3.4.14.

• Clean Up, see Section 3.4.16.

• Fix, see Section 3.4.17.

2.5.5 Change Set

• Move to Change Set, see Section 3.12.1.

• Move Up, see Section 3.12.2.

• Move Down, see Section 3.12.3.

• Delete, see Section 3.12.4.

• Edit Properties, see Section 3.12.5.

2.5.6 Tag+Branch

• Add Tag, see Section 3.8.2.

• Tag Multiple Project Roots, see Section 3.8.3.

• Add Branch, see Section 3.8.4.

• Tag Browser, see Section 3.8.5.

• Configure Layout, see Section 3.8.6.

2.5.7 Query

• Open opens the selected files/directory. If the directory tree has the focus, this
action will only work, if a Directory Command has been configured in the pref-
erences (see Section 9.11). If the file table has the focus the file(s) will be opened
in an editor. The editor which shall be used to open a file can be configured in
the Externals Tools section of the Preferences (see Section 9.11). If no editor is
configured there, the internal File Editor (see 8.1) will be launched. For files, you
can specify a limit on the file count beyond which you will be asked before the files
are opened at once; for details refer to Section 9.6.

• Show Changes, see Section 3.9.1.

• Compare with HEAD, see Section 3.9.2.

• Compare with Previous, see Section 3.9.3.

• Compare with Revision, see Section 3.9.4.

• Compare 2 Files, see Section 3.9.5.

c© 2011 syntevo GmbH, www.syntevo.com 17

Chapter 2. Project Window

• Compare Repository Directories, see Section 3.9.6.

• Log, see Section 3.9.7.

• Revision Graph, see Section 3.9.8.

• Annotate, see Section 3.9.9.

• Create Patch, see Section 3.9.10.

• Create Patch between URLs, see Section 3.9.11.

• Refresh Remote State, see Section 3.11.1.

• Clear Remote State, see Section 3.11.2.

2.5.8 Properties

• Edit Properties, see Section 3.7.1.

• MIME-Type, see Section 3.7.3.

• EOL-Style, see Section 3.7.4.

• Keyword Substitution, see Section 3.7.5.

• Excutable-Property, see Section 3.7.6.

• Externals, see Section 3.7.7.

• Ignore Patterns, see Section 3.7.8.

• Bugtraq-Properties, see Section 3.7.9.

• Merge Info, see Section 3.7.10.

2.5.9 Locks

• Refresh, see Section 3.10.1.

• Lock, see Section 3.10.2.

• Unlock, see Section 3.10.3.

• Show Info, see Section 3.10.4.

• Change ’Needs Lock’, see Section 3.10.5.

c© 2011 syntevo GmbH, www.syntevo.com 18

Chapter 2. Project Window

2.5.10 Repository

• Use Open in Repository Browser to open the selected directory/file in the Repos-
itory Browser (see 4).

• Manage Profiles, see Section 6.

• Change Master Password, see Section 6.4.

• Set Up Local repository, see Section 3.13.4.

• Manage Log Caches, seeSection 5.3.1.

2.5.11 Tools

• Export Backup, see Section 3.13.1.

• Conflict Solver, see Section 3.13.2.

• Canonicalize URLs, see Section 3.13.3.

2.5.12 Window

• New Project Window opens a new Project Window for working on another project.

• New Repository Browser opens a new Repository Browser (see 4).

• Show Transactions shows the standalone Transactions Frame (see 5.1).

• Directories puts the focus in the Directory tree (see 2.4).

• Files puts the focus in the File table (see 2.4).

• Output, see Section 2.5.12

• Changes, see Section 2.5.12

• Transactions, see Section 2.5.12

The subsequent content of the Window menu depends on which windows are currently
open. For each window, there is a menu item to switch to it.

Output

The Output-menu contains commands related to the Output view (see 2.1):

• Use Activate to display and put the focus to the Output window.

• Use Clear to clear the Output view. If there are multiple command outputs, the
latest (topmost) command output will be kept. If there is only one command output,
it will be removed. Currently processing commands can’t be cleared.

c© 2011 syntevo GmbH, www.syntevo.com 19

Chapter 2. Project Window

Changes

The Changes-menu contains commands related to the Changes view (see 2.1):

• Use Activate to display and put the focus to the Changes window.

• Use Reload to refresh the file contents from the file system and recalculate the
differences.

• Use Previous Change to navigate to the previous change within the currently se-
lected file. If there is no previous change, SmartSVN will select the last change of
the previous file (as displayed in the file table).

• Use Next Change to navigate to the next change within the currently selected file.
If there is no next change, SmartSVN will select the first change of the next file (as
displayed in the file table).

• For Ignore Whitespace for Line Comparison, refer to Section 8.2.2.

• For Ignore Case Change for Line Comparison, refer to Section 8.2.2.

• For Settings, refer to Section 8.2.2.

Transactions

The Transactions-menu contains commands related to the Transactions view (see 5.2).

• Use Activate to display and put the focus to the Transactions window.

• Refresh, see Section 5.1.5.

• Mark as Read, see Section 5.1.7.

• Mark All as Read, see Section 5.1.7.

• Select Show Branches and Tags to display not only the working copy revisions but
also revisions of the trunk, branches and tags. Refer to Section 5.1.2 for details.

• Select Show Additional Watched URLs to display not only the working copy
revisions but also revisions which have explicitly been configured to be watched by
Configure Watched URLs.

• Ungrouped Revisions, see Section 5.1.1.

• Grouped by Weeks, see Section 5.1.1.

• Grouped by Time, see Section 5.1.1.

• Grouped by Author, see Section 5.1.1.

• Grouped by Location, see Section 5.1.1.

c© 2011 syntevo GmbH, www.syntevo.com 20

Chapter 2. Project Window

• Use Merge to merge the selected revision to your local working copy. If you want
to configure advanced options for the merge, use the default Merge command (see
3.6.1).

• Rollback, see Section 8.7.4.

• Change Commit Message, see Section 8.7.4.

• Configure Watched URLs, see Section 5.1.2.

• Settings, see Section 5.2.1.

2.5.13 Help

• Help Topics shows the online version of SmartSVN’s help.

• Contact Support opens your email client to send a message to smartsvn@syntevo.com.
This functionality is provided by the Send Support Email (see 11.5) plugin.

• Register switches to the Professional edition.

• License Information shows information on your SmartSVN license and the licensing
conditions for SmartSVN.

• Reset Deactivated Warnings will bring for future actions/operations those warn-
ings again which had been deactivated.

• Enable Connection Logging can be used to trace and analyze problems when
working with SmartSVN. The dialog will give you further instructions on how to
use Connection Logging.

• Downgrade Working Copy can be used to downgrade the working copy format
of the current project to Subversion 1.5 working copy format. A working copy
downgrade should only be necessary if you are forced to continue working with
pre-1.6 SVN clients.

• Use Obfuscate Log Cache to remove potentially confidential information from a
Log Cache so it can be sent to syntevo GmbH for debug purposes. Select the Cache
to obfuscate, the Output File where the obfuscated cache should be stored and the
Map File which contains the mapping between between real repository paths and
obfuscated paths.

• Check for New Version connects to the SmartSVN website and checks, if there
is a new version available for download. By default, this check is also performed
when starting SmartSVN. You can configure the checking for new versions within
the Preferences (see 9.16).

• About SmartSVN shows information on the current SmartSVN version.

c© 2011 syntevo GmbH, www.syntevo.com 21

Chapter 2. Project Window

2.6 Changes view

The Changes view displays local changes of the currently selected file in the file table.
To be more exact: the differences between the currently selected file from the working
copy and its pristine copy are displayed.

Tip The Review perspective (see 2.2) is intended to give enough space
to the Changes view, so you can quickly review file content changes
in detail.

c© 2011 syntevo GmbH, www.syntevo.com 22

Chapter 2. Project Window

Icon State Details

Unchanged Directory is under version control, not modified and equal
to its revision in the repository resp. to its pristine copy.

Unversioned Directory is not under version control and hence only exists
locally.

Ignored Directory is not under version control (exists only locally)
and is marked to be ignored.

Modified Directory itself is modified in its properties (compared to its
revision in the repository resp. to its pristine copy.)

Added Directory is scheduled for addition.

Removed Directory is scheduled for removal.

Replaced Directory has been scheduled for removal and added again.

Copied Directory has been added with history.

History-Scheduled A parent directory has been added with history, which im-
plicitly adds this directory with history.

Missing Directory is versioned, but does not exist locally.

Added-Missing The directory has been scheduled for addition, but is locally
missing,refer to the Fix command (see 3.4.17).

Conflict An updating command lead to conflicting changes in direc-
tories’ properties.

Incomplete A previous update was not fully performed. Do an update
again.

Root Directory is either the project root or an external root.

Nested Root Directory is a nested working copy root, but no external.
Refer to the Fix command (see 3.4.17).

Obstructed A file exists locally, but the pristine copy (resp. repository)
expects it to be a directory. Please backup the file, then
remove it and update the directory from repository.

Phantom The directory does not locally exist nor is versioned any-
more, but it is still present in the SVN administrative area.
It’s probably part of a tree conflict (see 3.4.14).

Remote Directory only exists in the repository. This state is only
used for the remote state command (see Section 3.11).

Unscanned Directory has not been scanned yet (see Section 2.4.5).

Figure 2.1: Primary Directory States

c© 2011 syntevo GmbH, www.syntevo.com 23

Chapter 2. Project Window

Icon State Details

Switched Directory is switched (compared to its parent); see
Section 3.3.4.

Locked Directory is locked locally because an operation has
been interrupted before. A Cleanup (see 3.4.16)
should fix the problem.

Direct Local Changes There are local changes to this directory itself.

Indirect Local Changes There are local changes to one of its files or to one
of the subdirectories of this directory.

Direct Remote Changes There are remote changes to this directory itself, see
Section 3.11.

Indirect Remote Changes There are remote changes to one of its files or to one
of the subdirectories of this directory, see Section
3.11.

Tree Conflict The directory is part of a tree-conflict, see Section
3.4.14 for details.

Figure 2.2: Additional Directory States

c© 2011 syntevo GmbH, www.syntevo.com 24

Chapter 2. Project Window

SmartSVN Name SVN info Description
Name (same) The file’s name
Revision (same) Current revision of the file
Local State Schedule Textual representation of the local state

of the file
Lock Lock Owner Lock state of the file (see Section 3.10)
Last Rev. Last Changed Rev. Revision, where this file has been com-

mitted
Last Changed Last Changed Date Time of the last commit of the file
Text Updated Text Last Updated Time of the last (local) update of the

file’s text; this attribute is set when the
content of a file has been changed by an
SVN command.

Props Updated Properties Last Updated Time of the last (local) update of the
file’s properties; this attribute is set
when the properties of a file have been
changed by an SVN command.

Last Author Last Changed Author Last author, i.e. who performed the last
commit on the file

Type svn:mime-type The file’s type (see Section 3.7.4)
EOL svn:eol-style End-Of-Line Type of the file (see Sec-

tion 3.7.4)
Keyw. svn:keywords Keyword substitution options of the file

(see Section 3.7.5)
Needs Lock svn:needs-lock Whether the file should be locked before

working (see Section 3.10.5)
Executable svn:executable Whether the file has the Executable-

Property set (see Section 3.7.6)
Merge Info svn:mergeinfo Whether the file has the Merge Info-

Property set (see Section 3.7.10): None
for no Merge Info set, Empty for an
empty Merge Info or Present for non-
empty Merge Info. Provided by the
Merge Info Column plugin (see 11.7).

Copy From Copy From URL/Rev Location and URL from which this file
has been copied (locally). This value is
only present if the file is in Copied state

Figure 2.3: File attributes with SVN counterparts

c© 2011 syntevo GmbH, www.syntevo.com 25

Chapter 2. Project Window

SmartSVN Name Description
Remote State Remote state of the file (see Section 3.11)
Ext. The file’s extension
Relative Directory Parent directory of the file relative to the selected directory
File Time The local time of the file
Attrs. Local file attributes: R for read-only and H for hidden
Size The local size of the file
Branch The tag/branch to which the file is currently switched (see 3.3.4).

For details, refer to Section 3.8.1.
Change Set The Change Set (see 3.12) to which the file belongs.

Figure 2.4: File attributes without SVN counterparts

c© 2011 syntevo GmbH, www.syntevo.com 26

Chapter 2. Project Window

Icon State Details

Unchanged File is under version control, not modified and equal
to its revision in the repository resp. to its pristine
copy.

Unversioned File is not under version control, but only exists
locally.

Ignored File is not under version control (exists only locally)
and is marked to be ignored.

Modified File is modified in its content but not properties
(compared to its revision in the repository resp. to
its pristine copy).

Modified (properties only) File is modified in its properties but not content
(compared to its revision in the repository resp. to
its pristine copy).

Modified (properties only) File is modified in its content and properties (com-
pared to its revision in the repository resp. to its
pristine copy).

Missing File is under version control, but does not exist lo-
cally.

Added File is scheduled for addition.

Removed File is scheduled for removal.

Replaced File has been scheduled for removal and added
again.

Copied File has been added with history.

History-Scheduled A parent directory has been added with history,
which implicitly adds this file with history.

Remote File does not exist locally, but only in the repository.
This state is only used for the remote state (see
Section 3.11).

Conflict An updating command lead to conflicting changes
either in content or properties.

Merged The file has been merged. Refer to the Merge com-
mand (see 3.6.1) for details.

Figure 2.5: Common Primary File States

c© 2011 syntevo GmbH, www.syntevo.com 27

Chapter 2. Project Window

Icon State Details

Incomplete A previous update was not fully performed. You should do an
update again.

Name conflict There exists another file in the repository with the same name,
only differing in upper/lower case. Such files can’t be checked
out on case-insensitive file systems. To fix this problem corre-
sponding files have to be renamed in the repository.

Obstructed A directory exists locally, but the pristine copy (resp. repos-
itory) expects it to be a file. Please backup contents of the
directory, then remove it and update the file from repository.

Inaccessible The file’s content is not accessible, hence its state (modification)
can’t be determined. It’s probably locked by another applica-
tion.

Phantom The file does not locally exist nor is versioned anymore, but it is
still present in the SVN administrative area. It’s probably part
of a tree conflict (see 3.4.14).

Case-Changed The case of the file name has changed on an operating system,
which is case-insensitive regarding file names. Refer to the Fix
command (see 3.4.17) on how to handle such files.

Figure 2.6: Rare Primary File States

Icon State Details

Switched File is switched (compared to its parent directory); see Section
3.3.4.

Locked (Self) The file is locked in the repository by yourself (resp. for the
current working copy), see Section 3.10.

Locked (Other) The file is locked in the repository by some other user, see
Section 3.10.

Lock Necessary The file needs to be locked before starting to work, see Section
3.10.5.

Tree Conflict The file is part of a tree-conflict, see Section 3.4.14 for details.

Figure 2.7: Additional File States

c© 2011 syntevo GmbH, www.syntevo.com 28

Chapter 3

Commands

SmartSVN provides most of the SVN command line commands in a standalone version,
but also combines them to powerful higher-level commands. Common enhancements,
which are present for various of the following commands are explained in Section 3.14.

3.1 Check Out

Use Project|Check Out to create a working copy from a project which is already under
SVN control.

Page “Repository”

If you are going to frequently check out from a repository you may perform a Detailed
Checkout. First you need to select the repository from which you want to check out a
project. If you can’t find the Repository Profile, click the Manage button to add it, see
Section 6 for details.

The Quick Checkout is similar to the command line version of checkout: Simply enter
the URL of the project you want to check out and specify the Local Directory to check
out to. The subsequently described steps are skipped, when using the Quick Checkout.

Click Next to continue.

Page “Location”

After switching to this page, the repository will be scanned. A few moments later you’ll
see the root content of the repository. Expand the tree nodes to scan into the repository
structure, for more details refer to Section 4.

Use Show Revision to define that revision of your selected directory you want to check
out. Please note, that the repository content might change when changing the revision.

Select the repository directory you want to check out and click Next.
When working with trunk, tags and branches it’s not recommended to check out the

whole project, because due to the rising number of tags the working copy (not the repos-
itory!) would be growing rather fast, containing a lot of useless files on your local disk.
Instead you should check out only trunk or a certain tag or branch and if necessary switch

29

Chapter 3. Commands

(see 3.3.4) to another location. SmartSVN tries to detect whether you are going to check
out a whole project instead of a single trunk/branch and will warn you correspondingly.

Sometimes you won’t need to check out the complete trunk/branch of a project, but
only a certain sub-directory. Certain mechanisms (like tags) won’t work on sub-directories,
hence SmartSVN will ask you whether to check out necessary parent directory non-
recursively. Non-recursive check outs (also called “sparse checkouts”) are efficient and
recommended in such a situation.

Page “Local Directory”

At this page you can select the local directory into which the working copy should be
checked out. Use the options to define, how the directory name should be created. The
Checkout Directory depends on these options and always shows the final directory into
which the checkout will occur (i.e. where the root .svn- directory will be created).

When deselecting Check out recursively, you will only check out the selected repos-
itory directory itself, but no subdirectories. Later you may choose to check out certain
subdirectories by Update More (see 3.3.2). Non-recusive checkouts can be useful here, if
you wish to skip certain modules of a project.

Click Next to proceed.

Page “Project”

At this page you can select whether to check out a working copy, i.e. create the necessary
.svn/ structure or to simply Export the files from the repository. With Check out a
working copy, SmartSVN will create a working copy for your check out source. In this
case you may select to Add a new project for this working copy, specify the project’s
name and specify an optional group (see Project Manager (see 7.2)) to which the project
will be added. You may select Add to current project to add the working copy to the
currently open project (if present). Or you may select Don’t manage as project to just
create a temporary project for this working copy. With Export only, SmartSVN will just
export the files from repository without creating the .svn/ infra-structure, i.e. you won’t
be able to perform further SVN commands on this exported directories/files. In this case,
when selecting Overwrite locally existing files, locally existing files will be overwritten
if necessary, otherwise the export will be cancelled. You may specify specify the desired
line ending markers by Use EOL.

Click Next to proceed.

Page “Summary”

Use this page to review your choices. Click Back to change them or Finish to start the
checkout.

c© 2011 syntevo GmbH, www.syntevo.com 30

Chapter 3. Commands

3.2 Import into Repository

Use Project|Import into Repository to add an unversioned local directory to the reposi-
tory and to create the corresponding SmartSVN project. Only the specified directory will
be put under version control using this command. Use the Add (see 3.4.1) and Commit
(see 3.5) commands to import other files and directories of the project individually into
the repository.

Page “Local Directory”

Select the unversioned Directory which you want to import into the repository.

Page “Repository”

Choose the Repository into which you want to import. If the Repository Profile does
not exist yet, click the Manage button to add it.

Page “Location”

After switching to this page, it takes a few moments until the repository is scanned. You
can now scan into the repository by expanding the directory nodes, for more details refer
to Section 4. Use the Create Directory tool button to create new directories in the
repository.

Note You can create recursive directories at the same time, by specifying
the directories separated by /. This helps to keep the Log nicer as
there will only show up one revision for creating the directories.

After you’ve created the necessary structures in the repository, select the directory
which should be linked with the root of your local project and click Next.

Page “Project”

At this page you can configure to which project the imported working copy will be added.
You may select to Add a new project for this working copy, specify the project’s name
and specify an optional group (see Project Manager (see 7.2)) to which the project will be
added. You may select Add to current project to add the working copy to the currently
open project (if present). Or you may select Don’t manage as project to just create a
temporary project for this working copy.

Page “Summary”

Use this page to review your choices. Click Back to change them or Import to start
importing.

c© 2011 syntevo GmbH, www.syntevo.com 31

Chapter 3. Commands

Configuring the project and doing the final import

The result of this command will be a new project, for which only the local root directory is
under SVN control. This gives you many possibilities to configure which files/directories
of your local file system should actually be versioned in the repository. From the Edit
menu you can use Add and Ignore on files and directories. Furthermore, for files you can
adjust properties by the corresponding commands from the Properties menu. After the
project has been fully configured, use Modify|Commit to do the final import into the
repository.

3.3 Updating

Updating from the repository can happen either by a simple update of the working copy
or by switching the working copy to another location/revision. Following commands are
available from the Modify menu.

3.3.1 Update

Use Modify|Update to get the latest changes or a specific revision from the repository
for the selected files/directory.

Select HEAD to get the latest changes. To get a revision, select Revision and enter
the revision number. Select Recurse into subdirectories to perform the update command
not only for the current selected directory, but also for all subdirectories.

Advanced options

For sparse working copies, the Update will not bring files/directories of not yet checked
out repository subtrees. Select Set depth to working copy to get new subtrees as well
(according to the Recurse into subdirectories option resp. the selected Depth).

When selecting Allow unversioned obstructions, SmartSVN will continue to update
new files from the repository for which locally unversioned files already exist. Otherwise
the update will be cancelled in such situations, giving you the chance to cleanup these
locally unversioned files before.

Use Include Externals to descend into externals (see 3.7.7).
Use Rebuild SVN admin area completely to fetch all pristine copies and property

values freshly from the repository. This option should only be used to recover from
irreparable working copy defects (like “checksum mismatches”). It will transfer fairly the
same amount of data than a normal Check Out (see 3.1).

3.3.2 Update More

Use Modify|Update More to get locally missing directories and files from the repository
for a foregoing non-recursive Update or Check Out (see 3.1).

Update More checks for the currently selected directory, whether there are not yet
checked out subdirectories resp files. They are presented in a list and you can select one

c© 2011 syntevo GmbH, www.syntevo.com 32

Chapter 3. Commands

or more of them to update. Recurse into subdirectories specifies, whether the selected
entries shall be updated resp. checked out recursively or not.

To get rid of locally checked out directories, use the inverse operation Exclude from
Working Copy (see 3.3.3).

3.3.3 Update Exclude

Use Modify|Exclude from Working Copy on one or more directories to locally exclude
them from the working copy. The directory won’t be removed from the repository, but
simply will be ignored for subsequent Updates (see 3.3.1). To get excluded directories
back, use the inverse operation Update More (see 3.3.2).

3.3.4 Switch

Use Modify|Switch to switch the selected directory or file to another repository location.
Select Trunk to switch back from a branch or tag to the main trunk. Select Branch

or Tag and enter the branch or tag name to switch to a tag or branch. Select Other URL
to switch to an arbitrary URL within the same repository.

You can either switch to the selected location At or at a specific . Select Recurse
into subdirectories to perform the switch command not only for the currently selected
directory, but also for all subdirectories. Regarding the Advanced options, refer to the
Update command (see 3.3.1).

3.3.5 Relocate

Use Modify|Relocate to change the repository for the selected directory (and subdirecto-
ries) of your local working copy. Typically, this command is used when the URL/structure
of an SVN server has changed.

Relocate Directory shows the directory, relative to the project’s root directory, which
will be relocated. From URL displays the repository root URL of the selected directory,
if this information is available locally. Otherwise it displays the complete repository URL
of the directory. With To URL you can now specify the replacement string for From
URL: Relocate will then search within the selected directory and subdirectories for URLs
starting with From URL and replace the corresponding part by To URL.

3.4 Local Modifications

Local commands can be performed without a connection to the repository. They are
used to prepare the working copy state for a final commit. Following local commands are
available from the Modify menu.

3.4.1 Add

Use Modify|Add to schedule files or directories for being added to SVN control.

c© 2011 syntevo GmbH, www.syntevo.com 33

Chapter 3. Commands

In case of directories you have the option to Recurse into subdirectories, which -
when selected - causes all subdirectories and files from subdirectories to be added as well.

When a file is added, SmartSVN automatically applies certain properties to the file.
Most important is the automatic detection of the file’s MIME-Type (see 3.7.3), which
can basically be text or binary. Further property defaults can be specified in the project
settings (see 7.3).

Tip Automatic detection can be overriden by the Binary Files project
settings (see Section 7.3.3).

3.4.2 Remove

Use Modify|Remove to schedule the selected files/directory for being removed from SVN
control.

Select Remove from SVN control and delete locally to schedule the files/directory
for removal and to also delete them locally. Select Just remove from SVN control to
schedule for removal only. After committing the changes, the files/directories will remain
as unversioned.

By default, SmartSVN refuses to remove files or directories, which have local modifi-
cations or directories which contain modified or unversioned files. Select Force Removal
if you wish to perform the removal of such items anyway.

3.4.3 Ignore

Use Modify|Ignore to mark unversioned files or directories to be ignored “locally”. This
is useful for files or directories which should not be stored under SVN control. These
are usually temporary, intermediate or automatically built files, like C’s .obj or Java’s
.class files resp. their containing directories.

Local ignore patterns are stored within the working copy (in the svn:ignore property
of the corresponding parent directories) and will be committed. Therefore, to have a file
locally ignored, it’s necessary that its parent directory is either ignored too or is versioned,
so the necessary svn:ignore property can be stored there. Hence, when trying to ignore
a file or directory within another unversioned directory, SmartSVN will ask you to add
this parent directory. Contrary to local ignore patterns you can configure global ignored
patterns in the project settings (see 7.3).

You can select Ignore Explicitly to add each selected file/directory explicitly to the
ignore list. If SmartSVN detects a common pattern for the selected files/directory, it will
also allow you to Ignore As Pattern.

This command is a shortcut for editing the svn:ignore property directly by by Prop-
erties|Ignore Patterns. Refer to Section 3.7.8 for details.

3.4.4 Delete Physically

Use Modify|Delete Physically to delete local files or unversioned resp. ignored directories.

c© 2011 syntevo GmbH, www.syntevo.com 34

Chapter 3. Commands

Warning! Be careful before deleting a file (or directory) as there will be no
way to recover unversioned items.

3.4.5 Create Directory

Use Modify|Create Directory to locally create a directory within the currently selected
directory.

Enter the Path of the subdirectory, which shall be created. The path may consist
of multiple directory names, separated by “\” resp. “/” to create multiple directories at
once. Select Schedule for addition to schedule the created directory/directories for being
added to SVN control, see Section 3.4.1.

3.4.6 Rename

Use Modify|Rename to rename a file or directory which is already under SVN control.
The file with the old name will be scheduled for removal, the file with the new name for
addition. This command will preserve the file’s history.

3.4.7 Move

Use Modify|Move to move and/or rename a file or directory which is already under SVN
control. The file with the old name will be scheduled for removal, the file with the new
name for addition. This command will preserve the history of the moved item.

There is also a special mode of this commands, which works on exactly two selected
files, where one of the files is missing or removed and the other one is unversioned, added or
replaced. SmartSVN interprets this as a “post-move”, removes the missing (if necessary),
adds the unversioned file (if necessary) and connects the history of the added file to that
of the removed file.

Tip You can also use Drag-And-Drop to copy resp. move files and
directories.

3.4.8 Detect Moves

Use Modify|Detect Moves to convert already performed “manual” moves (including
renamings) of files to “SVN” moves. Typically, you will not perform moves within
SmartSVN itself, but with system commands, by IDEs, etc. One such external move
results in a missing and a new unversioned file. Both files could then be added resp.
removed and committed, what will result in a correct repository content, but will not
preserve the relation between both files (which is actually one moved file). This especially
affects the log of the added file: It will start at the committed revision and won’t include
the revisions of the removed file. To preserve the relation (and hence history/log), a
“post-move” on both files has to be performed. Detect Moves can detect such already
performed “manual” moves based on the file content and displays the corresponding sug-
gestions of which files could be “post-moved”.

c© 2011 syntevo GmbH, www.syntevo.com 35

Chapter 3. Commands

Invoke Detect Moves on a set of missing and unversioned files for which “post-move”
should be detected. Depending on the number of selected files, the operation might take a
while. The results will be displayed in terms of a list of possible “post-moved” files pairs.

Suggestion displays the detected move in a descriptive manner. If you agree that the
corresponding file pair actually represents a move that has happened, keep it selected so
the corresponding “post-move” will be performed. Similarity can be helpful for this deci-
sion. It is purely based on the comparison of the file contents and denotes the calculated
likelyhood for the file pair representing an actually happened move.

For more details, Target displays the name of the unversioned (i.e. new) file. Source
displays the name of the missing (i.e. old) file. If the name of the file has not changed,
i.e. Target would be equal to Source, Source is omitted. In the same manner Target
Path displays the path of the new file and Source Path displays the path of the old file.
Again, Source Path will be omitted if it would be equal to Target Path.

There can also be more than one possible Source for a specific Target. In this case
SmartSVN always suggests the best matching Source, i.e. that file with yields the high-
est Similarity, and Alternatives shows the number of possible alternative sources. Use
Compare to compare the currently selected Source and Target file with the File Com-
pare (see 8.2). Use Alternatives to select an alternative source to be used instead of the
original suggestion. Finally, if you consider a suggestion and all available Alternatives
not correct, you may deselect the suggestion so no “post-move” will be performed for that
specific target.

Click OK to actually apply the selected “post-moves”.

3.4.9 Copy

Use Modify|Copy to create a copy of a file or directory which is already under SVN
control. This command will preserve the history of the copied item.

Select the Target Directory and the new File Name under which the copy of the
file/directory shall be created.

There is also a special mode of this commands, which works on exactly two selected
files, where one of the files is versioned, but not added or replaced and the other one is
unversioned, added or replaced. SmartSVN interprets this as a “post-copy”, adds the
unversioned file (if necessary) and connects the history of the added file to that of the
other file.

Tip You can also use Drag-And-Drop to copy resp. move files and
directories.

3.4.10 Copy From Repository

With Modify|Copy From Repository you can copy a file or directory from the repository
to your local working copy. This command is useful to resurrect dead files or directories
from earlier revisions.

Repository is the repository of your local working copy, it can’t be changed as copies
can only be performed within the same repository. For Copy enter the file/directory
and its Source Revision which shall be copied. Specify the local directory Into Local

c© 2011 syntevo GmbH, www.syntevo.com 36

Chapter 3. Commands

into which the file/directory shall be copied. With Name will be the actual name (last
component of the path).

3.4.11 Copy To Repository

With Modify|Copy To Repository you can copy the selected local file/directory to the
repository. This operation is useful for creating tags, although SmartSVN provides more
convenient functions for this task (see Section 3.8).

Repository is the repository of your local working copy, it can’t be changed as copies
can only be performed within the same repository. The local file/directory Copy Local
will be copied to the project’s Repository. The target directory is Into Directory. With
Name will be the actual name (last component of the path). Because the copy is directly
performed into the repository, you have to specify a corresponding Commit Message.

Use Externals Revisions to specify how to handle externals revisions (see 3.7.7). This
option is only relevant for externals which have their revisions set to HEAD. By default,
Leave as is will not modify any externals revisions. Choose Fix all to have all revisions
set to their current values, as present in the working copy. Choose Fix except below
to have all revisions set to their current values except externals pointing to the specified
location or some subdirectory of this location.

Only when fixing externals you can make sure that later checkouts of the copied
location will produce exactly the same working copy. Otherwise, externals which have
been left at HEAD will continue to bring the latest revisions of that externals which are
in general not equal to that at the time of creating the copy.

3.4.12 Copy Within Repository

With Modify|Copy Within Repository you can perform pure repository copies. This is
for instance a convenient and fast way to create repository tags/branches.

Select the Repository within which the copy shall occur. Copy From and the Source
Revision specify the copy source. For Copy you can either select to copy To or to copy
Contents Into. In case of copy To, the source will be copied into Directory with its name
set to With Name (last component of the path). For copy Contents Into, the contents
(files and directories) of the source will be copied directly into the Directory with their
corresponding names. Because the copy is directly performed in the repository, you have
to specify a Commit Message.

Note This copy operation is actually no local operation, as it requires
no working copy. For convenience we have put it into the chapter
“Local Modifications” anyway.

3.4.13 Revert

Use Modify|Revert to revert the local changes of the selected files/directories. In case of
directories you have the option to Recurse into subdirectories. If deselected, only the
properties of the directory itself will be reverted.

c© 2011 syntevo GmbH, www.syntevo.com 37

Chapter 3. Commands

• Added and copied files/directories will be unscheduled for addition and return to
unversioned state.

• Removed files/directories will be unscheduled for removal and restored with their
content and properties taken from the pristine copy.

• Replaced files/directories will be unscheduled for replacement and restored with
their content and properties taken from the pristine copy.

• Modified files/directories will be restored with their content and properties taken
from the pristine copy (overwriting local changes!).

• Missing files will be restored with their content and properties taken from the pris-
tine copy. Missing directories can’t be restored, because the pristine copy is also
missing. You have to freshly Update (see 3.3.1) them from the repository.

• Conflicted files/directories will be restored with their content and properties taken
from the pristine copy (ignoring local changes which caused the conflict!).

• For Case-changed files their original file names will be restored and modifications in
contents/properties will be reverted.

Warning! Be careful before reverting a file or directory as all local modifica-
tions will be lost.

3.4.14 Mark Resolved

Use Modify|Mark Resolved to mark conflicting files (see Table 2.5) resp. conflicting
directories (see Table 2.1) as resolved. You have to resolve conflicts to be able to commit
the files/directories.

In case of directories you have the option to Resolve files and subdirectories recur-
sively. If selected, all conflicting files and directories within the selected directory will be
resolved. Otherwise only the property conflicts of the directory itself will be resolved.

Regarding the File Content, use Leave as is to apply no further modifications to
resolved files. Use Take old to replace the contents of resolved files by the contents of
their corresponding pristine copies as they were before the update/merge. Use Take new
to replace the contents of resolved files by the contents of their corresponding pristine
copies as they are now after the update/merge. Use Take working copy to replace the
contents of resolved files by their contents as they were before the update/merge.

Tree Conflicts

Certain kinds of conflicts are not directly related to the content or properties of a file
(or directory) but to conflicting actions on a file/directory. Such conflicts are called tree-
conflicts.

Tree conflicts are similar to normal conflicts as conflicting files/directories can’t be
committed before they have been resolved. The Local State (see 2.4.2) column for files
shows details for a tree conflict, if present. File and directory tooltips display this infor-
mation as well.

c© 2011 syntevo GmbH, www.syntevo.com 38

Chapter 3. Commands

Example
You have modified file foo.txt in your working copy. Your co-worker has renamed
foo.txt to bar.txt and has committed this change. When updating from the repos-
itory, you will receive bar.txt but because of your local modifications to foo.txt

this file will not be deleted, but re-scheduled as copied from itself (but the revision
before the update). Furthermore, bar.txt will receive your local modifications of
foo.txt. This represents a tree conflict. There are different kind of tree-conflicts,
for a detailed analysis refer to: http://svn.collab.net/repos/svn/branches/1.
6.x/notes/tree-conflicts/

3.4.15 Mark Replaced

Use Modify|Mark Replaced to mark modified files or a directory as replaced, see Table
2.5 for details.

Marking modified files or a directory as replaced does not affect the contents of the files
or directories, but only the meaning of the commit and the history of the directory/files.
This can be useful to express that the content of a directory/files is not related to its
previous revision. The Log (see 3.9.7) of such a directory/files will not go beyond the
replacement revision, meaning that the directory/files has been created at that revision.

Example
For example, we have a Java interface Person.java and one implementing class
PersonImpl.java. As the result of a refactoring, we are getting rid of the interface
Person.java and rename the class PersonImpl.java to Person.java. This results
in a removed file PersonImpl.java and a modified file Person.java.
When simply committing these changes, this would mean that the class
PersonImpl.java has been removed and the interface Person.java has been
changed to a class Person.java, with no history except of that one of the interface.
Taking a closer look at this situation, it would be better to do a commit meaning that
the interface Person.java has been removed and the class PersonImpl.java has
been renamed to Person.java. At least that was the intention of our refactoring and
it would also mean to preserve the history of PersonImpl.java for Person.java.
To achieve this, we will use Mark Replaced on Person.java and then we
will use Move on Person.java and PersonImpl.java, performing a “post-
move” between both files (for details refer to Section 3.4.7), yielding a removed
PersonImpl.java and a replaced Person.java, which has its history (Copy From)
set to PersonImpl.java.

3.4.16 Clean Up

Use Modify|Clean Up to clean up unfinished SVN operations for the selected directory
(and all subdirectories). Cleaning up a working copy is necessary, when the working copy
gets “internally” locked (in contrast to file locks, see Section 3.10). A working copy can
get locked, when certain SVN operations (like commit or update) are aborted. In general,
cleaning up a working copy is a safe process.

c© 2011 syntevo GmbH, www.syntevo.com 39

Chapter 3. Commands

Note A clean up may fail for the same reasons, for which the preced-
ing SVN operation has failed. This typically happens, if certain
files or directories can’t be read/written. In this case, please check
whether other running processes might lock the file and whether
file permissions have been set adequately.

3.4.17 Fix

Use Modify|Fix to fix (or “repair”) the selected directory/files. This option is only appli-
cable for certain, unusual working copy states and provides support to handle them:

Case-changed files

SVN repositories and working copies are in general case-sensitive. This can cause problems
when working on a case-insensitive operating system, like Microsoft Windows or certain
file systems on Apple Mac OS and changing the file name’s case (upper-case to lower-case,
etc.). Because of SVN’s working copy format and the pristine copies, it’s technically not
possible to handle such a file name case change.

One solution is to avoid this situation by only performing file name case changes on
an operating system which supports case-sensitive file names or directly in the repository,
by using the Repository Browser (see 4).

Anyway, a file name case change may happen on a case-insensitive operating system,
e.g. because of defect software tools, etc. SmartSVN detects such invalid changes and
puts the file into case-changed file state, see Table 2.6. Fix will now change back the file
name case to its original form as found within the pristine copy, resolving this problem.

Nested Roots

A nested root (see Table 2.1) is a working copy within another working copy which is not
related to this parent working copy. SVN commands ignore such nested roots, they are
simply treated as unversioned directories.

Nested roots are typically resulting from moving a directory from one location to
another one, without using appropriate SVN commands, like Move (see 3.4.7). This
leaves a missing directory at its original location and introduces nested root at its current
location.

Fix offers following solutions for nested roots, depending on their origin:

• Mark as Copied will convert the nested root to a copied directory, with its copy
location being the original repository location. This option is only available if the
current location is part of the same repository as the original location.

• Convert to Unversioned strips off the SVN admin area (.svn directories) for this
directory and all of its children. This will make the directory unversioned, so it can
be added and committed afterwards. This option is always available but in general
should only be used if Mark as Copied is not available, as unversioned directories
can be added afterwards, but their history will be lost.

c© 2011 syntevo GmbH, www.syntevo.com 40

Chapter 3. Commands

Added-missing directories

If a directory has been scheduled for addition (see Section 3.4.1) and has been locally
deleted afterwards (i.e. the directory and its containing SVN admin area .svn is missing),
the directory is in Added-missing state (see Table 2.1).

Such directories are actually only a leftover entry in the parent directory’s SVN admin
area. The resolution is to Revert (see 3.4.13) them, what is done by this command.

3.5 Commit

Use Modify|Commit to write back (commit) the changes of the selected files/directory
to the repository.

The Commit wizard guides you through the commit, starting with the “Configura-
tion”. Based on the “Configuration” the working copy will be scanned for changes, this
is especially important when performing the Commit on a directory. Subsequent pages
allow further “customization” of the commit. Their presence depends on the changed files
and directories found during the scanning phase.

Before the commit wizard opens, it checks whether you might have missed to select
some files resp. directories and in this case shows a warning. For details, refer to the
Preferences (see 9.4). Also, a warning will be issued if you are going to commit switched
(see 3.3.4) files or directories. Unless this is actually intended, you should switch back the
corresponding entries and re-start the commit.

Page “Configuration”

This page is only present when committing one or more directories.
Select Recurse into subdirectories to scan not only changes from the selected local di-

rectory, but also from subdirectories. When recursing into subdirectories, select Descend
into externals to also scan for changes in external working copies (see 3.7.7).

When clicking Next the file system of your project will be scanned. This may take
some time.

Page “Externals”

This page is only displayed if the option Descend into externals on the Configuration
page has been selected and at least one committable entry within an external working
copy has been found. For details on externals, refer to Section 3.7.7.

Every such external working copy is listed with its Local Path and its URL. The
project’s working copy itself is also listed with local path “.”. Every working copy can
be individually selected or deselected for the commit by toggeling the checkbox in Path
column (either with the mouse or with <Space>-keystroke).

Working copies pointing to the same repository (the URL is helpful to see this) can be
committed together, hence SmartSVN will have to perform as many commits as different
repositories are involved in the overall commit process.

c© 2011 syntevo GmbH, www.syntevo.com 41

Chapter 3. Commands

Warning! When committing to multiple repositories, every commit will create
its own revision in the corresponding repository. Hence, atomicity
of such commits is not sustainable. This for example means that
the commit to one repository can succeed while the other one fails.
While fixing the failing commit another person might already have
updated its working copy and only have received the successfully
committed revision. This might result in (temporarily) inconsis-
tencies of his/her overall project.

You can choose whether to commit the selected working copies with One commit
message or with Individual commit messages. If you are committing multiple working
copies with different Bugtraq-Properties (see 3.7.9) configuration, it’s required to use
Individual commit messages to have the Bugtraq-Properties functionality being present
on Files page.

Page “Detect Moves”

This page is only displayed if the option Detect moved and renamed files in the Prefer-
ences (see 9.4) has been selected and at least one moved or renamed file pair was detected
(refer to Section 3.4.8 for details. By Differences you can toggle the integrated compare
view. This will show the differences for the currently selected file in the lower part of the
Commit dialog. The change display behaves similar to the Changes view (see 2.6).

Page “Files”

This pages shows a list of all files and directories which were found to be committable ac-
cording to the selected options from the Configuration page resp. the configuration from
the Preferences (see 9.4). To skip a file/directory from commit, deselect the corresponding
checkbox (either with the mouse or by pressing <Space>-keystroke).

Note SmartSVN also displays certain kinds of files which are not commit-
table (e.g. conflicted files, refer to Table 2.5). This is a precaution
to not forget to resolve these files’ problems and commit them as
well (if necessary).

You may review your changes, by expanding the dialog with the Differences button.
This will show the differences for the currently selected file in the lower part of the Commit
dialog. The change display behaves similar to the Changes view (see 2.6). Alternatively,
you can also double-click a file to open a File Compare (see 8.2) frame.

For the Commit Message you can enter arbitrary text or select an older message from
the message popup right to the text field. The popup menu will show up recently entered
commit messages, allow to clear this message history by Clear Message History or use
Get from Log to fetch an older commit message from the log. By <Ctrl>+<Space>-
keystroke you can trigger a file name completion, based on all of those files which have
been selected for the commit.

c© 2011 syntevo GmbH, www.syntevo.com 42

Chapter 3. Commands

Depending on whether resp. how Bugtraq-Properties (see 3.7.9) are configured for
the current working copy, there may be an additional “issue ID” input field. The name
of this field can vary, depending on the Bugtraq-Properties. Its content will be ap-
pended/prepended to entered commit message afterwards, forming the final commit mes-
sage.

If the spell check (see 9.13) has been configured, SmartSVN will check the entered
Commit Message for basic spelling errors. The spell check ignores file paths, i.e. strings
containing a “/” and “issue IDs” which are part of the commit message and which can
be recognized by the Bugtraq-Properties. For details regarding the spell check’s popup
menu, refer to Section 9.13.

Tip Commit messages will be displayed in various kinds of logs. Hence,
a meaningful commit message is very helpful for you and your team
to track your changes.

By default, SmartSVN will warn you in case of an empty commit message. You can
switch this warning off in the Preferences (see 9.4).

Tip You may configure a template message using the
tsvn:logtemplate property which has to be set on the project
root. For details refer to Section 11.9.

If Descend into externals has been selected and multiple working copies on the
Externals page have been chosen to commit, there will also be a topmost Working Copy
selector. All other items on this page are always related to the selected working copy. In
particular it will be necessary resp. it is recommended to enter a Commit Message for
each working copy.

Page “Locks”

This page will only be displayed, if the selected files/directories for the commit, which
have been scanned, contain locked files.

Select Keep locks for committed files to keep the files locked even after having them
committed. Select Unlock committed files to unlock them after the commit. In this case
you can also selected further unchanged but locked files which had been detected during
the scan and which shall be unlocked upon a successful commit as well.

Tip You can configure whether Keep locks for committed files or Un-
lock committed files should be selected by default in the Project
Settings (see 7.3.3).

Click Finish to finally start the commit.

Note You may apply client-side pre-commit hook scripts. For details
refer to Section 11.10.

c© 2011 syntevo GmbH, www.syntevo.com 43

Chapter 3. Commands

3.6 Merging

Merging is used to incorporate changes from one “development line” into another “devel-
opment line”.

Note Subversion’s merging has been significantly improved with version
1.5 and its “merge tracking” support. Most merging features re-
quire an Subversion 1.5 server to work. Subsequent explanations
are assuming that you are performing the commands against such
an Subversion 1.5 server.

Two very common use cases of merging are release branches and feature branches:

• A release branch is typically forked off the main development line (trunk) after the
“release” of a new version (of the software project, a website or whatever). With the
“release” the corresponding version typically goes into “production use” and has to
gain on stability while the development continues on the trunk. Therefore a release
branch will only receive problem fixes (bug fixes) from trunk by merging them to
the branch.

• A feature branch is a parallel development to the trunk, for the purpose of developing
a new “feature” which shall finally be brought back to the trunk. A feature branch
is frequently merged from trunk to stay up to date and once the implementation of
the “feature” has been finished, all relevant changes are merged back to the trunk.

For a more indepth information on these use cases, examples and general information,
refer to http://svnbook.red-bean.com/.

Warning! As merging can become a rather sophisticated task, there are cer-
tain recommandations. The most important ones are:

• Do only recursive merges and try to always merge on the same
“merge root”, preferably trunk itself or the root of a branch.

• Avoid merging into a working copy which contains mixed re-
visions. Therefore do an Update (see 3.3.1), preferably to
HEAD, before.

• Avoid merging into non-recursively (resp. non-completely)
checked out working copies. Therefore do an Update More
(see 3.3.2) on your merge root, selecting all files and directo-
ries and the Recurse into subdirectories option.

c© 2011 syntevo GmbH, www.syntevo.com 44

Chapter 3. Commands

3.6.1 Merge

Use Modify|Merge to merge changes from another source branch to the selected file/directory.
Select Trunk to merge from the main trunk. Select Branch or Tag and enter the

branch or tag name to merge changes from a branch or tag. Select Other URL to merge
from an arbitrary URL, specifying the corresponding repository and Path.

Alternatively, you may select a merge source from the History button. It shows a
list of previous merge sources you have used as well as merge sources extracted from the
svn:mergeinfo (see 3.7.10) property of your merge target.

Use All Revisions to merge all those revisions which have not yet been merged from
the selected location. SmartSVN will detect them based on the present merge tracking
information.

Example
You will typically use this option when working with a feature branch to keep it in
sync with the trunk.

Warning! All Revisions does not work with pre-1.5 servers (e.g. 1.4 servers).

Use Revision Range to manually specify multiple (ranges of) revisions to be merged
from the selected location. SmartSVN will detect whether certain revisions of the specified
ranges have already been merged and avoid to repeatedly merge them. Single revisions
are just specified by their revision number while ranges starting at start (inclusive) and
ending at end (inclusive) are specified by start-end. Multiple revisions resp. ranges can
be specified by separating them by a colon (,). Certain revisions may be excluded by
prefixing them with an exclamation mark (!).

Instead of entering the revisions manually, you can choose them from the revision
browser (see 3.14.2). The revision browser will display those revisions which have not
been merged by a green arrow (“merge candidates”). From the Options-button you can
select Show only mergable revision to restrict the revision list to those merge candidates.
By default, Show all revisions will include also revisions which have already been merged.

Example
You will typically use this option when working with a release branch to get only
bugfix revisions from the trunk to this branch.

Select Reverse merge to reverse the changes between the selected revisions. Internally,
this is achieved by swapping the start and end revisions.

Advanced options

By default, merging takes the ancestry into account. This means, that merging does not
simply calculate (and merge) the difference between two files which have the same path,
but also checks if both files are actually related. For the typical merging use cases, this
behaviour leads to the expected results and it is also required for the merge tracking to
work. You can switch this behaviour off by selecting Ignore ancestry, however this option
is not recommended unless you have a good reason to use it.

c© 2011 syntevo GmbH, www.syntevo.com 45

Chapter 3. Commands

Regarding Ignore changes in EOL-style and For whitespaces handling, refer to
Create Patch (see 3.9.10).

Deselect Recurse into subdirectories to merge only changes to the selected direc-
tory/file itself but not it’s contained files, etc. In general it’s recommended to keep
Recurse into subdirectories selected.

With Record only no files will be touched during the merge, but only the Mergeinfo
(see 3.7.10), will be adjusted correspondingly, so the core merge tracking mechanisms
consider the revisions as merged. This option can be useful to “block” certain revisions
from being actually merged.

By default merging will stop when it’s required to delete locally modified files, because
they have been removed in the merge source. You can switch off this safety check by
selecting Force deletion of locally modified files, if necessary.

Close the dialog with Merge to immediately perform the merge to the selected di-
rectory/file of the current working copy. Alternatively you may choose to Preview the
changes which the merge will bring, for details refer to the Merge Preview (see 8.10).

Tip You can choose to keep the auxiliary merge files even for non-
conflicting files in the Project Settings (see 7.3.3).

3.6.2 Merge from 2 Sources

Use Modify|Merge from 2 Sources to merge changes between two different merge sources
(URLs) to the selected file/directory.

Changes are merged from one Repository between From and To to the local Des-
tination. The last 10 merge sources will be stored and can be set using the drop-down
button beside the Repository selector. For details regarding the Advanced options, refer
to Section 3.6.1.

Note Most merging use cases are covered by Merge (see 3.6.1) and Rein-
tegrate Merge (see 3.6.3) and if possible these commands should be
used.

3.6.3 Reintegrate Merge

Use Modify|Reintegrate Merge to “reintegrate” changes from another URL to the se-
lected file/directory.

Reintegrate merging is different from the “normal” merging: It carefully replicates
only those changes unique to the source Merge From compared to the local working
copy.

Example
You will typically use Reintegrate Merge after the work of a feature branch has been
finished and the “feature” shall be reintegrated into the trunk. Here it’s important
that all the previous merges from trunk to the feature branch are filtered out to avoid
unnecessary merge conflicts, etc. That is – in short – what reintegrate does. For
a detailed explanation, refer to http://svn.haxx.se/users/archive-2008-05/

0808.shtml.
For details regarding the Advanced options, refer to Section 3.6.1.

c© 2011 syntevo GmbH, www.syntevo.com 46

Chapter 3. Commands

3.6.4 Apply Patch

Use Modify|Apply Patch to apply a patch file to your working copy. Currently supported
patch file formats are unidiff patches. See Section 3.9.10 on how to create patches with
SmartSVN.

For the Select Patch File dialog, select the patch file which you want to apply.
Typically, patch files have .patch or .diff extensions. Based on the file paths contained
in the patch file, SmartSVN will try to detect the correct base directory to which the
patch should be applied. It will fail, if at least one file to patch has not been found in the
working copy.

The resulting window is similar to the Merge Preview (see 8.10) window, refer to this
section regarding the available commands. The Files area allows to deselect certain files
from the patch. You can finally perform the patching by Patch|Apply Patch.

Unpatchable files

In case the patch could not be applied to certain files, an Unpatchable files area will
be displayed in the top of the window. The table contains the Path of the file and
a description of the Problem. The tooltip text of the Problem column contains more
details in case expected and actual lines did not match when trying to apply the patch
to the file.

3.7 Properties

Both, files and directories can have properties attached to them. There exists a set of
predefined properties, which are used by SVN itself to manage the working copy. All other
properties are “user-defined” properties. Following commands are related to properties
and are available from the Properties menu.

3.7.1 Edit Properties

Use Properties|Edit Properties to display and edit properties of the selected file/directory.
For details refer to Section 8.3.

Note Internal SVN properties are displayed with grey font. It’s not rec-
ommended to modify SVN properties directly by this dialog but
better use the special commands which SmartSVN offers from the
Properties menu.

You can Add, Edit and Remove individual properties. Use Revert on one or more
properties to reset their Current Value to their Base Value.

3.7.2 Set or Delete Property

Use Properties|Set or Delete property to change a property for multiple files/directories
at once.

c© 2011 syntevo GmbH, www.syntevo.com 47

Chapter 3. Commands

Enter the name of the Property; the drop-down button offers the SVN internal prop-
erties for selection. Select either to Set Value To and enter the property value or select
Delete Property resp. Set boolean property in case of boolean SVN-properties.

For directories, choose to Recurse into subdirectories and optionally to Include this
directory. Choose Force to skip a couple of checks which are performed for certain
property (values).

Example
To get rid of all explicit mergeinfo from your project except from the project root,
select svn:mergeinfo for Property, choose Delete Property and Recurse into
subdirectories and deselect Include this directory.

3.7.3 MIME-Type

Use Properties|MIME-Type to change the SVN MIME-type of the selected files. The
MIME-type can be either a default Text, a default Binary or a Custom type. In case of a
Custom type, you have to specify the corresponding MIME-type here. E.g. “text/html”,
“application/pdf” or “image/jpeg”.

MIME-types can’t be arbitrary strings but must be well-formed. For instance, a
MIME-type must contain a “/”. By default, SmartSVN checks whether MIME-types are
well-formed. Use Force to disable this check.

The MIME-types are relevant for some SVN operations, for instance updating, where
in case of text types the line endings, etc. can be replaced. By default, when adding
files (see Section 3.4.1), the coarse MIME-type (either text or binary) is automatically
determined by SmartSVN. In general this detection is correct, but in certain cases you
may want to explicitly change the MIME-type of the file with this command.

Within the project settings (see 7.3.3) you can define file name patterns which should
always be treated as binary.

3.7.4 EOL-Style

Use Properties|EOL-Style to change the EOL-Style (line separator) of the selected files.
The EOL-style is used when updating or checking out a text file and results in a corre-
sponding conversion of its line endings:

• Platform-dependent converts to the platform’s native line separators.

• LF, CR, CR+LF converts to the corresponding line separators, regardless of the
current platform.

• As is performs no conversion.

In the project settings (see 7.3.3), the default EOL-style which will be applied to every
added file can be specified. By default, this will be Platform-dependent.

When changing the EOL-style of a file, SmartSVN checks whether the file has con-
sistent line endings. If this is not the case, it will reject to change the EOL-style (other
behaviors can be configured in the project settings). To skip this check, use Force.

c© 2011 syntevo GmbH, www.syntevo.com 48

Chapter 3. Commands

3.7.5 Keyword Substitution

Use Properties|Keyword Substitution to select the keywords for the selected files, which
shall be substituted (expanded) locally. Keyword substitution only works for text files.

For each keyword you have the option to Set or Reset it. Select Don’t change to
keep the current substitution for the keyword.

3.7.6 Executable-Property

Use Properties|Executable-Property to change the “Executable-Property” of the se-
lected files. The “Executable-Property” is a versioned property, but is only used on
Unix(-like) platforms, where it defines whether the “Executable Flag” should be set to a
file or not.

Choose Executable if the “Executable-Property” should be assigned to the file or
Non-Executable to remove the property from the selected files.

3.7.7 Externals

Use Properties|Externals to define or change externals. An external (officially also re-
ferred to as externals definition) is a mapping of a Local Path to an URL (and possibly
a particular Revision) of a versioned resource.

In general, externals are specified by complete URLs, but there are also shorter
representations which can be more flexible. The URL input field allows to switch be-
tween the available representations for a given URL. For a detailed description of exter-
nals and valid URL formats, refer to http://svnbook.red-bean.com/nightly/en/svn.

advanced.externals.html.

Example
To include the external http://server/svn/foo as directory bar/bazz at revision
4711 into your project, select directory bar and invoke Properties|Externals. Click
Add, enter bazz into the Local Path input field, http://server/svn/foo into
the URL input field, 4711 to the Revision input field and confirm by OK: After
committing your property change, an update on bar will create the subdirectory
bar/bazz with the content from http://server/svn/foo at revision 4711.

Tip It is safer to always set a Revision to externals. In this way you can
always be sure about which actual version you are working with.
When you decide to use a more recent revision of the external, you
can evaluate it before and if you are satisfied, increase the Revision
number of the external definition.

Note Externals may refer to directories as well as to files. In case of
files, the referred URL must be part of the same repository to
which its local parent directory (i.e. the directory to which the
svn:externals property belongs) belongs.

c© 2011 syntevo GmbH, www.syntevo.com 49

Chapter 3. Commands

3.7.8 Ignore Patterns

Use Properties|Ignore Patterns to add, change or delete local ignore patterns for a
directory. Local ignore patterns define file and directory patterns to be ignored within
the directory.

Local ignore patterns are stored within the working copy (in the svn:ignore property
of the directory) and will be committed. Therefore ignore patterns can only be applied
to versioned directories.

By default, the Patterns are only set to the selected directory. You may also choose to
set the patterns to all subdirectories by Recurse into subdirectories. In case of recursive
ignore patterns, you may alternatively consider to specify global ignore patterns within
the project settings (see 7.3.3).

To add an ignore pattern, you can also use the Modify|Ignore command.

3.7.9 Bugtraq-Properties

Use Properties|Bugtraq-Properties to configure the Bugtraq-Properties for the current
working copy. Bugtraq-Properties are a technique for integrating Subversion with issue
tracking systems.

A detailed specification for the Bugtraq-Properties can be found at: http://tortoisesvn.
tigris.org/svn/tortoisesvn/trunk/doc/issuetrackers.txt, username is guest with
empty password. SmartSVN implements this specification with following mapping from
UI elements to core bugtraq:-properties as shown in Table 3.1.

bugtraq-Property UI Element
bugtraq:url URL
bugtraq:warnifnoissue Remind me to enter a Bug-ID
bugtraq:label Message Label
bugtraq:message Message Pattern
bugtraq:number is true exactly if Bug-ID is set to Numeric
bugtraq:append is true exactly if Append message to set to Top
bugtraq:logregex For the version with one regular expression this corresponds

to Bug-ID expression. For the version with two regular
expressions, Message-Part Expr. corresponds to the first
line and Bug-ID expression corresponds to the second line.

Figure 3.1: Mapping from core bugtraq:properties to SmartSVN UI elements

Example
Your commit messages look like: Ticket: 5 Some message or ticket #5: Some

message and you want the 5 show up as a link to your issue tracker. In this case,
set Bug-ID expression to [Tt]icket:? #?(\d+) and leave Message-Part Expr.
empty.
If you want the whole Ticket #5 part show up as a link, use the same Bug-ID
expression and also set Message-Part Expr. to this value.

c© 2011 syntevo GmbH, www.syntevo.com 50

Chapter 3. Commands

Example
Your commit messages look like: CF-11: Some message or ET-12: Some

message and you want the 11 resp. 12 to show up as a link to your issue tracker.
In this case, set Bug-ID expression to \d+ and the Message-Part Expr. to
(CF|ET)-(\d+).
If you want the whole CF-11 resp. ET-12 part show up as a link, set Bug-ID
expression to (CF-\d+|ET-\d+) and leave Message-Part Expr. empty.

3.7.10 Merge Info

Use Properties|Merge Info to change the svn:mergeinfo property for the selected
files/directory.

Warning! The svn:mergeinfo is a core part of Subversion’s merge-tracking
mechanisms and is automatically managed by Modify|Merge and
related commands. If you want to “block” certain revisions man-
ually from being merged, you should use Modify|Merge with the
Record only option set.

3.8 Tags and Branches

SmartSVN simplifies the handling of “Tags” and “Branches”. Both “Tags” and “Branches”
are no native SVN concepts, but can easily be handled by the help of Copy To Reposi-
tory (see 3.4.11) and Copy Within Repository (see 3.4.12). SmartSVN provides special
support for managing tags and branches, which are based upon these copy commands.

Commands related to the management of tags and branches are available from the
Tag+Branch menu. Various other commands support tags and branches alternatively
for entering raw URLs.

3.8.1 Tag-Branch-Layout

The Tag-Branch-Layout defines the project’s root URL (within the repository) and where
the trunk, tags and branches of the project are stored. It affects the presentation of and the
working with URLs for various commands. When invoking a tag/branch-aware command
on a directory for which no layout can be found, SmartSVN will prompt you to configure
a corresponding layout in the Configure Tag-Branch-Layout dialog.

A Tag-Branch-Layout is always linked with a corresponding Project Root. A Project
Root is simply the URL of the top-most directory of a project. Any directory can be
defined as a project root as the definition of what a project is, is completely up to you.

The first decision for a Project Root is whether to enable or disable Tag-Branch-
Layouts for it. Many SVN projects are organized using tags and branches. In this case
choose Use following layout to configure the layout. If the corresponding project is not
organized by tags and branches, choose Do not work with tags and branches for this
project root to switch Tag-Branch-Layouts off.

Trunk specifies the root directory of the project’s trunk. Branches and Tags specify
the directory patterns of the branch resp. tag root directories. All paths are relative to

c© 2011 syntevo GmbH, www.syntevo.com 51

Chapter 3. Commands

the Project Root and when using values trunk, branches/* and tags/* here, you will
be compatible with the suggested SVN standard layout.

Example
The Subversion project itself is located at http://svn.collab.net/repos/svn/.
Hence for the corresponding SmartSVN project, Project Root must be set to
http://svn.collab.net/repos/svn/. Subversion’s Trunk URL is http://svn.

collab.net/repos/svn/trunk, i.e. trunk is the relative path and must be set for
Trunk. Branches are located in http://svn.collab.net/repos/svn/branches,
e.g. http://svn.collab.net/repos/svn/branches/1.5.x is the root of the
“1.5.x” branch. I.e. Branches must be set to branches/*. This is similar for
Tags.

It’s also possible to use multiple branch resp. tag patterns. In this case, when entering
e.g. a branch, you have to specify not only the branch name, but the relative path to the
common root of all branches.

Example
A project may also contain shelves which can be interpreted as “personal
branches”. For instance, the Project Root is located at svn://server/svn/proj.
The “normal” branches are located in svn://server/svn/proj/branches and
the shelves are located in svn://server/svn/proj/shelves/[username], e.g.
svn://server/svn/proj/shelves/bob/my-shelve. Hence, for Branches follow-
ing patterns should be used: branches/*, shelves/*/*.
Now, when e.g. creating a branch “b1” with Tag+Branch|Add Branch, you have
to enter branches/b1, so SmartSVN knows that the branch should be created in
the branches directory.
When e.g. switching to Bob’s “my-shelve” with Modify|Switch, you have to enter
shelves/bob/my-shelve, so SmartSVN knows that it should switch to a branch
within the shelves/bob directory.

SmartSVN uses the proposed standard layout for new projects. If you want config-
ure another default layout, open one project which contains the wanted layout, select
Tag+Branch|Configure Layout and use Make this configuration the default here.

3.8.2 Add Tag

Use Tag+Branch|Add Tag to create a copy (“Tag”) of your local working-copy in the
tags directory of your repository. Name will be the name of the tag and Location shows
the corresponding location. You can create two kinds of tags:

• Working Copy tags are a snapshot of your current working copy. Such a tag will
contain local changes, if present unless Skip local changes has been selected. It
will also reflect mixed local revisions and switched directories.

• Repository Revision tags are “server-side” tags which represent a snapshot of the
repository at a given revision.

c© 2011 syntevo GmbH, www.syntevo.com 52

Chapter 3. Commands

Tip Repository Revision tags can be useful if your working copy con-
tains local changes but you don’t want them to be part of the tag.
However, in this case you should make sure that your working copy
actually corresponds to the revision which you plan to tag, i.e. you
should do an update (see 3.3.1) to that revision before and make
sure that there are no switched directories.

By default, SmartSVN will fail if the specified tag already exists. Select Overwrite
existing tag, if necessary to create the tag anyway, replacing the already existing tag.

Use Externals Revisions to specify how to handle externals revisions (see 3.7.7). For
details refer to Section 3.4.11.

Note This command is similar to Modify|Copy Local to Repository (see
Section 3.4.11), but simplifies the special task of “Tagging”.

3.8.3 Tag Multiple Project Roots

Use Tag+Branch|Tag Multiple Project Roots on one or more project roots (working
copy roots) to create a tag for all of these roots.

Enter the Tag Name and Commit Message which will be used for the creation of the
tag. Select Fix external revisions to have all revisions of externals set to their current
values, as present in the working copy.

This functionality is provided by the Tag Multiple Project Roots plugin (see 11.8).

3.8.4 Add Branch

Use Tag+Branch|Add Branch to create a copy (“Branch”) of your local working-copy in
the branches directory of your repository. This command is similar to Tag+Branch|Add
Tag, refer to Section 3.8.2 for details.

3.8.5 Tag Browser

Use Tag+Branch|Tag Browser to display all tags and branches of your project in a
hierarchical structure. The hierarchy denotes which tags/branches have been derived (i.e.
copied) from other branches.

Tags and Branches display the tags or branches location as specified with the Con-
figure Layout (see 3.8.6) command. The subsequent table will contain tags and branches
found herein. A tag resp. branch has a Name, a Revision at which it had been created
and possibly a Removed At revision at which it had been removed.

The tag browser is built upon information from the Log Cache (see 5.3). With Refresh
you can refresh the cache and rebuild the tag/branch-structure.

Tags/branches can be deleted by Remove which will remove the corresponding direc-
tory from the repository.

From the Options-button you can select to show both Branches and Tags, Branches
only or Tags only. Recursive View specifies whether the table shall also display tags/branches
which have been indirectly derived from the currently selected branch in the tree. Select

c© 2011 syntevo GmbH, www.syntevo.com 53

Chapter 3. Commands

Removed Tags/Branches to also display tags/branches which have been deleted within
the Repository. The corresponding items will contain a red minus within their icon to
denote the deletion.

The Branch drow-down button allows to sort the branches either by Name or by
Revision.

Tip You can invoke the Tag Browser also from tag or branch name
input fields by clicking the ellipsis button to the right (...) or using
<Ctrl>+<Space>-keystroke.

3.8.6 Configure Layout

Use Tag+Branch|Configure Layout to configure the Tag-Branch-Layout for the currently
selected directory. This command is only available on the working copy root directory
and externals roots (see 3.7.7). For details refer to Section 3.8.1.

Select Make this configuration the default to have this layout applied to all new
projects.

3.9 Queries

SmartSVN offers following non-modifying commands – some of them work locally, others
by querying the repository – from the Query menu.

3.9.1 Show Changes

Use Query|Show Changes to compare the selected files resp. directory against their
pristine copies. Show Changes will correspondingly open one or more File Compare (see
8.2) frames or the Properties Compare (see 8.3) for a directory. For details, regarding
the warning limit on the number of files to compare at once, refer to Section 9.6. No
connection to the repository is required.

3.9.2 Compare with HEAD

Use Query|Compare with HEAD to compare a single, local file with the HEAD revision
in the repository. If you want to compare against an arbitrary revision or some other
repository file, use Compare with Revision (see 3.9.4).

3.9.3 Compare with HEAD

Use Query|Compare with Previous to compare a single, local file with the next-to-last
revision in the repository (i.e. the revision before HEAD). If you want to compare against
the HEAD revision itself, use Compare with HEAD (see 3.9.2). If you want to compare
against an arbitrary revision or some other repository file, use Compare with Revision
(see 3.9.4).

c© 2011 syntevo GmbH, www.syntevo.com 54

Chapter 3. Commands

3.9.4 Compare with Revision

Use Query|Compare with Revision to compare a single, local file with another revision
of the same file or even another file. Select either to Compare the Working Copy or
the Pristine Copy. Select to compare With the Trunk or a specific Branch or Tag or
an arbitrary Other URL. Select whether to retrieve the repository file At the repository
HEAD or at a another Revision. The result will be a File Compare (see 8.2) frame.

Tip Use Compare with HEAD (see 3.9.2) if you want to quickly compare
a file against the latest repository revision.

3.9.5 Compare 2 Files

Use Query|Compare 2 Files to compare two local files with each other. No connection
to the repository is required.

When having one or more missing files selected, their pristine copies will be used for
the comparison instead.

3.9.6 Compare Repository Directories

Use Query|Compare Repository Directories to compare two different repository directo-
ries for changes (either added, removed or changed files and directories). This command
gives you similar information like Create Patch between URLs (see 3.9.11), but in a more
convenient representation. The result will be a Compare Repository Directories (see 8.4)
frame.

The comparison is performed for one Repository between directories From and To.
Select Recurse into subdirectories to compare not only the directory and its imme-

diate files itself, but also descend into subdirectories. Regarding Ignore Ancestry, refer
to Section 3.9.11.

3.9.7 Log

Use Query|Log to display the change history of the selected file/directory. On the Con-
figuration page you can specify, how far back in history the changes should be displayed.

Select Stop logging on copied locations, to make SmartSVN not trace further
changes after it has encountered a revision where the file/directory has been copied from
another location.

Select Include merged revisions to also fetch the originating revisions for revisions
which have been merged. This option recursively descends into merged revisions and
depending on the number of merges that have affected the file/directory this may result
in a large or even huge number of reported revisions.

On the Advanced page, you can configure the usage of the Log Cache (see 5.3). By
default, the Log Cache is Enabled with updating, which will speed up logging. You can
also choose Enabled without updating to skip updating the cache from the repository,
before it is queried. With this option you can perform logs without requiring any con-
nection to the repository. However new revisions from the repository won’t be displayed.

c© 2011 syntevo GmbH, www.syntevo.com 55

Chapter 3. Commands

With Disabled the log command will be performed directly against the repository. This
can be helpful if your Log Cache is obsolete due to changes in the repository of already
cached log data, see Section 5.3 for details.

Note When using Include merged revisions with the Log Cache be-
ing Enabled, it will still be necessary to perform the Log directly
against the repository.
The Log may also be performed directly against the repository if the
corresponding Log Cache is currently updating a large number of
revisions from the repository. The reason is that instead of waiting
for the Cache update to be finished it will in general be faster to
perform the Log directly.

When Log HEAD instead of working revision is selected, the Log will be performed
against the selected directory’s/file’s URL at HEAD. This will report even revisions for the
URL which are newer than the corresponding working copy revision. The disadvantage
of this option is that the Log might fail, because the URL does no longer exist within the
repository at HEAD.

After you have configured the command, click OK to proceed. Depending on the
configuration the upcoming Log frame will show the resulting log as a directory/file tree
or as a list of single file revisions. For details refer to Section 8.7.

3.9.8 Revision Graph

Use Query|Revision Graph to display the complete “family tree” for the selected file or
directory. The Revision Graph shows all entries (files/directories) within all revisions
which are related to the selected file/directory, either by subsequent changes or by copies,
in both directions future and past. Hence, the Revision Graph of an entry also contains
the complete Log (see 3.9.7) of that entry upto its origin.

On the Configuration page, you can configure the Log Scope of the Revision Graph:
The Revision Graph is based on the complete log of a subset of the repository (not only
the file/directory itself), what is necessary to trace copies. Unfortunately, logging the
complete repository can require significant computational effort, even if the Log Cache
(see 5.3) is used. On the other hand, entries are typically not copied across the whole
repository, but only across a certain part of it. This is e.g. the case, when creating a
branch, or moving one file from one directory to another. Using this knowledge, you
can limit the computational effort by only logging the Project Root of your current
project or even a specific Path instead of the whole Repository Root. For the latter
two options, the origin of the entry, i.e. where it had been added, might not be found,
because the corresponding path is not below the Log Scope. In this case, SmartSVN will
automatically extend the Log Scope to the Repository Root and re-run the search for
the origin.

When creating a Revision Graph for a directory, you can also choose to Report Chil-
dren. This will not only show revisions, where the directory itself has been modified
(properties), but also all revisions, where one of its (in)direct children has been modified.

c© 2011 syntevo GmbH, www.syntevo.com 56

Chapter 3. Commands

Revisions, where children have been modified are considered as simple “modifications”
of the directory, independent of whether children have been modified/added/removed or
copied.

Warning! Be careful, when using Report Children, because – depending on
the selected directory and the size of your repository – this can
result in really huge revision graphs and a correspondingly large
memory consumption.

On the Advanced page, you can configure the usage of the Log Cache (see 5.3), see
the Log command (Section 3.9.7) for details.

After performing this command, the Revision Graph window of the selected file/directory
will come up. For details, refer to Section 8.8.

3.9.9 Annotate

Use Query|Annotate to view the “history” of the selected file on a per-line basis.
Similar to the Log command (see Section 3.9.7), you can configure the period of time

for which the annotated view shall be calculated.
On the Advanced page, select Track content of all revisions to have the file contents

of all revisions present for the subsequent Annotate window. Otherwise you will only be
able to see the content of the latest revision for the selected file.

Use Treat even binary revisions as text to continue the Annotate even when it
encounters one or more binary revisions of the file. This option can be necessary if the
MIME-Type (see 3.7.3) of a file had been corrected e.g. from binary to text in some
earlier revision, although the file had text content since ever. In case the file actually had
binary content in some earlier revision, parts of the annotate output might be trash.

After performing this command, the Annotate window for the selected file will come
up. For details refer to Section 8.9.

3.9.10 Create Patch

Use Query|Create Patch to create a “Unidiff” patch for the selected files/directory. A
patch shows the changes in your working copy on a per-line basis, which can for instance
be sent to other developers. See Section 3.6.4 on how to apply patches with SmartSVN.

The patch will be written to the local Output File. In case of creating a patch for a
directory, you can select Recurse into subdirectories on the Advanced page to create
the patch recursively for all files within the selected directory.

On the Advanced page, select Ignore change in EOL-Style to not output line changes
for which only the line ending differs. This can be useful after having the line endings of
a local file changed temporarily, but only “relevant” changes should be part of the patch.

With For Whitespaces you can configure to not output certain changes which are only
affecting whitespaces. Use No special handing to do not ignore any changes regarding
whitespaces. Use Ignore changes in the amount to ignore those lines for which only
blocks with one or more whitespace characters have been replaced by blocks with one

c© 2011 syntevo GmbH, www.syntevo.com 57

Chapter 3. Commands

or more other whitespace characters. Use Ignore them completely to output only lines
where anything else but whitespaces has changed.

3.9.11 Create Patch between URLs

Use Query|Create Patch between URLs to create a “Unidiff” patch between two ar-
bitrary URLs. See Section 3.9.10 for more details on patches. Compare Repository
Directories (see 3.9.6) is the more visual and convenient version of this command.

The patch is generated from one Repository and contains the difference between From
and To. The patch will be written to the local Output File.

By default, this command takes the ancestry into account. This means, that it does
not simply calculate (and print out) the difference between two files which have the same
path, but also checks if both files are actually related. You can decide to switch this
behaviour off by selecting Ignore ancestry on the Advanced page. For details regarding
the other Advanced options, refer to Section 3.9.10.

3.10 Locks

Since Subversion 1.2, explicit file locking is supported. File locking is especially useful
when working with binary files, for which merging is not possible.

For each file, its lock state is displayed in the file table column Lock and additionally
the Name icon can contain corresponding overlay icons, as shown in Table 2.7. For the
list of possible lock states, refer to Table 3.2.

Name Meaning
(Empty) The file is not locked.
Self The file is locked for the local working copy.
Stolen The file was locked for the local working copy but in the meanwhile it

has been stolen by someone other in the repository.
Broken The file was locked for the local working copy, but in the meanwhile it

has been unlocked (by someone other) in the repository.
(Username) The file is currently locked by the named user.

Figure 3.2: Lock States

The “Self” state can be filled by SmartSVN when scanning the local working copy.
Please note, that this state can change, when scanning the repository (see Section 3.10.1),
as the lock might actually be “Stolen” or “Broken”.

3.10.1 Scan Repository

With Locks|Scan Repository SmartSVN will scan the selected files or all files within
the selected directory in the repository for locks. The result is displayed in the file table
column Lock. This column is automatically made visible, if necessary.

c© 2011 syntevo GmbH, www.syntevo.com 58

Chapter 3. Commands

You can combine scanning the repository for locks with refreshing the Remote State
(see 3.11) in the Preferences (see 9.7). You can also schedule a recurrent refresh of the
repository lock information in the Project Settings (see 7.3.3).

3.10.2 Lock

With Locks|Lock you can lock the selected files in the repository. You can enter a
Comment, why you are locking these files.

The option Steal locks if necessary will lock the requested files regardless of their
current lock state (in the repository). In this way it can happen that you “steal” the lock
from another user, what can lead to confusion, when the other user continues working on
the locked file. Hence you should use this option only if necessary (e.g. if someone is on
holiday and has forgotten to unlock important files).

Keep Update to HEAD before selected to perform an update to HEAD. Only the
latest revision of a file can be locked.

3.10.3 Unlock

With Locks|Unlock you can unlock the selected files resp. all files within the selected
directory (recursively) in the repository.

The option Break locks will unlock the requested files even if they are not locked
locally. In this way it can happen that you “break” the lock from another users, what
can lead to confusion, when the other user continues working on the locked file.

3.10.4 Show Info

Locks|Show Info shows information on the lock state (in repository) of the selected file.
State shows the current lock state (see Table 3.2). Token ID is the SVN Lock Token

ID, which is normally not relevant for the user. Owner is the name of the user, who
currently owns the lock. Created At is the time, when the lock has been set. Expires
At is the time, when the lock will expire. Needs Lock indicates, whether this file needs
locking, i.e. the “Needs Lock” property is set (see Section 3.10.5). Comment is the lock
comment, as entered by the user at the time of locking.

3.10.5 Change ’Needs Lock’

With Locks|Change ’Needs Lock’ files can be marked/unmarked to require locking.
This is useful to indicate users, that they should lock the file before working with it. One
aspect of this indication is, that SmartSVN will set files which require locking (due to
this property) to read-only when checking out or updating.

3.11 Remote State

The remote state shows the files’ repositories states compared to the local working copy.
It can also be interpreted as the action that would happen when updating the working

c© 2011 syntevo GmbH, www.syntevo.com 59

Chapter 3. Commands

copy to HEAD (see Section 3.3.1). The remote state of files is displayed in the file table
column Remote State, the remote state of directories is displayed in the tooltip for a
directory. See Table 3.3 for the list of possible remote states of files and directories.

Name Meaning
Unchanged The local entry is equal to the latest revision of this entry in the repository.

An update on this entry will bring no changes.
Modified For the local entry there exists a newer revision in the repository. An

update will bring the corresponding changes for this entry.
Removed The local entry has been removed in the repository. An update will remove

the entry locally.
Added This entry does not exist locally, currently in a versioned state. An update

will add this entry.
Obstructed For the local entry the latest repository revision contains another entry

for being added. An update will fail here.

Figure 3.3: Remote State Types

To display the complete remote state information, especially the “Will be added”
state, it may be necessary to add directories and files to the directory tree resp. the
file table, which do not exist locally. To such directories and files the special local state
“Remote” is assigned, see Table 2.5 and Table 2.1.

3.11.1 Refresh Remote State

With Query|Refresh Remote State SmartSVN will query the repository and compare
the latest repository revision with your local working copy. In this way, to each file and
directory the corresponding remote state is assigned and displayed in the Remote State
column; it will be made visible, if necessary.

Refresh Remote State can be combined with the local Refresh and the scanning for
locks (see 3.10.1) in the Preferences (see 9.7) to have the Remote State automatically be
refreshed.

If problems during the Remote State refresh are encountered, the status bar (see 2.1)
will display an Error in the Refresh area. The tooltip for this area will show more details
regarding the encountered problem.

3.11.2 Clear Remote State

Use Query|Clear Remote State to clear and hide the remote state. This will remove all
directories and files which have the local state “Remote” (see Table 2.5 and Table 2.1)
and hide the Remote State file table column.

c© 2011 syntevo GmbH, www.syntevo.com 60

Chapter 3. Commands

3.12 Change Sets

A Change Set is a group of committable files and directories, with a message assigned.
Subversion itself supports Changelists which currently can contain only files. SmartSVN
automatically synchronizes the files of a Change Set with the corresponding SVN change-
list. Change Sets are also known as “prepared commit” in other version control systems.

Change Sets are displayed in the Directory Tree (see 2.4) below the normal project
directory structure. Table 3.4 shows the icons which are used for Change Set directories.

Icon Description

Change Set root node

Change Set root node, which contains the modified project root directory

A virtual Change Set directory, which does not represent an actual project
directory, but is necessary to display child directories and files.

(various) A Change Set directory which represents (resp. is equal) to the correspond-
ing project directory, see Table 2.1.

Figure 3.4: Change Set icons

You can create a Change Set by selecting the files/directory to assign to the Change
Set and invoking Change Set|Move to Change Set (Section 3.12.1). You can use the
same menu item to add more committable files/directories to the Change Set, to move
the selected files/directories to a different Change Set or to remove files/directories from
a Change Set. When you are ready to commit, you can simply select the Change Set in
the directory structure and invoke Modify|Commit (Section 3.5).

When the project directory structure is selected (as opposed to a Change Set), deac-
tivating View|Files Assigned to Change Set (Section 2.4) will give a better overview of
changed files not already assigned to a Change Set.

Note A file/directory can only be assigned to one Change Set.

3.12.1 Move to Change Set

Use Change Set|Move to Change Set to change the assigned Change Set (see 3.12) of
selected, committable files/directories.

To move the selected files/directory to a new Change Set, select New Change Set and
enter the Message of the new Change Set. Select Remove this Change Set once it gets
empty to automatically remove this Change Set once it gets empty. Select Allow only
committable entries to automatically remove unchanged resp. other non-committable
entries from Change Sets.

c© 2011 syntevo GmbH, www.syntevo.com 61

Chapter 3. Commands

Example
When having Remove this Change Set once it gets empty and Allow only com-
mittable entries selected, the Change Set will be automatically removed after com-
mitting it because

• the committed files will turn their state into unchanged after the commit and
hence will be removed from the Change Set and

• the Change Set will be empty and hence will be removed itself.

To move the selected files/directory to another, already existing Change Set, select
Existing Change Set and choose the Target Change Set.

To remove the selected files/directory from their currently assigned Change Set, select
Remove from Change Set.

Tip You can use Drag-and-Drop to move files to a Change Set.

3.12.2 Move Up

Use Change Set|Move Up to move the selected Change Set (see 3.12) one position up
(when having multiple Change Sets).

3.12.3 Move Down

Use Change Set|Move Down to move the selected Change Set (see 3.12) one position
down (when having multiple Change Sets).

3.12.4 Delete

Use Change Set|Delete to delete the selected Change Set (see 3.12). This will only affect
the Change Set assignment, not the files nor their SVN state.

3.12.5 Edit Properties

Use Change Set|Edit Properties to change the Message and other properties of the
selected Change Set (see 3.12). For details, refer to Section 3.12.1.

3.13 Tools

The Tools menu offers several tools/utilities which can be useful when working with SVN
projects.

c© 2011 syntevo GmbH, www.syntevo.com 62

Chapter 3. Commands

3.13.1 Export Backup

Use Tools|Export Backup to export a backup of the selected files/directory.
Export displays what will be exported. Relative To displays the common root of

all files to be exported and the exported file’s paths will be relative to this directory.
Depending on the selection of files/directory this will either be the number of files being
exported or All files and directories.

You can either export Into zip-file or Into directory. In both cases, specify the target
zip file resp. directory and optionally choose to Wipe directory before copying.

Select Include Ignored Files resp. Include Ignored Directories, if you want to include
these ignored items (and their contents) as well.

3.13.2 Conflict Solver

Use Tools|Conflict Solver to start a Three-Way-Merge, which can be invoked on conflict-
ing files (see Table 2.5). For details, refer to Section 8.5.

When invoking this command on a binary file, it will bring the Mark Resolved (see
3.4.14) dialog.

3.13.3 Canonicalize URLs

Use Tools|Canonicalize URLs to rewrite URLs of .svn-files to canonical form, this means
omitting default port numbers. Having an URL in canonical form is convenient, because
you need not to enter the port number when working with the URL.

Select Include Externals to also canonicalize externals. Canonicalizing externals can
require to rewrite the svn:externals property (Section 3.7.7). In this case the affected
directories will be in modified state after the canonicalization and you have to commit
them by yourself to finish the canonicalization.

3.13.4 Set Up Local Repository

Use Repository|Set Up Local Repository to set up a new local SVN repository and
optionally svnserve to access this repository.

To use this command you need to have a local installation of the Subversion command
line binaries. You can download them from http://subversion.tigris.org. It’s rec-
ommended to have these binaries and the necessary libraries on your operating system
path. Enter the full path to svnadmin and svnserve.

Note When proceeding with Next SmartSVN will perform some basic
checks whether the chosen files are correct by executing svnadmin

--version resp. svnserve --version. Later on SmartSVN needs
to be able to execute svnadmin create [repository] resp. in-
voke svnserve -d -r [repository-root].

On the Repository page, enter the New Repository Location where the repository
will be created.

c© 2011 syntevo GmbH, www.syntevo.com 63

Chapter 3. Commands

On the Username page, enter a Username and Password which will have write-access
to the newly created repository; anonymous access will be restricted to read-only.

Note SmartSVN will configure the file conf/svnserve.conf (in the se-
lected repository directory) to use the password file conf/passwd.
Later on you can add other users resp. change usernames and pass-
words in this file.

After the repository has been created and configured successfully, you may choose to
Start ’svnserve’ automatically when accessing the repository. Refer to Section 6.1.1
for details. Select Proceed with importing files into the repository to continue with
the Import into Repository wizard (see 3.2).

3.14 Common Features

SmartSVN includes a set of common features resp. UI elements, which are shared by
various commands.

3.14.1 Recursive/Depth options

In directory mode, most commands can work in recursive or non-recursive. By default,
SmartSVN offers a basic option Recurse into subdirectories (or a similar name) which
let’s you either only operate on the directory itself or on all contained files and subdirec-
tories, recursively.

Alternatively, you can switch to advanced recursion options in the Preferences (see
9.3). In this mode SmartSVN offers the Subversion depth levels:

• Only this directory only operates on the directory/file itself.

• Only file children operates on the directory and its directly contained files.

• Immediate Children (files and directories) operates on the directory, its directly
contained files and subdirectories, but not on files or directories within these subdi-
rectories.

• Fully recursive operates on the directory, contained files and subdirectories recur-
sively.

Hence, having Recurse into subdirectories selected is equivalent to depth Infinity
while having Recurse into subdirectories deselected is equivalent to depth empty.

3.14.2 Revision input fields

Most input fields, for which you can enter a revision number, support a browse function,
which can be accessed by the Select or by hitting <Ctrl>+<Space>-keystroke.

A dialog displaying all revisions for the selected file/directory will come up. It shows all
revisions, for which the directory has actually been affected and additionally all revisions

c© 2011 syntevo GmbH, www.syntevo.com 64

Chapter 3. Commands

which correspond to a specific tag, see Section 3.8 for further details. The Revision column
shows the revision number resp. the corresponding tag. The other columns display the
revision’s Time, Commit Message and Author, resp. Path shows the revisions’s root
location.

The displayed revisions are taken from the Log Cache (Section 5.3), so recent revisions
might not be contained in the list. In this case you can use Refresh to update the Log
Cache (and implicitly the displayed revisions) from the repository.

Browse Revisions at specifies the peg revision for the location to browse. In general
HEAD should be sufficient for alive locations. Otherwise, you may select the correspond-
ing Peg Revision.

From the Options button you can deselect Stop on copy to list revisions for the
selected location even beyond copy-points.

Example
When merging (see 3.6.1) revisions from replaced (and hence dead) branches, it will
be necessary to enter the correct Peg Revision to identify the branch.

3.14.3 Repository path input fields

Most input fields, for which you can enter a repository path, support a browse function,
which can be accessed by the Browse or by hitting <Ctrl>+<Space>-keystroke.

The Repository Browser (Section 4) will come up as a dialog. Depending on the
command from which the browser has been invoked, you can either select a repository file
and/or a repository directory.

For certain commands – where necessary – peg-revisions are supported. Peg-revisions
specify the URL of a repository path. This can be helpful when working with paths which
do not exist anymore in the repository. In SmartSVN, you can append a peg-revision to
a path by prefixing it with a “@”.

Example
To specify a path “/project/path” at revision 91, enter /project/path@91.

3.14.4 Tag input fields

Input fields, for which you can enter a tag, like when using Switch (Section 3.3.4), sup-
port a browse function, which can be accessed by the Browse button or by hitting
<Ctrl>+<Space>-keystroke.

The Tag Browser (Section 3.8.5) will come up to let you select a branch or tag.
For certain commands – where necessary – peg-revisions are supported. For details

refer to Section 3.14.3.
Example
To specify a tag “my-tag” at revision 91, enter my-tag@91.

3.14.5 File/directory input fields

Input fields, for which you can enter a path to a file or directory, support a browse function,
which can be accessed by selecting the Choose button or by hitting <Ctrl>+<Space>-
keystroke.

c© 2011 syntevo GmbH, www.syntevo.com 65

Chapter 4

Repository Browser

The Repository Browser offers a direct view into the repository and basic commands to
manipulate repository contents directly. The Repository Browser comes as a stand-alone
frame. It can be invoked from within the Project Window (see 2) by Repository|Open in
Repository Browser or by Window|New Repository Browser. If a tray icon (see 10.8)
is present the Repository Browser frame can be invoked by New Repository Browser.
The Repository Browser can also be invoked from Project Window (see 2) commands
via Repository path input fields (see 3.14.3) and commands like Check Out (see 3.1) or
Import into Repository (see 3.2) provide inbound Repository Browsers.

The Repository Browser displays the repository content with a Directory tree and a
File table, similar to the Project Window (see 2). For details on the File Filter, refer to
Section 2.4.2.

The repository file system is only scanned on demand. This happens when currently
unscanned directories are expanded. The Tag-Branch-Layouts (see 3.8.1) will be used to
display directory icons. Table 4.1 shows the possible directory states.

4.1 Repository menu

• Use Open to change the currently browsed repository. Either select an already define
Repository Profile or directly enter a Repository URL to browse. It’s recommended
(though not necessary) to enter repository root URLs.

• Use Show Revision to change the currently displayed revision.

• Use Check Out to check out the currently selected directory. This will bring up a
simplified Check Out wizard, for details refer to Section 3.1.

• Use Manage Profiles to create a new Repository Profile (see 6) if necessary.

• Change Master Password, see Section 6.4.

• Manage Log Caches, see Section 5.3.1.

• Use Close to close the frame.

• Use Exit to exit SmartSVN.

66

Chapter 4. Repository Browser

Icon State Details

Default An already scanned repository directory without special mean-
ing.

Unscanned A not yet scanned repository directory.

Root A project root, according to some Tag-Branch-Layout (see
3.8.1).

Trunk/Branch A trunk or branch, according to some Tag-Branch-Layout (see
3.8.1).

Tag A tag according to some Tag-Branch-Layout (see 3.8.1).

Intermediate An intermediate directory according to some Tag-Branch-
Layout (see 3.8.1). For instance the parent directory (container)
of the branches.

Error An error has occurred while scanning the repository, only dis-
played for the root directory.

Figure 4.1: Directory States

4.2 Edit menu

• Use Stop to cancel the currently processing operation. This action might not be
applicable for certain operations.

• Use File Filter to put the focus into the File Filter field.

• Use Configure Layout to configure the Tag-Branch-Layout (see 3.8.1) for the cur-
rently selected directory.

• Use Dismiss Layout to dismiss the Tag-Branch-Layout for the currently selected
directory. This can be useful to get rid of a “deeper” layout in favor of its parent
layout.

• Use Copy Name to copy the name of the selected file/directory to the system
clipboard. If multiple files are selected, all names will be copied, each on a new line.

• Use Copy URL to copy the URLs of the selected file/directory to the system clip-
board. If multiple files are selected, all URLs will be copied, each on a new line.

• Use Set Encoding to configure the encoding which will be used when displaying
file contents for the various Query-commands. Refer to Section 7.3.1 for details on
when encodings will be applied. The encoding will be stored in the corresponding
Repository Profile (see 6).

• Use Customize to customize accelerators (see Section 9.17).

• Use Preferences to show the application preferences (see Section 9).

c© 2011 syntevo GmbH, www.syntevo.com 67

Chapter 4. Repository Browser

4.3 View

• Use Refresh to explicitly refresh the contents of the Directory tree and the File
table from the repository.

• Select Files from Subdirectories to also view files from within subdirectories of the
currently selected directory.

4.4 Modify

• Create Directory, see Section 4.4.1.

• Remove, see Section 4.4.2.

• Copy, see Section 4.4.3.

• Move, see Section 4.4.3.

4.4.1 Create Directory

Use Modify|Create Directory to create a new directory in the currently selected directory.
Enter the Directory Name which may contain slashes (“/”) to create multiple directories
at once.

Select Create default project structure for trunk, branches and tags to also create
sub-directories trunk, branches and tags in the created directory.

Enter the corresponding Commit Message which is automatically suggested, as long
as you don’t have manually modified it.

4.4.2 Remove

Use Modify|Remove to remove the currently selected directory(ies) or files from the
repository. Enter a corresponding Commit Message, which is automatically suggested
based on the selected directory/files.

4.4.3 Copy/Move

Use Modify|Copy or Modify|Move to copy resp. move the selected files/directory to
another location. Select Copy to only copy the files/directory or Move to additionally
remove the copy sources afterwards.

Use To to copy the copy sources itself to the selected location. When having selected
one file/directory the entered destination location must not yet exist. The last part of the
destination path will be the new name of the copied file/directory. When having multiple
files selected, the files will be copied into the destination path.

Use Contents Into to copy the contents of the copy source into the selected location.
This option is only available for copying directories. In either case, necessary parent
directories will be created automatically.

c© 2011 syntevo GmbH, www.syntevo.com 68

Chapter 4. Repository Browser

Enter the corresponding Commit Message which is automatically suggested, as long
as you don’t have manually modified it. Select After command execution show reposi-
tory at HEAD revision to reset the Repository Browser’s revision to HEAD after having
performed the copy or move command. This option is only available if the current revision
not set to HEAD and it is convenient to immediately see the copy results (in HEAD).

Tip You can also use Drag-And-Drop to copy resp. move files and
directories. This will open the same dialog with the corresponding
paths pre-filled.

4.5 Query menu

• Use Open to open resp. view the currently selected file. SmartSVN will check out
the file to a temporary location and open it in the specified editor. For details refer
to the corresponding Open (see 2.5.7) command in the Project Window (see 2).

• Use Compare on a selection of two files or two directories to compare their contents.
For details refer to Section 3.9.1 resp. Section 3.9.6.

• Use Log to display the log for the currently selected directory or file. For details
refer to Section 3.9.7.

• Use Revision Graph to display the revision graph for the currently selected directory
or file. For details refer to Section 3.9.8.

• Use Annotate to display an annotated view of the currently selected file’s content.
For details refer to Section 3.9.9.

• Use Save As to save the contents of the selected file to a local file. Enter the Target
Path and select whether to Expands keywords or leave them unexpanded (as they
are in the repository).

• Use Show Properties to display the properties of the currently selected file or
directory.

4.6 Window menu

Refer to Section 2.5.12 for more details.

4.7 Help menu

Refer to Section 2.5.13 for more details.

c© 2011 syntevo GmbH, www.syntevo.com 69

Chapter 5

Transactions

The Transactions are a direct view into a repositories’ Log which is continuously updated.
The Transactions are primarily designed to keep you up-to-date on what has happened
within repositories you are interested, but also to allow similar powerful queries as the
Log command (see 3.9.7) itself. The Transactions are integrated into the Project Window
(see 5.2) and they come as a stand-alone Transactions frame (see 5.1).

5.1 Transactions frame

The Transactions frame can be invoked from within the Project Window (see 2) or from
within the Repository Browser (see 4) by Window|Show Transactions. If a tray icon
(see 10.8) is present the Transactions frame can be invoked by Show Transactions.

The Transactions frame can be used to observe multiple repositories at the same time.
Every revision of every repository is represented by one line in the transactions tree which
can be expanded to see which files/directories have been affected by the corresponding
revision.

Note For repositories in an older format than Subversion 1.6, the received
log data does not contain information on whether a changed entry
is of file or directory type. Hence, all entries modified in a revision
will be displayed using file icons (even they might be directories).

A revision line primarily shows the commit message of the corresponding revision and
has a prefix which shows various properties of that revision:

• Root: displays to which repository the revision belongs. This column is only present
if multiple repositories are observed, refer to Section 5.1.2 for details. The column
may also contain the “project name”, appended after a colon (“:”). The “project
name” is the last path component of the project root of the corresponding Tag-
Branch-Layout (see 3.8.1).

• Revision Number: Displays the revision number.

• Time: Displays date and time of the revision. The used format can be changed in
the Preferences (see 9.3).

70

Chapter 5. Transactions

• Trunk/Branch/Tag: displays the corresponding trunk, branch or tag to which
the revision belongs, refer to Section 3.8.1 for details. This column is only present
if at least one of the displayed revisions actually belongs to a trunk, branch or tag.

• Author: Displays the revision’s author.

• File count: Displays the number of modified files/directories the revision contains.

The changed files/directories for a revision are displayed relative to the corresponding
Trunk/Branch/Tag of the revision resp. the Root’s URL in case no Tag-Branch-Layout
is used. If a Tag-Branch-Layout is used, but a file path does not fit into the Tag-Branch-
Layout, it will be prefixed by a “/” to denote that it is given relative to the Root.

5.1.1 Grouping of revisions

Use the View to group the revisions by different categories:

• Ungrouped

• Weeks

• Time

• Authors

• Location (repository)

5.1.2 Watched URLs

Use Edit|Configure Watched URLs to configure the observed URLs resp. repositories.
Every entry must have a Name which will be displayed in the “Root” column of the
revision line prefix to distinguish revisions from different repositories. All revisions below
the Root URL will be observed.

Select to Display revisions for the last entered days. You can further limit the number
of displayed revisions by But at.

• Choose Least to have at least the specified number of Revisions reported. If there
have been less revisions within the last days the display period will be extended
so that at least the specified number of revisions are displayed. If there have been
more revisions within the last days, this option won’t affect the display.

• Choose Most to have at most the specified number of Revisions reported. If there
have been less revisions within the last days, this option won’t affect the display.
If there have been more revisions within the last days the display period will be
shrinked so that at most the specified number of revisions are displayed.

Note For large resp. quite active projects, using a large value for Display
period without a reasonable Most restriction can require significant
memory usage and computational efforts.

c© 2011 syntevo GmbH, www.syntevo.com 71

Chapter 5. Transactions

The watched URLs can be refreshed manually by Transaction|Refresh and they will
be refreshed recurrently for the interval specified in the Preferences (see 9.12).

Icon State Details

Default (read) A (read) revision.

Unread An unread revision.

Remote A working copy revision which contains at least one file which
will be updated when updating to HEAD.

Figure 5.1: Revision states

5.1.3 Read/Unread revisions

SmartSVN internally manages for every repository a list of which revisions are Unread
and which revisions have already been Read. This mechanism is similar to email clients:
Newly fetched revisions are considered as Unread and hence are displayed with a blue
color. In addition they will have a different icon, for details refer to Table 5.1. Use
View|Mark as Read or View|Mark All as Read to mark revisions as read.

The read/unread state of revisions is not related to a single Transactions view, but
shared by all views. For instance, multiple Project Window transactions (see 5.2) and
the Transactions frame itself may show the same repositories. Marking a revision as
read/unread will change their state in all of these views.

5.1.4 Display Settings

The layout of the revision line prefix can be configured in the Display Settings. Choose
whether to show Time, Author, File count and/or Trunk/Branch/Tag. Choose whether
to have the layout Compact or Aligned in columns.

5.1.5 Transaction menu

• Use Refresh to refresh the log information for the Watched URLs (see 5.1.2).

• Use Close to close the frame.

• Use Exit to exit SmartSVN.

5.1.6 Edit menu

• Use Stop to cancel the currently processing operation. This action might not be
applicable for certain operations.

c© 2011 syntevo GmbH, www.syntevo.com 72

Chapter 5. Transactions

• Use Open to open resp. view the currently selected file. SmartSVN will check out
the file to a temporary location and will open it in the specified editor. For details
refer to the corresponding Open (see 2.5.2) command in the Project Window (see
2).

• Use Copy Message to copy the commit message of the currently selected revision.
If multiple revisions are selected, all messages will be copied, each on a new line.

• Use Copy Path to copy the relative paths of the currently selected files. If multiple
files are selected, all files will be copied, each on a new line.

• Configure Watched URLs, see Section 5.1.2.

• Use Customize to customize accelerators (see Section 9.17).

• Use Preferences to show the application preferences (see Section 9).

5.1.7 View menu

• Mark as Read, see Section 5.1.3.

• Mark All as Read, see Section 5.1.3.

• Ungrouped Revisions, see Section 5.1.1.

• Grouped by Weeks, see Section 5.1.1.

• Grouped by Time, see Section 5.1.1.

• Grouped by Author, see Section 5.1.1.

• Grouped by Location, see Section 5.1.1.

• Settings, see Section 5.1.4.

5.1.8 Modify menu

• Change Commit Message, see Section 8.7.4.

5.1.9 Query menu

• Use Show Changes to display the changes for the selected file or revision. For
details refer to Section 3.9.1.

• Use Log to display the log for the currently selected revision or file. For details refer
to Section 3.9.7.

• Use Revision Graph to display the revision graph for the currently selected revision
or file. For details refer to Section 3.9.8.

c© 2011 syntevo GmbH, www.syntevo.com 73

Chapter 5. Transactions

• Use Annotate to display an annotated view of the currently selected file’s content.
For details refer to Section 3.9.9.

• Use Save As to save the contents of the selected revision/file to a local file, for
details refer to (see 4.5).

5.1.10 Repository menu

• Manage Profiles, see Section 6.

• Change Master Password, see Section 6.4.

• Manage Log Caches, see Section 5.3.1.

5.1.11 Window menu

Refer to Section 2.5.12 for more details.

5.1.12 Help menu

Refer to Section 2.5.13 for more details.

5.2 Project Transactions

The Project Transactions are displayed in the Transaction view which is by default lo-
cated in the lower right area of the Project Window (see 2). The Project Transactions
view provides virtually all features of the stand-alone Transactions Frame (see 5.1) and
extends some of them.

Many commands available in the Project Transactions view are integrated into the
various Project Window commands (see 2), for instance Log (see 3.9.7) transparently
works on the the project files and directories as well as on Transaction revisions resp.
files. The Transactions-specific commands can be found in the Window|Transactions
menu, see Section 2.5.12.

The main difference compared to the Transactions frame is that those revisions which
are related to the current working copy (called working copy revisions) are implicitly
displayed; similar to the Transactions frame further “watched URLs” can be configured
by Transactions|Configure Watched URLs.

For working copy revisions, their read/unread (see 5.1.3) state is tracked but not
displayed in the Project Transactions. Instead, based on the local working copy state, the
“remote state” for every revision is evaluated and displayed correspondingly: If a revision
has already been updated it’s simply displayed as read. If there is at least one file part
of the revision which will be updated when updating (see 3.3.1) to HEAD the revision is
displayed as read, containing a green arrow, see Table 5.1.

c© 2011 syntevo GmbH, www.syntevo.com 74

Chapter 5. Transactions

5.2.1 Settings

Select Transactions|Settings to configure the Project Transactions.
Select Repeatedly refresh transactions to refresh the working copy transactions re-

currently, with the same interval as for the Transactions frame. Select Refresh after
loading project to automatically refresh the working copy transactions after a project
has been loaded. Select Refresh after a command changed the working copy to auto-
matically refresh after Updates, Commits, etc.

Regarding the basic Display options, refer to Section 5.1.4. Display revisions for
the last and But at refer to the working copy revisions; the meaning of these options is
identical to the additionally watched URLs, for details refer to Section 5.1.2.

5.3 Log Cache

The Log Cache is the local data storage for the Transactions. It is also used by other
SmartSVN commands, for instance the Log command (Section 3.9.7) itself. It stores
and supplies the raw log information as received from the server and can supply them
for various commands later on. This can increase log performance significantly and also
leads to reduced network traffic.

When Log information is requested for the first time for a certain repository, you can
choose which parts of the repository should be indexed by the Log Cache. In general it is
recommended to select Create cache for whole repository at to let SmartSVN index the
whole repository. The reason is that logs of a certain “module” can have links to other
modules, because of the way Subversion’s Copy mechanism works. Sometimes repositories
can be very large and you are interested only in a few modules of the whole repository. In
this case it may be more efficient to select Create cache only for module at and select
the corresponding module. However, this can lead to incomplete logs due to the reasons
stated above. For some repositories you might want to use create no Log Cache at all. In
this case choose Skip cache and perform logs directly.

SmartSVN automatically keeps the Log Cache(s) up-to-date. All log-related com-
mands always query the repository for the latest logs, before querying the Log Cache. In
the same way, every manually or automatically triggered refresh of the Transactions will
update the corresponding caches.

Log results (for instance used by the Log command) from the Log Cache are in general
identical to results obtained when querying the server directly. However there can be
differences for following situations:

• Server-side access restrictions on already cached revisions are changed afterwards.
This happens for instance, when using and modifying AuthzSVNAccessFile for
HTTP repositories.

• Log information for already cached revisions are changed on the server afterwards.
This happens for instance when changing the repository’s database directly or by
changing revision properties, e.g. when another user has performed Change Commit
Message (see 8.7.4).

In such cases, you should rebuild the Log Cache as described in Section 5.3.1.

c© 2011 syntevo GmbH, www.syntevo.com 75

Chapter 5. Transactions

5.3.1 Manage Log Caches

In the Project Window (see 2) use Repository|Manage Log Caches to manage the local
Log Caches.

The list shows all known Root URLs and the corresponding Log Type. For Log Type
set to Local Log Cache there exists a local Log Cache for the Root URL against which
logs will be performed. Otherwise, for Direct Logs onto Repository, the logs will be
performed directly against the repository.

Log Caches are created on demand for a new Root URL and the choice whether to
use a Local Log Cache or Direct Logs onto Repository has to be done when a log is
first requested for that URL. This choice will be remembered and typically doesn’t need
to be changed afterwards. If necessary anway, you can use Delete for the corresponding
Root URL. This will discard the Log Type choice and get rid of the Log Cache in case of
Local Log Cache choice. Hence, subsequent log requests for this URL (or child URLs)
will bring the Log Cache initialization dialog again.

Select Rebuild for a Local Log Cache to rebuild it from repository log information.
In general it’s recommended to rebuild caches completely by selecting All unless you know
that only log information Starting with a certain revision had been changed.

5.3.2 Storage

The Log Cache information is stored in the subdirectory log-cache in SmartSVN’s set-
tings directory. For every Log Cache, there is a separate subdirectory containing the
server name and repositoy path. This is typically sufficient to quickly locate the cache for
a specific repository. In case there are multiple subdirectories with the same name, only
differing and the trailing number, you can have a look at the contained urls files. They
show the exact location for which the Log Cache has been built.

If you should encounter problems when rebuilding the cache or you need to get rid
of the cached information for a certain repository, you can find out corresponding sub-
directory and remove it, resp. remove the whole log-cache if you want to get rid of all
cached log information. You should never change these files while SmartSVN is running,
otherwise the results will be unpredictable.

c© 2011 syntevo GmbH, www.syntevo.com 76

Chapter 6

Repository Profiles

The Repository Profiles contain all settings which are required to establish a connection
respectively authenticate to a repository.

SmartSVN automatically creates a new profile, when opening a working copy, which
contains a currently unknown repository URL. Typically, such profiles are not fully con-
figured, because there are additional usernames, passwords or certificates required for
a successful authentication. When commands are invoked, which are connecting to the
repository, SmartSVN will query for this additional information.

Alternatively (and important for checkouts) the Repository Profiles can be configured
from the Project Window (see 2) and from the Repository Browser (see 4) by Reposi-
tory|Manage Profiles.

6.1 Profiles

On the Profiles page, you can configure the main connection settings resp. profiles. The
table shows all currently known profiles. You can Add, Copy, Edit or Delete a profile.

The profiles are arranged in a specific, customizable order. This order is used for profile
selectors, used within various dialogs. It also affects the search for a matching profile,
when connecting to a repository; the list is searched from top to bottom. In this way you
can create multiple profiles for one repository with different settings, e.g. authenticated
access for certain subdirectories and anonymous access for the whole repository. To change
the order of the profiles, use Move Up and Move Down. Use Sort By to sort the profiles
either based on their given Name or on their Location (host name); latter option will
keep the order between profiles for the same host.

Use Show Passwords to add an additional Password/Passphrase column which dis-
plays the stored plain text passwords for each profile. For details on passwords refer to
(see 6.4).

Tip The column Last Used At shows the last time the Profile has been
used for authentication against a repository. This time stamp can
be helpful to detect obsolete profiles which may be removed after a
while.

77

Chapter 6. Repository Profiles

6.1.1 Add

By Add a wizard will come up, which lets you supply all necessary information to create
a new profile.

Configuration

On the Location page you have to primarily specify which Protocol (protocol) shall be
used to access the repository. In case of SVN+SSH, you can optionally specify whether
to Prepend SSH login name to host. This option is not important for SmartSVN but
may be convenient when also working with the command line.

Further mandatory parameters of a profile are Server Name, Repository Path and
Server Port. For the Server Port you have the option to use the Default port, or use a
Non-Default port.

Note The Repository Path is interpreted differently depending on the
Protocol. For HTTP, HTTPS it denotes the Location as specified
in Apache’s httpd.conf (or child configuration files). For SVN it
denotes the path relative to the repository root, which svnserve

serves; you will typically simply use “/” here. For SVN+SSH it
denotes the absolute file system path to the repository, i.e. the same
path which you would supply for the svnserve -r parameter.

Instead of typing the values into the various input fields, you can also use Enter SVN
URL and supply the complete URL for the repository.

Details

Depending on the selected Protocol, there are different options which have to be config-
ured on the Details page. Most of them are related to authentication.

SVN For SVN connections, you have to specify the SVN Login. This can either be
Anonymous or by User Name and Password. In the latter case you have to supply the
User Name and Password. The Password can optionally be stored by Save password,
see also Section 6.4.

If you are connecting to a local repository, i.e. either localhost or 127.0.0.1, you
can choose to Automatically start ’svnserve’. In this case, specify the local Repository
Directory and the path to the ’svnserve’-Executable. SmartSVN will then always try
to start the corresponding svnserve process at the specified port before accessing this
repository.

c© 2011 syntevo GmbH, www.syntevo.com 78

Chapter 6. Repository Profiles

Note For the autostarting of svnserve to work properly, it’s necessary
that anonymous read access for the corresponding repository has
been configured. Before the process is started, SmartSVN checks
for already running processes. Only if no running processing (serv-
ing the correct repository) has been found, SmartSVN will launch
its own svnserve process. These processes will be shutdown auto-
matically with the shutdown of SmartSVN itself. If SmartSVN is
not shutdown gracefully, the svnserve processes will remain running
and hence have to be shutdown manually.

HTTP For HTTP connections, you have also to specify the SVN Login and you can
optionally choose Use Proxy to connect via the specified proxy server (see Section 6.2 for
more details).

HTTPS For HTTPS connections, you have to specify the same parameters as for
HTTP connections. Furthermore you have the option to Use client authentication if
this is required by your SSL server. In this case choose the required Certificate File and
enter the corresponding Certificate Passphrase which is used to protect your certificate.
You can optionally Save passphrase, see also Section 6.4.

SVN+SSH For SVN+SSH connections, you have to specify a Login Name for the
SSH login and you have following Authentication options:

• For Password-Authentication, enter the corresponding password. You can option-
ally Save password, see also Section 6.4.

• For Public/Private-Key-Authentication, enter the path to your Private Key File
and the Passphrase, which is used to protect your Private Key. You can optionally
Save passphrase.

• For Tunnel, select the corresponding Tunnel. For more details regarding tunnels,
refer to Section 6.3.

When working over SVN+SSH, the username used for commit messages, etc. will
default to the Login Name. If you prefer to use another name here, choose Custom for
SVN User Name and enter the corresponding name.

Finally and common for all Protocols you can choose to Verify connection when
pressing ’Next’, which is recommended.

Name

The Name page shows the final URL for the profile to be created.
For displaying on the UI, a name is assigned to every profile. Choose either Use

repository URL as profile name or Use following profile name and enter a corresponding
name.

Click Finish to create the profile.

c© 2011 syntevo GmbH, www.syntevo.com 79

Chapter 6. Repository Profiles

6.1.2 Edit

When editing a profile, you can change almost all parameters which also can be entered
when creating a new profile.

6.2 Proxies

On the Proxies page, you can configure proxy hosts which are used to connect to SVN
repositories over HTTP/HTTPS protocol. The configured proxies can then be used within
a Repository Profile.

For a proxy configuration you have to specify the configuration’s Name and the proxy
Host and Port. For Login, select either Anonymous if the proxy itself requires no au-
thentication or User Name and Password. In the second case, specify the required
Username and Password. You can choose to Save password, see also Section 6.4.

6.3 Tunnels

On the Tunnels page, you can configure custom svn+ssh tunnels. Tunnels are useful
when already having a working SSH infrastructure which also handles authentication and
communication. The configured tunnels can then be used within a Repository Profile.

A tunnel has a Name, a tunnel Command and Parameters for this command. The
Command typically is an ssh executable, like PuTTY’s plink.exe on Microsoft Windows
or ssh on Unix resp. Apple Mac OS. The tunnel (resp. the command) is always invoked,
when an svn+ssh connection is set up and handles the complete SSH-communication
between SmartSVN and the server. The Parameters can contain predefined variables
which are expanded by concrete values from the corresponding Repository Profile on the
tunnel invocation:

• Host: The host name of the server

• Port: The port number on the server

• SSH Login Name: The login name on the server

• ’svnserve’ Start Command: The command to start the svnserve process. Either
this variable or the actual start command must occur in the Parameters definition.

6.4 Passwords

All passwords which are required to access repositories can optionally be stored in a special
password store. This password store is located in the password file, which can be found
in SmartSVN’s configuration area (see Section 12).

The password store is protected by a Master Password which has to be defined for
the very first access of the password store. After relaunching SmartSVN the master
password has to be entered when SmartSVN reads the password store the first time. You

c© 2011 syntevo GmbH, www.syntevo.com 80

Chapter 6. Repository Profiles

may choose to Don’t use a master password, if you don’t want to have the password
store protected. However, this option is only recommended if you can make sure that the
master password file itself is well protected against unauthorized access.

The master password can be (re)set or changed by Repository|Change Master Pass-
word from within the Project Window (see 2.5.10). Use either Change master password
to change the current password; this will preserve the stored passwords, but requires that
you can supply the Current Master Password. Note that you won’t need to enter the
Current Master Password, if you are working without a master password currently. If
you have forgotten the master password, select Set new master password. In that case
all previously stored passwords are lost. Enter the New Master Password and Retype
New Master Password. When leaving both fields blank, you will continue to work with-
out a master password, i.e. like having Don’t use a master password selected when
initially asked to set the master password.

c© 2011 syntevo GmbH, www.syntevo.com 81

Chapter 7

Projects

SmartSVN internally manages your SVN working copies by “SmartSVN projects”. A
SmartSVN project points to one or more SVN working copies (local SVN-controlled di-
rectories) and has a name and settings (Section 7.3) attached to it. When working with
SmartSVN, you are always working with a project.

Projects can be created in different ways from the Project menu. To create a com-
pletely new project from a not-yet-version-controlled local directory, use Import into
Repository (see Section 3.2). This will also create the corresponding directory (module)
in the repository. If you want to create a local working copy from a project which already
exists in a repository, use Check Out (see Section 3.1).

7.1 Managing working copies

To create a project from an already versioned local directory, use Open Working Copy
and specify the locally Versioned Directory. On the Project page, you may select to
Open in new project for this working copy, specify the project’s name and specify an
optional group (see Project Manager (see 7.2)) to which the project will be added. You
may select Add to current project to add the working copy to the currently open project
(if present). If there already exists a project which contains this working copy, you may
select Open existing project to open this project. Or you may select Don’t manage as
project to just create a temporary project for this working copy.

If the location of a working copy has changed, you may use Edit Working Copy to
point to the new location. To remove a working copy from the project, use Remove
Working Copy.

Note For an advanced configuration of the working copy roots use the
project settings (see 7.3).

One Project Window shows one project at a time. To work with multiple projects at
the same time, you can open multiple Project Windows by clicking Window|New Project
Window. Already existing projects can be opened in a Project Window by Open or closed
by Close.

82

Chapter 7. Projects

7.2 Project Manager

With the Project Manager (Project|Project Manager) you can manage your existing
SmartSVN projects. The set of managed projects is arranged in a tree-structure. This
allows you to group related projects under a common group name, etc. The project tree
is displayed for the Project|Open dialog and the directory tree’s pop-up in the Project
Window.

Tip There is one special group Sorted project area which receives all
new projects. This group is sorted and hence works like a sorted
project-list. If you don’t need to group projects, simply leave this
group mainting the project list for you.

You can Add a new project. This button has the same effect as Project|Open Working
Copy. Select the local SVN-controlled root directory of the working copy for which you
want to add a project and specify the corresponding Project Name. It’s recommended to
also choose Verify repository connection to make sure that the corresponding repository
is still valid resp. can be accessed.

With Rename you can change the Name of an already managed project or a group.
Choose Reset to reset the settings of the selected projects to the default settings (see
7.3.4). Use Delete to remove projects from project tree; neither the local directory itself
nor any other filesystem content will be affected by this operation.

You can rearrange the project tree directly by Drag-and-Drop which is the most con-
venient method. Alternatively use Move Up and Move Down to move single nodes in
the hierarchy. If a group is expanded, you can move the currently selected item into this
group, otherwise it will be moved across.

Use Create Group to wrap the currently selected project in a group. Thereafter you
can move other projects into this group. When you Delete a group, only this group will
be deleted, but not contained projects nor groups.

7.3 Project Settings

The project settings affect the behaviour of various SVN commands. Contrary to the
global preferences (see Section 9), the project settings only apply to an individual project.
You can edit the settings of the currently opened project by Project|Settings.

The top of the dialog shows the Root Paths for the current project. Use Change to
modify these paths, e.g. to either add other root directories or to change a root directory
after the corresponding SVN working copy has been moved on your local disk.

7.3.1 Text File Encoding

The text file encoding affects only the presentation of file contents, for instance when
comparing a file (see Section 3.9.1) and it will only be used if for the file itself no charset
has been specified by its MIME-Type property (see 3.7.3). The text file encoding settings
are not relevant for SVN operations itself, which generally work only on the byte-level.

c© 2011 syntevo GmbH, www.syntevo.com 83

Chapter 7. Projects

With Use system’s default encoding, SmartSVN will automatically use the system’s
default encoding when displaying files. When changing the system encoding later, the
project settings are automatically up-to-date.

Alternatively you can choose a fixed encoding by Use following encoding.

7.3.2 Refresh/Scan

The Initial Scan settings specifies, whether SmartSVN scans the Whole project or the
Root directory only when opening a project.

We recommend in general to use the Whole project option, because features like
searching files in the table, etc. are relying on having the whole project structure in
memory. Nevertheless, when you are working with large projects, it can be necessary to
scan the file structure only on demand to avoid a high memory consumption.

7.3.3 Working Copy

The option (Re)set to Commit-Times after manipulating local files advises SmartSVN
to always set a local file’s time to its internal SVN property commit-time. Especially in
case of an updating command (see Section 3.3), this option is convenient to get the actual
change time of a file and not the local update time.

Apply auto-props from SVN ’config’ file to added files advises SmartSVN to use
the auto-props from the SVN ’config’ file, which is located in the Subversion directory
below your home directory. These auto-props will also override other project defaults,
like Default EOL Style, explained below.

Choose Keep input files after merging to always keep the auxiliary files (left, right
and base) after a file has been merged by the Merge (see 3.6.1) or by the Merge from 2
sources (see 3.6.2) command. These files will be put into merged state (see Table 2.5)
which is similar to the conflict state however without having actual conflicts. For merged
files you can use the Conflict Solver (see 8.5) to review merge changes in detail and you
can finally use Mark Resolved (see 3.4.14) to mark the file as resolved and to get rid of
the auxiliary files.

Global Ignores

The Global Ignores define global ignore patterns for files/directories which should in
general be ignored within the current project. This is contrary to local ignores (see Section
3.7.8), which are only related to a specific directory. You can completely deactivate Global
Ignores by Deactivated. With Use from SVN ’config’ file, the same ignore patterns will
be used as by the command line client. To be independent of the command line client,
you can enter your own patterns by Use following patterns. The Patterns are file name
patterns, where “*” and “?” are wildcard symbols, interpreted in the usual way.

Binary Files

Choose Use MIME-type registry from SVN ’config’ file to use the corresponding file
which is also used by the command line client. Choose Use following patterns to specify

c© 2011 syntevo GmbH, www.syntevo.com 84

Chapter 7. Projects

custom Patterns, for which matching files will always be added (see 3.4.1) with binary
MIME-type (see 3.7.3). The wildcard symbols “*” and “?” can be used in the usual way.

EOL Style

This option specifies the EOL style default, which is used when adding a file (Section
3.4.1). For more details refer to Section 3.7.4.

Use In case of inconsistent EOLs to configure the behavior when adding a file with
inconsistent EOLs (line endings). Add ’As Is’ will automatically add the file with EOL
style “As Is”. Add as Binary will automatically set the file’s type to “Binary”, see also
Section 3.7.3. Report Error will report an error.

EOL Style – Native

Usually text files are stored with ’native’ EOL-Style (see 3.7.4) in the SVN repository.
As a result after performing SVN operations on these files your platform’s native line
separator will be used (’Platform’). Under certain circumstances it can be convenient
to redefine what ’native’ means, e.g. when a project is operated on Windows OS, but
frequently uploaded to a Unix server. This redefinition can be done here by choosing the
desired Native EOL-Style.

Locks

Use Set ’Needs Lock’ for to specify for which files the Needs Lock (see 3.10.5) should
be set when they are added. With No file, the ’Needs Lock’ property will be set to no
file. With Binary files the property will only be set to files, which have been detected to
have binary content. With Every file the property will be set to every file.

When committing (see 3.5) files or directories, SmartSVN will scan for locked files.
Choose here whether to suggest to Release Locks or to Keep Locks for those files on the
“Locks” page of the commit wizard.

Enable Automatically scan for locks and enter the corresponding interval in minutes
to recurrently refresh the files’ lock states. Refer to Section 3.10.1 for details.

Keyword Subst.

This option specifies the Keyword Substitution default, which is used when adding a file
(Section 3.4.1). For more details refer to Section 3.7.5.

Conflicts

By default, conflicting files will receive new extensions like “mine” or “.r4711”. Here you
can specify extensions which should be preserved in case of conflicts. Choose either Use
from SVN ’config’ file or Use following extensions and enter the file name Extensions
which should be preserved.

c© 2011 syntevo GmbH, www.syntevo.com 85

Chapter 7. Projects

7.3.4 Default Settings

Projects are created by various commands. For reasons of simplicity, in most of these
cases, there is no configuration possibility for the corresponding project settings. There-
fore you can specify default project settings (template settings), which will be applied to
every newly created project. With Project|Default Settings you can configure the same
properties as for a concrete project.

c© 2011 syntevo GmbH, www.syntevo.com 86

Chapter 8

Subwindows

Many commands are resulting in stand-alone sub-windows with their own functionality
and purpose.

8.1 Text Editor

The Text Editor window shows the contents of a text file and allows modifications of the
file. The Text Editor is typically invoked by Edit|Open from the Project Window (unless
an external editor has been specified in the Preferences (see 9.11)).

8.1.1 Settings

The Tab Size specifies the width (number of characters) which is used to display a TAB

character. With Show whitespaces whitespace characters will be displayed. With Show
line numbers a line number gutter will be prepended.

Select Make default to have the selected options apply to all File Compare frames.
For basic settings regarding text components, refer to Section 9.9.

8.1.2 File menu

• Use Save to save the file.

• Use Save As to save the file under a new name.

• Use Close to close the frame.

8.1.3 Edit menu

Contains well-known functions to alter the file content resp. to find a certain text within
the content.

• Use Customize to customize accelerators (see Section 9.17).

87

Chapter 8. Subwindows

8.1.4 View menu

• Settings, refer to Section 8.1.1 and Section 9.9.

8.1.5 Go To menu

• Use Go to Line to go to the specified Line Number.

8.1.6 Window menu

Refer to Section 2.5.12 for more details.

8.2 File Compare

The File Compare window shows the contents of two files, one in the left and one in the
right area of the window. A File Compare is typically invoked by Query|Show Changes
from the Project Window (see 2) but there are various other ways/windows to invoke a
File Compare in SmartSVN. Together with a File Compare, a Properties Compare (see
8.3) can be invoked, if properties of the files to compare are different as well.

Note Depending on your File Comparator settings (see 9.10), performing
a file comparison can also invoke an external file compare tool. This
section refers only to the built-in File Compare of SmartSVN.

Depending on the source of the compared files (local working copy, repository), none,
only the right, or both contents may be editable. Depending on the invoking command,
when a copied file is compared and the copy source file is removed, the pristine copy of
the source file will be used for the comparison – if its contents are available.

Tip If the file compare refuses to compare a file because it’s binary,
check the corresponding MIME-Type (see 3.7.3) property. Regard-
ing the used encoding, refer to Section 7.3.1. You can also configure
to the set MIME-Type and auto-detect the type in the File Com-
parator settings (see 9.10).

8.2.1 Comparison

The file contents are compared line-by-line, where the underlying algorithm finds the
minimum number of changed lines between the left and the right content. The differences
between left and right content is highlighted by colored regions within the text views,
which are linked together in the center Link Component. The Link Component allows to
take over changes from one side to the other, depending on which side is editable.

Tip When the mouse is positioned over the Link Component, you can
use the mouse wheel to jump from difference to difference.

c© 2011 syntevo GmbH, www.syntevo.com 88

Chapter 8. Subwindows

Depending on the Preferences (see 9.9), not only complete lines, but also the content
within lines is compared if they are not too different. These comparison results in inner-
line changes. You can take over such changes from left to right or vice versa by Apply
Left resp. Apply Right from the popup menu (invoked on the change itself).

Regarding the following menus, many of the available operations are working on the
active view, i.e. the view which has the focus resp. displays the cursor.

8.2.2 Settings

Regarding the General settings, refer to Section 8.1.1. For basic settings regarding text
components, refer to Section 9.9.

If Ignore whitespace for line comparison is selected, two lines are treated as equal,
if they only differ in the number, but not in the position of whitespaces.

If Ignore Case Change for line comparison is selected, uppercase and lowercase
characters are treated as equal.

The Inner Line Comparison specifies the “tokenizing” algorithm of the lines, for which
the individual tokens within two lines will be compared against each other. Alphanumeric
words results in tokens, which form alphanumeric words, i.e. words, which are consisting
only of letters and digits and which are starting with a letter. All other characters are
considered as tokens on their own. Character-based treats every character as a single
token. This is the most fine-grained comparison option. C identifiers and Java identifiers
are similar to Alphanumeric words, but in addition to letters and digits certain other
characters are allowed to be part of a single token. Off completely disables the inner line
comparison, i.e. every line is considered as single token.

With Trim equal start/end of Inner-Line changes selected and two tokens being
different, the equal starting and ending characters within both tokens won’t be displayed.
For instance, for the tokens foobar and foupar the difference will only display as up.

Select Make default to have the selected options apply to all File Compare frames.

8.2.3 File menu

• Use Save to save changes to (both) file(s).

• Use Export as HTML-File to export the comparison to an HTML-file.

• Use Close to close the frame.

8.2.4 Edit menu

Contains well-known functions to alter the file content resp. to find a certain text within
the content. Additionally:

• Use Take Left Block to take over the complete block below the cursor position
from left to right. This may also remove resp. insert blocks in the right view.

• Use Take Right Block to take over the complete block below the cursor position
from right to left. This may also remove resp. insert blocks in the left view.

c© 2011 syntevo GmbH, www.syntevo.com 89

Chapter 8. Subwindows

• Use Customize to customize accelerators (see Section 9.17).

8.2.5 View menu

• Use Refresh to refresh the contents of the files from disk. This command is not
applicable if both file contents are read-only.

• Use Left Beside Right to display left and right files side-by-side, which is the
default.

• Use Left Above Right to display the left file above the right file. This can be
convenient when having files with long lines.

• Ignore Whitespace for Line Comparison, refer to Section 9.9.

• Settings, refer to Section 8.2.2.

8.2.6 Go To menu

• Use Previous Difference to scroll to the previous difference within the active view,
relative to the current cursor location.

• Use Next Difference to scroll to the next difference within the active view, relative
to the current cursor location.

• Use Go to Line to go to the specified Line Number within the active view.

8.2.7 Window menu

Refer to Section 2.5.12 for more details.

8.3 Properties Compare

The Properties Compare window shows the properties of two files or directories, one in the
left and one in the right area of the window. A Properties Compare is typically invoked
together with a File Compare (see 8.2), e.g. by Query|Show Changes from the Project
Window (see 2).

The table displays all properties of both files/directories with their Name, State, Old
Value and New Value. Old Value corresponds to the value of the first file/directory and
a New Value corresponds to the value of the second file/directory. When the properties
compare has been invoked for a versioned file or directory, old refers to the pristine copy
of the file/directory and new refers to the working copy file/directory. The State column
shows the property’s state, either Modified, Added, Removed or Unchanged. The
Name column renders the property’s state by using different colors, similar to the File
Compare (see 8.2).

The lower area of the dialog shows the differences between Old Value and New Value
for the currently selected property, similar to the File Compare (see 8.2).

c© 2011 syntevo GmbH, www.syntevo.com 90

Chapter 8. Subwindows

8.3.1 File menu

• Use Close to close the frame.

8.3.2 Edit menu

• Use Customize to customize accelerators (see Section 9.17).

8.3.3 Window menu

Refer to Section 2.5.12 for more details.

8.4 Compare Repository Directories

The Compare Repository Directories frame is the result of a Compare Repository Di-
rectories command (see 3.9.6) invoked from the Project Window (see 2). It shows the
Directories/Files differences between two repository directories, a From directory and a
To directory.

For every file, the table shows the corresponding Name. The Name column also
shows the “state” icon of the file (the same for directories). Possible states are: Added,
Modified, Modified (properties only), Modified (content and properties), Removed
and Unchanged; they are always referring to the modification from From to To directory.
The corresponding icons can be found in Table 2.5 and Table 2.6.

While the state displayed in the Name is a combination of file content and properties,
the Content column refers only to the state of the content. The Properties column
refers only to the state of the properties; valid states for properties are Modified and
Unchanged. The Relative Directory displays the file’s path relative to the compare
directory.

8.4.1 Compare menu

• Use Show Changes to open a File Compare (see 8.2) which shows the differences
for the currently selected file between From and To directory.

• Use Close to close the frame.

8.4.2 Edit menu

• Use File Filter to position the cursor in the file table’s filter field.

• Use Customize to customize accelerators (see Section 9.17).

8.4.3 View menu

• Select Files From Subdirectories to toggle the display of files from subdirectories
of the currently selected directory.

c© 2011 syntevo GmbH, www.syntevo.com 91

Chapter 8. Subwindows

8.4.4 Window menu

Refer to Section 2.5.12 for more details.

8.5 Conflict Solver

The Conflict Solver is a kind of Three-Way-Merge. The content of the current file (which
contains the conflicts) is displayed in the center text area (“merge view”). The left and
right text areas show the contents of the two files, which have been forked from the
common base. The common base itself is not displayed, but regarded by the UI for
highlighting changes and conflicts. All file contents are directly taken from the files,
which SVN produces in case of conflicting changes. The Conflict Solver is invoked by
Tools|Conflict Solver from the Project Window (see 2).

Note Depending on your Conflict Solver settings (see 9.5), performing
a conflict solver can also invoke an external three-way-merge tool.
This section refers only to the built-in Conflict Solver of SmartSVN.

The Conflict Solver works similar to the File Compare (see 8.2), see also Section 8.2.1
for details.

8.5.1 File menu

• Use Save to save changes to the merged file. SmartSVN will detect, whether all
conflicts have been resolved and in this case also automatically mark the file as
resolved (see Section 3.4.14).

• Use Close to close the frame.

8.5.2 Edit menu

Refer to Section 8.2.

8.5.3 View menu

• Use All to display all three file contents side-by-side.

• Use Left and Merge to display the left view beside the merge view.

• Use Merge and Right to display the merge view beside the right view.

• Use Left and Right Above Merge to display the merge view below the left and
right view.

• Use Left Above Right to display the left file above the right file. This can be
convenient when having files with long lines.

c© 2011 syntevo GmbH, www.syntevo.com 92

Chapter 8. Subwindows

• Ignore Whitespace for Line Comparison, refer to Section 8.1.1.

• Settings, refer to Section 8.2.2. In addition, on the Compare page, Compare with
Base can be selected. With this option selected, the content of the center component
will not only be compared against the left and the right content, but also against
the (invisible) content of the base file: Lines in the left, center and right content
which are not equal are also compared to the corresponding lines of the base file
and the highlighting depends on the result of this comparison.

8.5.4 Go To menu

In the addition to the Go To found in the File Compare (see 8.2.1), following commands
are available:

• Use Previous Conflict to scroll to the previous conflicting difference within the
active view, relative to the current cursor location.

• Use Next Conflict to scroll to the next conflicting difference within the active view,
relative to the current cursor location.

8.5.5 Window menu

Refer to Section 2.5.12 for more details.

8.6 Revision Compare

The Revision Compare is an optimized “multi-file” compare. It gives a detailed overview of
changes within a set of files. A Revision Compare is for instance invoked by Query|Show
Changes from the Log (see 8.7) when having a revision selected. There are various other
ways/windows to invoke a Revision Compare in SmartSVN.

The core component of the Revision Compare is a read-only File Compare (see 8.2)
view; for details regarding the usage, refer to Section 8.2.1. The upper part of the Revision
Compare frame consists of a directory tree and a file table, which displays the files being
part of the Revision Compare.

8.6.1 File menu

• Use Compare to open a File Compare (see 8.2) for the selected file.

8.6.2 Edit menu

• Use Customize to customize accelerators (see Section 9.17).

Refer to Section 8.2 for details.

c© 2011 syntevo GmbH, www.syntevo.com 93

Chapter 8. Subwindows

8.6.3 View menu

• Select Files From Subdirectories to also display files from subdirectories of the
currently selected directory. This works as for the Project Window, see Section 2.4.

• Use Refresh to refresh the file contents and re-perform the comparison.

• Ignore Whitespace for Line Comparison, refer to Section 8.1.1.

• Ignore Case Change for Line Comparison, refer to Section 8.1.1.

• Settings, refer to Section 8.2.2.

8.6.4 Go To menu

Refer to Section 8.2.1 for details.

8.6.5 Window menu

Refer to Section 2.5.12 for more details.

8.7 Log

The Log window shows the history of a versioned file or directory (“entry”). A Log is
typically invoked by Query|Log from the Project Window (see 2), but there are various
other ways/windows to invoke a Log in SmartSVN.

The central component of the Log window is the Revisions table, which shows the
found revisions with their attributes. You can filter out certain revisions by using Search
Author and Commit Message. To the right of the Revisions table, the detailed Revision
Info of the currently selected revision is displayed.

The lower part of the window shows the Directories/Files view for the selected revi-
sion. The displayed structure is restricted to those files and directories, which are children
of the log context root; all other files/directories which have been modified within this
revision are skipped.

The log context root depends on the context from which the log has been invoked.
E.g. the log context root for logs performed by Query|Log from the Project Window
(see 2) is the corresponding project root directory resp. the Externals (see 3.7.7) root
directory. The context root can be enlarged to the corresponding Project Root (see 3.8.1)
if necessary.

c© 2011 syntevo GmbH, www.syntevo.com 94

Chapter 8. Subwindows

Note For repositories in Subversion 1.6 format, the received log data
contains information on whether a changed entry is of file or direc-
tory type. Unfortunately this information is not present for older
servers, hence SmartSVN tries to detect the entry types itself. The
more log information is present, the better are the results of this
detection. However, without complete log information SmartSVN
may still be wrong. In this case, the entry is assumed to be a file
(although it might actually be a directory).

When merged revisions have been requested (see Section 3.9.7), they are added in
a tree-like manner to their parent revision which can then be expanded or collapsed.
Because merged revisions have no direct link to the logged revisions themselves various
commands subsequently listed will not be applicable for these revisions. The context root
for merged revisions is the corresponding repository root.

Always exactly one of the four views is “active” which is displayed by its highlighted
title. Menu bar actions (as well as toolbar buttons) are always referring to the currently
active view.

8.7.1 Log menu

• Use Show More to extend the displayed log range.

• Use Export to File to export the log information to a file. Refer to Section 8.7.7
for details.

• Use Load Properties to fetch all properties for all displayed revisions from the
repository. The Revisions table will be extended by corresponding table columns,
one for each property. This command is only available for file Logs. The upper limit
of columns to be added can be configured by the system properties (see 13.6).

• Use Close to close the frame.

8.7.2 Edit menu

• Use Stop to cancel the currently running operation.

• Use Open to open the selected revision/file/directory, for details refer to Section
2.5.2. This command will only be applicable for revisions of file Logs.

• Use Copy Message to copy the commit message of the selected revision.

• Use Copy Name to copy the name of the selected file. If multiple files are selected,
all names will be copied, each on a new line.

• Use Copy Path to copy the path of the selected file relative to the log context root.
If multiple files are selected, all paths will be copied, each on a new line.

• Use Customize to customize accelerators (see Section 9.17).

c© 2011 syntevo GmbH, www.syntevo.com 95

Chapter 8. Subwindows

8.7.3 View menu

• Select Skip Unchanged Revisions to skip revisions for which the logged entry has
not actually been changed, but has only been reported due to a copy operation of
one of its parents. E.g. when creating a Tag (see 3.8) of the project root, the log
for every entry of that tag will contain this tag-revision.

• Select Revision Files/Directories to toggle the Directories/Files view in the lower
part of the frame.

• Select Show Only Entries Below Selected Directory to restrict the Directo-
ries/Files view to only those directories and files which are actually children of
the logged directory.

8.7.4 Modify menu

• Use Change Commit Message to change the commit message of the currently
selected revision. Enter the new Commit Message and wait until SmartSVN has
rebuilt the corresponding Log Cache (see 5.3), if necessary.

• Use Merge Revision to merge the selected revision/file/directory to your local work-
ing copy. If you want to configure advanced options for the merge, use the default
Merge command (see 3.6.1).

• Use Rollback Revision to roll back the selected revision/file/directory locally, i.e.
in your local working copy. You may then review the rolled back changes and, if
acceptable, commit them (see 3.5). This command will only be applicable for logs
which have a link to a local working copy.

8.7.5 Query menu

• Use Show Changes to compare the selected revision/file/directory against its pre-
ceding revision or to compare two selected revisions/files/directories against each
other. Depending on whether two files or directories are compared, either the File
Compare (see 8.2) or the Properties Compare (see 8.3) will come up. When invoking
Show Changes on a revision, the Revision Compare (see 8.6) will come up.

• Use Compare with Working Copy to compare the selected revision/file against the
file’s working copy within your project. This command will only be applicable for
revisions of file Logs.

• Use Log to perform another Log for the selected file/directory. This command will
not be applicable for revisions as it would result in the same log as already present.

• Use Revision Graph to create a Revision Graph (see 8.8) for the selected revi-
sion/file/directory.

• Use Annotate to Annotate (see 8.9) the selected revision/file. This command will
only be applicable for revisions of file Logs.

c© 2011 syntevo GmbH, www.syntevo.com 96

Chapter 8. Subwindows

• Use Save As to save the contents of the selected revision/file to a local file, for
details refer to (see 4.5). This command will only be applicable for revisions of file
Logs.

8.7.6 Window menu

Refer to Section 2.5.12 for more details.

8.7.7 File Export

You can export log data in various formats to a file using Log|Export to File.
Select either to export All revisions, independent of the selection or only the Selected

revisions. Specify the Output file to which the log information will be written. If Include
changed paths is selected, not only the main revision information but also the details on
which files/directories have been changed will be exported.

Specify the file Format which shall be used for the export. XML will export in raw
XML format, as used by svn log --xml. HTML will give a basic HTML output. Plain
text will give a simply formatted plain text file. Custom maybe used to export in an
arbitrary format, by performing a style sheet transformation on the raw XML data. In
this case, enter the path of the stylesheet for XSTL-File.

8.8 Revision Graph

The Revision Graph window shows all entries (files/directories) within all revisions which
are related to a specific repository entry (file/directory) at a specific revision. A Revision
Graph is typically invoked by Query|Revision Graph from the Project Window (see 2),
but there are various other ways/windows to invoke a Revision Graph in SmartSVN.

The central component of the Revision Graph window is the Revisions graph, which
displays the complete graph for the selected entry. The graph consists of nodes, branches
and links.

A node represents a specific entry (file/directory) at a specific revision in the repository.
Every graph has a unique root node, which is displayed in the upper left corner of the
graph. A node which is directly derived from another ancestor node, i.e. which has
the same URL, but at a higher revision number, is displayed directly below its ancestor
in the same branch. A node, which is derived from another ancestor node by copying,
is displayed right below its ancestor in a separate branch. A node shows its revision
number, author and date. It can also show inlined tags and branches in the lower part
of the node’s area. Tags and branches are copies of the revision graph entry which have
happened in a specific revision, hence in general they would be represented by separate
nodes on their own. They will be inlined however, if the revision graph entry itself has
not been changed in the tag/branch copy revision and no further commits to the copied
location have happened. To detect tags and branches, the Tag-Branch-Layout (see 3.8.1)
must be configured properly.

A branch is a collection of linked nodes (which are directly derived from each other), at
the same URL. The head of the branch displays this URL, divided into trunk/tag/branch,

c© 2011 syntevo GmbH, www.syntevo.com 97

Chapter 8. Subwindows

path and name of the node. The division of the URL depends on the Tag-Branch-Layout
(see 3.8.1) and certain parts (like the name, or the path) may be omitted if they have not
changed compared to the ancestor node.

You can navigate through the graph either with the mouse or with the keyboard (cursor
keys) and select certain nodes by clicking with the mouse or using <Space>-keystroke.

The overall layout of the window is similar to the Log (see 8.7) window. The Revision
Info component displays detailed information for the currently selected revision. The
lower Directories/Files area shows all files/directories for the currently selected revision
which are located below the Log Scope (see Section 3.9.8); other entries of the revision
are skipped.

Always exactly one of the four views is “active” which is displayed by its highlighted
title. Menu bar actions (as well as toolbar buttons) are always referring to the currently
active view.

8.8.1 Merge Information

The Revision Graph can display information on which revisions have been merged from
other revisions in various ways. Depending on the selected visualization method, it may
be necessary to fetch SVN’s mergeinfo for every displayed revision from the repository,
what may take a while. SmartSVN will cache this mergeinfo for the current graph, so
subsequent invocations of mergeinfo-related queries are performed much faster.

Merge Arrows

Use Query|Show Merge Arrows to display merge arrows pointing from merge source to
merge target revisions. In case the merge source is a range of revisions, the corresponding
revisions will be surrounded by a bracket.

Merge Sources

Use Query|Show Merge Sources to display which revisions have been merged into the
currently selected target revision(s). In this way every revision is classified into one of the
following categories:

• Merge Target: The revision itself has been selected as target.

• Merged Now: The revision has been merged directly at and to one of the selected
targets.

• Merged: The revision has been merged into at least one of the selected targets,
but not at the target’s revision itself.

• Not Yet Merged: The revision has not yet been merged into any of the selected
targets.

• Not mergable (normal revision): The revision is in the ancestor line of all
targets and hence can’t be merged.

c© 2011 syntevo GmbH, www.syntevo.com 98

Chapter 8. Subwindows

The classification is displayed by color-coding the revisions; the colors can be specified
in the Revision Graph settings (see 9.8).

Merge Targets

Use Query|Show Merge Targets to display to which revisions the currently selected
target revision(s) have been merged. In this way every revision is classified into one of
the following categories:

• Merge Source: The revision itself has been selected as source.

• Merged Now: At least one of the selected sources has been merged directly into
this revision.

• Merged: At least one of the selected sources has been merged into this revision,
but not at this revision itself.

• Not merged (normal revision): None of the selected sources has been merged
into this revision.

The classification is displayed by color-coding the revisions; the colors can be specified
in the Revision Graph settings (see 9.8).

8.8.2 Search

Use Edit|Search to search for certain revisions. Enter the Search For term and select in
which parts of the displayed information to Search In. With Branch Name selected, the
search will included the assigned branch of the revision; this may either be the containing
branch or an assigned tag displayed inlined for the revision. Revision Number, Author
and Commit Message will include the corresponding revision properties.

The search results will be displayed in the revision table. You may select a certain
revision and jump to it in the graph by clicking Select. Alternatively, you may keep
the dialog open in foreground and automatically jump to the selected revision by having
Directly select revision in graph selected.

8.8.3 Branch Filter

Use View|Branch Filter to filter the display for certain branches. Select Show all
branches to reset the filter and show all branches. Select Filter branches matching
following regular expression and enter the Regular Expression filter criterion to restrict
the display to the corresponding branches. The last entered Regular Expression pattern
will be stored in SmartSVN’s project settings.

Note For details on the supported regular expression constructs re-
fer to http://java.sun.com/j2se/1.5.0/docs/api/java/util/

regex/Pattern.html. In addition to the regular expression syntax
you may prefix the whole expression by ! to negate the expression,
i.e. to hide instead of show the matching branches and vice versa.

c© 2011 syntevo GmbH, www.syntevo.com 99

Chapter 8. Subwindows

The tables in the bottom of the dialog will give a preview of the filter results, denoting
the Shown Branches and Hidden Branches. Click OK to apply the branch filter to the
graph.

8.8.4 Graph menu

• Use Export as Image to export the complete Revisions graph to an image file.

• Use Close to close the frame.

8.8.5 Edit menu

• Search, see Section 8.8.2.

• Use Customize to customize accelerators (see Section 9.17).

Refer to Section 8.7.2 for more details.

8.8.6 View menu

• Use Zoom In to increase the zoom level of the graph.

• Use Zoom Out to decrease the zoom level of the graph.

• Select Show Dates to toggle the display of the nodes’ revision date.

• Select Show Copy Source to toggle the display of the nodes’ copy source, if present.

• Select Show Tags to toggle the display of the nodes’ inlined tags.

• Select Show Dead Revisions to also display revisions for which the entry has been
deleted. If deselected, a simple Died at information will be inserted for the last
alive revision.

• Select Show Dead Tags and Branches to toggle the display of tags and branches
which are not present anymore in the repository’s HEAD revision.

• Select Join Same Locations to display revisions having the same URL in the same
branch (column). Having locations joint gives a better impression of which different
URLs are used and can result in a more compact graph. Depending on the number
of branch replacements, it can also make branches lengthy and the graph more
complex. Disabling this option gives best results in combination with disabling
Show Dead Tags and Branches.

• Branch Filter, refer to Section 8.8.3.

• Select Revision Files/Directories to toggle the Directories/Files view in the lower
part of the frame.

Tip You can also use Ctrl-key in combination with the mouse-wheel to
zoom in/out the graph.

c© 2011 syntevo GmbH, www.syntevo.com 100

Chapter 8. Subwindows

8.8.7 Modify menu

Refer to Section 8.7.4 for details.

8.8.8 Query menu

• Show Merge Arrows, see Section 8.8.1.

• Show Merge Targets, see Section 8.8.1.

• Show Merge Sources, see Section 8.8.1.

Use Clear Merge Information to clear the currently displayed merge information (and
the cached revision mergeinfo).

Refer to Section 8.7.5 for details.

8.8.9 Window menu

Refer to Section 2.5.12 for more details.

8.9 Annotate

The Annotate window shows the contents of a file with each line prefixed by the line
number and by information to the last revision at which this line has been introduced
or changed. The Annotate window is typically invoked by Query|Annotate from the
Project Window (see 2), but there are other ways/windows to invoke an Annotate window
in SmartSVN.

The Revision selector displays all revisions for which the corresponding file contents
are available. These will be all revisions of the file, if for the corresponding Annotate com-
mand (see 3.9.9) Track content of all revisions had been selected. Otherwise, only the
annotated revision of the file itself will be displayed and the selector won’t be applicable.
So using this selector you can navigate through all contents of the file.

Change Color By to change the line coloring:

• Choose Revision to have two colors and a threshold revision Newer Or Equal.
Lines which have been introduced before this threshold revision will receive the
default background color, while lines introduced at or after the threshold revision
will receive another background color.

• Choose Age to have the lines color based on their “Age”: The youngest and oldest
line will be determined, receiving two distinct colors. For all other lines, the color
will be linearly interpolated based on their relative age compared to the youngest
resp. oldest line. The interpolation itself can either be based on the Revision
number or on the revision’s commit Time.

• Choose Author to have lines of the same author displayed with the same background
color and lines of different authors displayed with different background colors.

c© 2011 syntevo GmbH, www.syntevo.com 101

Chapter 8. Subwindows

8.9.1 Annotate menu

• Use Close to close the frame.

8.9.2 Edit menu

Contains well-known functions to alter the file content resp. to find a certain text within
the content.

• Use Customize to customize accelerators (see Section 9.17).

8.9.3 View menu

• Settings, refer to Section 8.1.1.

8.9.4 Revision menu

• Use Show File Changes to invoke a File Compare (see 8.2) between the currently
selected Revision and the previous revision.

• Use Show Revision Changes to invoke a Revision Compare (see 8.6) containing all
changed files between the currently selected Revision and the previous revision.

• Use Go To First Revision to select the first Revision.

• Use Go To Last Revision to select the last Revision.

• Use Go To Next Revision to select the next Revision.

• Use Go To Previous Revision to select the previous Revision.

• Use Go To Preceding Revision to select the preceding Revision for the currently
selected line – to see what the content of the line has been before.

8.9.5 Go To menu

Refer to Section 8.2.6 for details.

8.9.6 Window menu

Refer to Section 2.5.12 for more details.

c© 2011 syntevo GmbH, www.syntevo.com 102

Chapter 8. Subwindows

8.10 Merge Preview

The Merge Preview is the result of a Merge command (see 3.6.1) invoked from the Project
Window (see 2). It shows a Directories/Files structure of which files and directories will
be affected by the merge.

For every file, the table shows the corresponding Name and its Relative Directory,
according to the merge root. State shows the merge state for the file, either Modified,
Added, Removed, Unchanged or Skipped For Modified files, both the Content as well
as the Properties can be either Conflicting, Modified or Unchanged. Skipped files can’t
be processed by the merge, e.g. because they have been renamed or moved in the merge
source resp. local working copy.

8.10.1 Merge menu

• Use Show Changes to show the File Compare (see 8.2) between the current local
file and the merge Result for the selected file. This command will only be applicable
for Modified and for Conflicting files.

• Use Show 3-Way-Merge Changes to show the Conflict Solver (see 8.5) for the
selected file, previewing the detailled changes and conflicts which can be expected
when actually performing the merge.

• Use Perform Merge to actually perform the merge exactly as it has been previewed
here. If you had initially selected a merge revision range containing HEAD, these
ranges will have been adjusted. This prevents the final merge from including any
new revisions which had been committed after previewing the merge.

• Use Close to close the frame.

8.10.2 Edit menu

• Use Customize to customize accelerators (see Section 9.17).

8.10.3 View menu

• Select Files From Subdirectories to toggle the display of files from subdirectories
of the currently selected directory.

8.10.4 Window menu

Refer to Section 2.5.12 for more details.

c© 2011 syntevo GmbH, www.syntevo.com 103

Chapter 9

Preferences

The application preferences define the global behaviour of SmartSVN, regarding UI, SVN
commands, etc. Contrary to the project settings (see Section 7.3), these preferences apply
to all projects.

Tip Most preferences are stored in the settings.xml file in SmartSVN’s
settings directory. Refer to Section 12 for details.

9.1 On Start-Up

These settings configure the startup behaviour of SmartSVN.
You can either choose to Open last project, Show Welcome Dialog or Do Nothing,

i.e. start with an empty main frame.
Select Remove obsolete projects to check for every project on start-up whether the

corresponding root directory still exists. In case that the root paths of certain projects is
not valid anymore, you will be asked whether to remove these projects from the project
tree (see Section 7.2).

9.2 Project

For Open Project you can specify the behavior when opening a project. Projects can
be opened In current window (unless there are SVN operations active for the currently
opened project) or In new window. By default, Ask is selected to let you choose individ-
ually.

With Confirm closing selected, you will always be asked before a project is closed.

9.3 User Interface

These settings configure certain aspects of the user interface of SmartSVN.
Select whether to use Basic or Advanced recursion options, for details refer to Section

3.14.1.

104

Chapter 9. Preferences

Select Use View-menu file filters also for directories to have the filters from the
View-menu within the Project Window (see 2) not only applied to files but also to direc-
tories. For details on refer to Section 2.5.3.

Select Show file and directory tooltips to toggle the display of tooltips for the Di-
rectories tree resp. the Files table within the Project Window (see 2).

For File Name Matches you can choose how file name search/filter functions in
SmartSVN will work:

• Exact Case: Requires the search pattern and file name to match in case.

• Ignore Case: Ignores the case for matching search pattern and file name.

• Smart upper case: Lower case characters in the search pattern can match upper-
and lower-case characters in the file name. But upper-case characters in the search
pattern match only upper-case characters in the file name. Examples: SMF will
match SuMainFrame, but not SuMainContentFrame. fileS will match FileSignature,
but not Files.

Select Nest in System Tray to have SmartSVN show a System Tray icon. This option
is not available for all operating systems. For details refer to Section 10.8.

Configure the Date Format and Time Format to be used by SmartSVN when dis-
playing dates resp. times and combinations of both. These formats have no effect on
SVN operations. It’s recommended to restart the application after having changed these
formats.

9.4 Commit

Here you can configure global commit (see 3.5) options.
Select Skip Change Set entries to ignore found changed files resp. directories which

have already been assigned to a Change Set (see 3.12).
Select Detect moved and renamed files if you want SmartSVN to detect files which

are most likely renamed or moved. These files will not simply be added and removed, but
marked as copied. For details, refer to Section 3.4.8.

Except from those files which have been selected and which are in a committable SVN
state, SmartSVN can Suggest To commit further files: Select Add unversioned files
and directories to also report unversioned (most likely new) files and directories. Select
Remove missing files and directories to also report missing (most likely obsolete) files
and directories.

Select Remove removed parent directories to make SmartSVN also scan parent
directories of the files/directory which have been selected for the commit. If such a
parent directory is scheduled for removal, it will also be suggested for the commit. With
Also remove empty parent directories, all resulting emtpy parent directories will also
be suggested for the commit.

Tip To clean up all empty directories within your project, you can use
Tools|Remove Empty Directories, see Section 11.2.

c© 2011 syntevo GmbH, www.syntevo.com 105

Chapter 9. Preferences

Select Remind me to enter a commit message to make SmartSVN warn you when
trying to commit without a message. Select Trim whitespaces from commit message
to trim leading and trailing whitespaces from the commit message directly before com-
mitting. Select Warn for case-changed files to make SmartSVN warn you before trying
to commit case-changed files; even when warned, you will still be able to continue with
the commit.

Specify to Remember up to a specific amount of entered commit messages for each
project.

Choose for For File Commits if you want to be warned for potentially missed files
when performing a commit:

• Select Do not warn for potentially missed files or directories to switch all warnings
off.

• Select Warn for potentially missed directories, just up the root to receive a
warning if you have selected all visible committable files and any of their parent
directories is modified (containing properties changes).

• Select Warn for any potentially missed directories to receive a warning if you have
selected all visible committable files and there are any more modified directories in
the project.

• Select Warn for any potentially missed directories and files to receive a warning
if you have selected all visible committable files and there are any more modified
directories or committable files.

9.5 Conflict Solver

Here you can configure external tools which should be used instead of the built-in Conflict
Solver (see 8.5).

You can either choose to use the Built-in Conflict Solver or an External Conflict
Solver. An external conflict solver is defined by the operating system Command to be
executed, and its Arguments.

Arguments are passed to the Command as it would occur from the OS command
line. The place holder ${leftFile}, ${rightFile}, ${mergedFile} and ${baseFile}
can be used, which will be substituted by the absolute file path of the left/right resp.
merged (resulting) file. Furthermore, the place holder ${encoding} can be used which
will be substituted by the file’s used encoding. Refer to Section 7.3.1 for details.

9.6 Open

With Don’t open or compare more than X files at once, you can specify an upper limit
beyond which you will be asked before the set of files is opened at once. It is recommended
to set this value not too high, because accidentally opening a large amount of files can
overextend the system.

c© 2011 syntevo GmbH, www.syntevo.com 106

Chapter 9. Preferences

9.7 Refresh

These settings configure the behaviour of refreshing the file system.
Choose Recursively scan unversioned directories to make SmartSVN descend into

unversioned directories and display the complete unversioned sub-tree. Otherwise, only
the unversioned root directory itself will be scanned and displayed.

Choose Perform ’cleanup’ if necessary to automatically cleanup after a manual Re-
fresh. See Section 3.4.16 for details.

By Manual Refresh you can configure how the manual Refresh by View|Refresh (see
Section 2.4) behaves. All options take into account the scanned/unscanned state of the
working copy, see Section 7.3.2.

• You have the option to refresh Always root directory. In this case the directory
selection in the tree does not matter, but always the whole project is refreshed. This
option requires the most effort, but will guarantee that after changing the selection
in the tree, displayed data is still up to date (relative to the last refresh time).

• You can also choose to refresh only the Selected directory recursively. This option
can be useful, if you know, that you are only working a specific part of your whole
SVN project.

• The option Selected directory (recursively if set for view) also refreshes only the
selected directory. Whether this refresh is recursive or not, depends on View|Files
From Subdirectories. This option is the fastest way of refreshing as it is most selec-
tive, but it requires you to be always aware of which directories you have refreshed
and hence which information displayed in directory tree and file table are actually
up to date.

SmartSVN can also automatically perform a refresh of the project after it gets the
focus back, if configured by Refresh on frame activation.

• In general, the automatic refresh behaves the same way as configured for the Manual
Refresh option. Furthermore, you have either the option to disable automatic
refresh by Never, have an immediate refresh by Immediately or have only a refresh,
if SmartSVN has been inactive for at least 5 seconds by After more than 5 seconds
of deactivation. This option is useful, if you typically switch to other applications
for a short period of time and do not want to trigger automatic refresh.

• On Windows, the native File Monitor provides a more efficient way to find out
necessary directories to refresh. Hence, After more than 5 seconds of deactivation
is not available here and regardless of the selected Manual Refresh option, every
directory below your project root will be refreshed, if necessary.

Note Using Refresh on frame activation is for instance convenient if
you are working some time on your project (e.g. in an IDE), then
decide to check and commit your changes and hence get back to
SmartSVN.

c© 2011 syntevo GmbH, www.syntevo.com 107

Chapter 9. Preferences

To automatically perform a Remote State Refresh with every local Refresh, you can
select Refresh Remote State with local Refresh. You may choose to Include externals
and you may choose to Scan locks for a remote state refresh. For details regarding the
Remote State, refer to Section 3.11.

Note Due to optimized Refresh behavior on Windows, only a subset of
your project directories might be refreshed when switching back
from another application and Refresh on frame activation has
been enabled. Hence, also the Remote State for only this subset of
directories will be refreshed.

9.8 Revision Graph

Here you can configure global Revision Graph (see 8.8) options.
The Colors are used to colorize the Branches and Revisions of a Revision Graph.

You can specify colors for both Normal (unselected) and Selected mode. Use Reset to
Defaults to reset the colors to SmartSVN’s default values.

9.9 Built-in Text Editors

These settings are used as a default for all text-displaying and editing views of SmartSVN,
like the Text Editor (see 8.1), the File Compare (see 8.2), the Conflict Solver (see 8.5),
the Annotate (see 8.9) and the Changes view (see 2.6).

For the Font page, choose the Font Family and the Font Size to be used by SmartSVN’s
text components. Optionally you may choose to have a Smooth text display, also known
as “antialiasing”.

For the Colors page choose the various colors, used by SmartSVN’s text components.
You can use Reset to Defaults to restore the “factory defaults” for this page.

For the Behavior page you can configure various aspects of the text editing functions.

9.10 File Comparators

Here you can configure external file compare tools which can be used instead of the built-in
File Compare (see 8.2).

You can link a specific File Pattern to a file comparator. You can either choose to
use the Built-in text file comparator, an External comparator or an External viewer.

9.10.1 External Comparators

An external comparator is defined by the operating system Command to be executed,
and its Arguments. Arguments are passed to the Command as it would occur from
the OS command line. The optional place holders ${leftFile} and ${rightFile} will
be substituted by the absolute file path of the left resp. right file to compare. In cases,
where SVN-internal files like the pristine copy is used for comparison, the content of this

c© 2011 syntevo GmbH, www.syntevo.com 108

Chapter 9. Preferences

file is copied to a temporary location and this temporary file is passed as parameter.
The optional place holders ${leftTitle} and ${rightTitle} will be substituted by the
left resp. right file title which SmartSVN would use when displaying its internal file
comparator.

Furthermore the place holders ${leftEncoding} and ${rightEncoding} can be used
which will be substitued by the encoding of the left resp. the right file. Refer to Section
7.3.1 for details.

With In case of svn:mime-type is binary, try to detect whether actually text type
you can override binary svn:mime-types. In this case, SmartSVN will detect the content
type text/binary itself by inspecting the file. This is the same as if svn:mime-type has
not been set at all.

9.10.2 External Viewers

An external viewer is defined by the operating system Command to be executed, and
its Arguments. It’s executed two times, once for the left and once for the right file to
“compare”. Arguments are passed to the Command as it would occur from the OS
command line. The optional place holders ${file} will be substituted by the absolute
file path of the left resp. right file to view.

9.11 External Tools

These settings configure external tools, which can be invoked by Edit|Open.
You can link a specific File Pattern to an external tool. A tool is defined by the

operating system Command to be executed, its Arguments and Run In. Arguments are
passed to the Command as it would occur from the OS command line. Additionally the
place holder ${filePath} can be used, which is substituted by the absolute file path of
the file (from the file table), on which the command is invoked. Run In specifies to run
the command either in SmartSVN’s working directory or in the File’s directory.

The File Pattern typically contains wild-card symbols (? and *) and may also consist
of multiple patterns, separated by comma.

When running SmartSVN with Java 6 (or above), you can also choose to invoke the
System Edit Command or System Open Command instead of the self-defined command
specified by Following Application.

Example
To configure Acrobat Reader (TM) as the default editor (viewer) for PDF-files, enter
*.pdf for File Pattern, the path of Acrobat Reader Executable (e.g. on Microsoft
Windows acrord32.exe) for Command and keep ${filePath} for Arguments.

9.11.1 Directory Command

The Edit|Open command can also be performed on directories. For this case a Directory
Command can be configured.

c© 2011 syntevo GmbH, www.syntevo.com 109

Chapter 9. Preferences

To be able to use Edit|Open on a directory, you have to select Use following command
to open a directory. As for files you can configure the Command which shall be executed
and the Arguments to be passed. The directory command will always be executed in the
selected directory.

Example
On Microsoft Windows, to open the command shell for a selected directory, enter
cmd.exe for Command and /c start cmd.exe for Arguments.

9.12 Transactions

These settings configure global Transactions (see 5) settings.
For Refresh Each select the interval in minutes for which all active Transactions views

shall be refreshed.
To distinguish transactions of a project from those of additional URLs which are

watched, project transactions will be labeled by a Project Identifier.
Refer to the system properties (see 13.4) for further configuration options which are

seldom used.

9.13 Spell Checker

These settings configure the spell check support which is used primarily for the Commit
command (see 3.5).

You can define multiple Dictionaries. Every dictionary has a Name which is used
in the spell checker popup menu and a Dictionary File. In addition, there is also one
optional File for My Own Words which can be extended by SmartSVN.

Note The Dictionary File has to be in MySpell format, however Hunspell
files are in general working well too. The File for My Own Words
is a simple list of words.

Warning! Depending on the number and size of the dictionary files, the mem-
ory consumption of SmartSVN can increase significantly.

If you have configured multiple dictionaries, text fields for which spell-checking is
supported offer in their popup menu a Language-menu from which you can select the
intended dictionary by its Name. Alternatively, you can choose whether to Use Best
Matching or Use All dictionaries. Use All is useful to combine multiple dictionaries of
the same language, e.g. one file with general expressions and one with domain-specific
expressions. Use Best Matching is useful to build a super-dictionary containing multiple
languages and have SmartSVN detect which dictionary fits better for a given text to
check.

c© 2011 syntevo GmbH, www.syntevo.com 110

Chapter 9. Preferences

Example
When you are frequently writing English as well as German commit messages, you
can specify one English and one German dictionary and select Use Best Matching.
Now, when writing an English commit message, SmartSVN will detect after a few
words that the English dictionary fits better and hence will check the complete
commit message only with the English dictionary (as if you had manually selected
the English dictionary).
On the other hand, when writing a German commit message, SmartSVN will detect
to use the German dictionary and only check for German spelling correctness.

9.14 Shell Integration (Windows)

These settings configure the Shell Integration (see 10.6) of SmartSVN.
Select for which drive types and in which range of functions the shell integration shall

be applicable. For every drive type you can choose whether to show Icon Overlays (and
the context menu) or only the Context Menu or have the shell integration be completely
Disabled.

If necessary, specify further Paths for which the shell integration will only be applicable
with a limited range of functions, either only the Context Menu or completely Disabled.
Use only plain paths, like c:\temp or n:, but no patterns here.

Note In general it’s recommended to have Icon Overlays only present for
Fixed Drives because the display of the overlays requires a rather
good performance for the when accessing the SVN admin area.
When having working copies located on fast network shares, Icon
Overlays should work here well, too. In case you have a mixture of
fast network shares and e.g. slow VPN-tunneled shares, you may
exclude the latter ones by the Paths input field.

9.14.1 Status Cache

Use Configure Status Cache to configure the Status Cache (see 10.9). This requires the
Status Cache service running.

In the dialog you can configure the Cache Roots which will be served by the Status
Cache. Enter every root directory on a new line, wildcards are not allowed here.

Optionally you can reset the Status Cache by Clear all cached status information.
Selecting this option is only recommended if you definitely want to get rid of cached status
information for a certain root directory as cached information is not discarded by simply
removing this root directory from the Cache Roots list.

9.15 Shell Integration (Mac OS)

These settings configure the Shell Integration (see 10.7) integration of SmartSVN.

c© 2011 syntevo GmbH, www.syntevo.com 111

Chapter 9. Preferences

Select whether to enabled the shell integration by Integrate in Finder or not. If nec-
essary, specify further Paths for which the shell integration shall be completely disabled.
Use only plain paths, like /Volumes, but no patterns here.

9.16 Check for Update

These settings configure the New Version Check mechanism of SmartSVN (Section 2.5.13).
Select Automatically check for new program version to make SmartSVN check for

program updates after it has been started. Choose either Daily, Weekly or Monthly; the
recommended option is Weekly.

Note For beta versions the interval is fixed to Daily.

The version check reads a small file from http://www.syntevo.com. If necessary, you
can specify to use a proxy server by Use a proxy server to connect to the internet.
In this case specify Host and Port for the proxy server and optionally Username and
Password to access the proxy server.

9.17 Customize

For every frame in SmartSVN you can configure accelerators, sometimes also context
menus and the tool bar (if present). Use Edit|Customize to open the configuration
dialog.

9.17.1 Accelerators

Use this page to customize the accelerators (shortcuts).
To set or change an accelerator, select the corresponding menu item, go to the Accel-

erator field, press the key combination and click Assign. To remove existing accelerators,
select the corresponding menu items and click Clear. To reset accelerators to their default,
select the corresponding menu items and click Reset.

Tip You can double click a menu item to directly jump to the Acceler-
ator field. You can assign/change multiple accelerators at the same
time, if they each belong to a different Window.

9.17.2 Context Menus (not always available)

Use this page to customize the context menus.
First select the Context Menu to change. Then you will find all available menu items

on the left and the current context menu structure on the right. You can either use
Drag-and-Drop to arrange the context menu or use the corresponding buttons: Use the
Add button to add a selected menu item from the left side before the selected item on the
right side. You also can use Add Separator or Add Menu to add the corresponding item

c© 2011 syntevo GmbH, www.syntevo.com 112

Chapter 9. Preferences

before the selected item on the right side. Each (sub)menu contains a gray placeholder
at the end to allow adding items to the end of that (sub)menu. Use the Remove button
to remove a selected menu item, a separator or a submenu on the right side. Use Reset
to Defaults to restore the default context menu layout for the selected Context Menu.

Tip If you haven’t changed the context menus (significantly) it’s recom-
mended to use Reset to Defaults after having upgraded SmartSVN
to a new major version as new menu entries might have been added.

9.17.3 Toolbar (not always available)

Use this page to customize the toolbar.
Use Add to add one or more Available buttons to the toolbar resp. Remove to

remove one or more Selected buttons from the toolbar. From the Add drop down, use
Fixed Separator to add a separator before the currenly selected button. Use Stretching
Separator to add a strechting space before the currently selected button. The remaining
horizontal space is subdivided and assigned to the stretching separators. Use Move Up
and Move Down to re-arrange the order of the buttons.

Note All operations can be performed by Drag-and-Drop, too.

c© 2011 syntevo GmbH, www.syntevo.com 113

Chapter 10

Shell Integration

SmartSVN offers a shell integration to have the SVN functionality of SmartSVN also
present in certain parts of GUI shells, like in file dialogs. The shell integration is currently
present on Microsoft Windows and Apple Mac OS X. It is only available when SmartSVN
is running (except the one on Mac OS X 10.6).

10.1 Commands (Windows and OS X 10.5)

From the shell’s context menu, there are the most important SVN commands available
for locally versioned files and directories. Performing commands from the shell’s context
menu results in the same dialogs and windows as if performing the commands from the
Project Window (see 2). For details regarding the commands refer to Section 3.

For commands performed from the shell, the same environmental settings are used
as when performing them from the Project Window. This especially implies the Project
Settings (see 7.3), if for the current working copy directory a corresponding project exists.
If no matching Project (see 7) can be found, SmartSVN will use the Default Settings (see
7.3.4).

From the context menu, use Open Project (or Open SmartSVN if no file/directory
is selected) to launch the Project Window (see 2) and open the corresponding project.

Tip For the command icons, the icon files within lib/icons in the
installation directory of SmartSVN are used. The names are cor-
responding to the command names. For every command, there is
a default icon and a grayed version, which has an additional -g in
its name. If you prefer, you can replace these icons.

10.2 Commands (OS X 10.6)

Unfortunately, Apple has dropped the Finder integration API with OS X 10.6. Hence,
SmartSVN only can provide a very simple alternative using socalled services. From the
Finder’s context menu three commands are available if files or directories are selected:
Update from SVN, Commit to SVN and Open in SmartSVN. Note, that because of

114

Chapter 10. Shell Integration

the limited services API these commands are available independent of the SVN state of
these files or directories. They are even available for items which are not SVN-controlled.
In contrast with the shell integration on Windows and OS X 10.5, SmartSVN does not
need to be running to be able to invoke the commands. If necessary, SmartSVN will start
automatically.

10.3 Output Window

All commands invoked from the shell integration will be executed in a special output
window. You may select Close automatically on success to have the window closed
automatically after all currently running operations have been completed successfully.

10.3.1 File menu

• Use Show Changes on a selected file/directory to see what has been changed locally
by executing the command.

• Use Log on a selected file/directory to see the corresponding Log (see 8.7).

• Use Close to close the frame.

10.3.2 Edit menu

• Use Stop on one or more selected commands to cancel them. If no command has
been selected, you will be asked whether to cancel all currently running commands.

• Use Customize to customize accelerators (see Section 9.17).

10.3.3 Window menu

Refer to Section 2.5.12 for more details.

10.4 Overlay Icons

The overlay icons show the SVN states for the corresponding files and directories. Cur-
rently, overlay icons are only present on Windows. Because the number of possible overlay
icons is limited by the operating system, only the most important SVN states have a spe-
cial overlay icon, see Table 10.1 for details. Versioned, but unchanged files and directories
do not have a special overlay icon. For all other SVN states, the modified icon is used.

Tip For the overlay icons, the icon files within lib/icons in the installa-
tion directory of SmartSVN are used. The names are corresponding
to the States used in Table 10.1. If you prefer, you can replace these
icons.

c© 2011 syntevo GmbH, www.syntevo.com 115

Chapter 10. Shell Integration

Icon State Details

Modified File/directory is modified in contents/properties.

Modified recursively Directory itself of some file/subdirectory is modified (re-
quires the Status Cache service (see 10.9) running.

Added File/directory is scheduled for addition.

Removed File/directory is scheduled for removal.

Ignored File/directory is not under version control (exists only lo-
cally) and is marked to be ignored.

Conflicted An updating command lead to conflicting changes either
in content or properties.

Unversioned File/directory is not under version control, but only exists
locally.

Root Directory is a working root and is not modified.

Figure 10.1: Overlay Icons

The availability of overlay icons as well as commands can be configured in the Prefer-
ences (see 9.14).

Note On Windows, for technical reasons no icon overlays for files within
your profile directory %USERPROFILE% are shown (except of sub-
directory My Documents).

10.5 Server Mode

To provide the shell integration without requiring SmartSVN actually being open, SmartSVN
can be started with the --server-mode argument, for details refer to Section 12.4.

10.6 Windows Shell Integration

The shell integration adds overlay icons to directory and file views of Windows and SVN
commands to the context menu for directories and files. You will especially see them for
the Windows Explorer, but also for other software which e.g. uses the native file dialogs
of Windows.

Installation

You can choose to enable the shell integration for the installation of SmartSVN, when
using the MSI installers. It’s also recommended to have SmartSVN automatically be
started with the system startup, so the shell integration is available immediately. The
installers offer a corresponding option which will add SmartSVN to the Autostart section,
starting SmartSVN in server mode (see 10.5).

c© 2011 syntevo GmbH, www.syntevo.com 116

Chapter 10. Shell Integration

Uninstallation

The shell integration will be uninstalled together with SmartSVN. You can also uninstall
the shell integration independently from the Control Panel, Software, using Repair there.

Note For a list of common problems, have a look at http:

//www.syntevo.com/smartsvn/techarticles.html?page=

problems.explorer-icon-overlays-not-showing.

10.7 Mac OS X Finder integration

The Finder integration lets you perform SVN commands in the Finder using the context
menu.

Installation

On the first start, SmartSVN asks whether to install the Finder integration. If you
choose to install it, SmartSVN will create a symbolic link ~/Library/Contextual Menu

Items/SmartSVN CM.plugin. If you choose not to install, you can install it later by
selecting the option Integrate in Finder on the Shell Integration page of the Preferences
(see 9.15).

If the installation by SmartSVN itself fails for some reason, you can install the Finder
integration yourself. If the folder ~/Library/Contextual Menu Items does not exist yet,
create it. Right click the SmartSVN application in the Finder and select Show Package
Contents. Copy the SmartSVN CM.plugin from within the SmartSVN application to the
folder ~/Library/Contextual Menu Items. Log out and relogin again.

Uninstallation

Deselect the option Integrate in Finder on the Finder Integration page of the Prefer-
ences.

To manually uninstall the Finder integration, just delete ~/Library/Contextual

Menu Items/SmartSVN CM.plugin and log out and relogin again.

Automatic start at login

The Finder integration will only work when SmartSVN is running. The easiest way to
do that automatically, is to let SmartSVN be launched at login. Just right click the
SmartSVN dock icon and select Open at Login. Alternatively, you can use the Accounts
panel in the System Preferences to define SmartSVN as Login Item. Note, that the
Hide option has no effect. If SmartSVN is defined as Login Item, it will be started in
server mode (see 10.5).

c© 2011 syntevo GmbH, www.syntevo.com 117

Chapter 10. Shell Integration

10.8 Tray Icon

By default, SmartSVN keeps running even when all frames have been closed. To have
SmartSVN still accessible, a tray icon is used. It’s available for Microsoft Windows, most
Linux desktop managers and other operating systems for which tray icons are supported.

From the context menu of the tray icon, use New Project Window to open a new
Project Window (see 2), New Repository Browser to open a new Repository Browser (see
4) or Show Transactions to open the Transactions frame (see 5.1). Open the Preferences
or information About SmartSVN. To exit SmartSVN, use Exit SmartSVN.

Note On Mac OS SmartSVN is permanently available when SmartSVN
is running, even when all frames are closed. In this case it has a
reduced menu bar, including the Window menu.

The tray icon shows the progress of currently processing SVN operations which have
been invoked from the shell extensions. It also shows the presence of new revisions for
the Transactions (see 5.1) frame; the tooltip gives more information on which repositories
have new transactions.

You can disable the tray icon in the Preferences (see 9.3) by deselecting Nest in
System Tray. In this case, SmartSVN will exit once the last frame has been closed.

Note The Nest in System Tray option is not regarded when starting
SmartSVN in server mode (see 10.5).

10.9 Status Cache

The Status Cache is an optional Windows service which manages SVN status information
for your working copies. It’s primarily used to displayed the recursively modified state for
directories, which is denoting that some files/subdirectories are modified. Also, the initial
scanning/refresh (see 2.4.5) accesses Status Cache information to quickly give a preview
of the working copy.

To avoid unnecessary system load, the root directories which will be served by the
Status Cache have to be explicitly configured. SmartSVN will ask you to do so for the
first command which you perform through the Shell Integration. The Status Cache can
be reconfigured any time in the Preferences (see 9.14.1).

Performance considerations

You should carefully determine which root directories should be be served by the Status
Cache, as the Status Cache will introduce a certain overhead to your system’s load. This
overhead comes more apparent the slower the file system to cache is. In general you
should:

• Only configure to cache local harddisks

c© 2011 syntevo GmbH, www.syntevo.com 118

Chapter 10. Shell Integration

• Avoid caching of possible temporary directories which might receive temporary
working copies

• Don’t create a too detailled list of individual directories to cache

So for instance, if all of your working copies are located at a separate drive D:, it
will be perfect to have the Status Cache configured for this single root directory D: and
nothing else.

Uninstallation

If you are only rarely working with the Shell Integration and additional recursively modi-
fied state is not important to you, you may completely uninstall the service. This can be
done via the Control Panel/Add or Remove Programs, selecting the SmartSVN installer,
Change and within the installer using Change again.

c© 2011 syntevo GmbH, www.syntevo.com 119

Chapter 11

Plugins

SmartSVN comes with a couple pre-installed plugins, based on SmartSVN’s Plugin-API
Plugins contribute additional functionality to SmartSVN which can be helpful to cer-
tain users but in general is not required by most users; resp. functionality which is not
primarily concerned with SVN.

Plugins are deployed as separate JAR files which are located in plugins sub-directory
in SmartSVN’s installation directory. A plugin can be disabled simply by removing the
corresponding JAR file from this directory.

11.1 JIRA Plugin

The JIRA Plugin provides a basic issue tracker integration for the JIRA issue tracker
from Atlassian, see http://www.atlassian.com/software/jira.

The plugin adds a Get from JIRA entry to the drop-down menu of commit message
text fields (see Section 3.5). For the Commit wizard itself, it will also parse the commit
message for potential JIRA issue IDs and ask whether to resolve these issues on successful
commit.

11.1.1 Workflow

Before connecting to JIRA, SmartSVN will ask you for your Username and Password
which may be optionally stored by Store password. If you are connecting to an SSL-
secured JIRA server, you will have to confirm the validity of SSL-certificate fingerprints.
In case SSL client authentication is required, enter the path to the Certificate file and its
Passphrase which may optionally be stored by Store passphrase.

Warning! Passwords and passphrases will be stored in plain-text in the
settings.xml file (see Section 12).

On the Files page of the Commit wizard, use Get from JIRA to display a list of JIRA
issues, including their Key, Summary and Status. For reasons of clarity, the list will only
contain issues which are assigned to your username and which are either

• in in-progress state or are

120

Chapter 11. Plugins

• contained in the next three unreleased versions (the number of unreleased versions
can be changed by the system property smartsvn.plugin.jira.unreleased-versions-to-display

for details refer to Section 13). If there are no unreleased versions, assigned issues
for all versions will be loaded.

You can select one or more issues here which will then be set for the Commit Message.
Using Refresh can be useful to reload issues from JIRA.

When proceeding the Files page with Next, the plugin will check the Commit Mes-
sage for JIRA issue IDs. For every issue found, you will be prompted with a Resolve
JIRA Issue dialog for which you can either select to Mark as resolved in revision and se-
lect the resolution revision. This will contact JIRA and resolve the issue correspondingly.
Don’t mark as resolved will leave the issue as it is.

11.1.2 Requirements

The availability of the plugin functionality for a certain working copy depends on whether
bugtraq-properties (see 3.7.9) for the working copy root directory have been configured
and whether the bugtraq:url is pointing to a JIRA Issues page. Following types of URLs
are recognized:

• http(s)://host:port/prefix/browse/ProjectKey-IssueID

• http(s)://host:port/prefix/ViewIssue.jspa?key=ProjectKey-IssueID

Note The ProjectKey must be specified in the URL. If, for ex-
ample, your issues look like FOO-123, then the bugtraq-
properties URL must either end with /browser/FOO-%BUGID%
or /ViewIssue.jspa?key=FOO-%BUGID%.

The plugin only works for recent JIRA versions which provide a SOAP interface.
The SOAP interface has to be enabled for your JIRA server (what can typically only be
done by the administrator). For details on how to enable the interface, refer to http:

//confluence.atlassian.com/display/JIRA/Creating+a+SOAP+Client.

Note Certain aspects of the plug-in can be customized by system prop-
erties (see 13.5).

11.2 Remove Empty Directories

This plugin adds the Remove Empty Directories menu item to the Tools menu. It sched-
ules all empty, versioned directories below the currently selected directory for removal.
Thereafter you can commit the selected directory to actually remove the directories from
the repository.

c© 2011 syntevo GmbH, www.syntevo.com 121

Chapter 11. Plugins

11.3 Quick Update

This plugin adds an Update category to the Preferences (see 9). Here you can configure
whether to Show Update configuration dialog or not. In case of no configuration dialog,
Update (see 3.3.1) will start immediately on invocation and update the selected directory
(resp. file) recursively to HEAD. If you need to update to another revision, you may
either enable the configuration dialog again or use the Switch (see 3.3.4) command.

11.4 Plugin-API

SmartSVN’s Plugin-API can be used to customize various aspects of SmartSVN by cre-
ating corresponding plugins. The Plugin-API currently covers following functionality:

• Modify the menu structure of the Project Window (see 2.5).

• Add custom SVN operations to arbitrary menus.

• Add custom file table columns (see 2.4), e.g. to show custom SVN properties.

• Customize various aspects of the Commit workflow (see 3.5).

• Customize various aspects of the Update workflow (see 3.3.1).

• Store custom Preferences (see 9) or project settings (see 7.3).

For more details refer to http://www.syntevo.com/smartsvn/techarticles.html?

page=pluginapi.

11.5 Send Support Email

This plugin adds a Contact Support menu item to the Help menu to open your email
client to send a message to smartsvn@syntevo.com.

11.6 Hide Menu Items

You can use this plugin to remove menu items from the main menu bar of the project win-
dow (see 2). The configuration of the plugin is performed by the menuItemsToHide.config
in SmartSVN’s settings directory (see 12.1). If this file does not exist, the plugin will cre-
ate it and pre-fill with all available menu items IDs, by default commented out. By
un-commenting a line, the corresponding menu item will not be present anymore for the
next start of SmartSVN.

11.7 Merge Info Column

This plugin adds the Merge Info column to the File Table (see 2.4).

c© 2011 syntevo GmbH, www.syntevo.com 122

Chapter 11. Plugins

11.8 Tag Multiple

This plugin adds the Tag Multiple Project Roots (see 3.8.3) functionality to the Project
window (see 2).

11.9 Commit Message Templates

This plugin adds support for the tsvn:logtemplate property which can be used to
define a default commit message which will be displayed in the Commit wizard (see
3.5). For details refer to http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/

ch05s15.html.

11.10 Pre-commit hooks

This plugin supports the execution of client-side pre-commit hook scripts. A pre-commit
hook script is called immediately before committing files (see 3.5).

The script’s name has to be pre-commit.bat on Windows resp. pre-commit on
Mac OS/Unix. It has to be located in SmartSVN’s settings directory (see 12.1) or in
SmartSVN’s default settings directory (see 12.3). When executed, it will be given as first
parameter the path to a temporary file which contains the absolute paths of the items to
be committed. The script will be called several times, if the commit refers to multiple
repositories (externals).

c© 2011 syntevo GmbH, www.syntevo.com 123

Chapter 12

Installation and Files

SmartSVN stores its configuration files per-user. The root directory of SmartSVN’s con-
figuration area contains subdirectories for every major SmartSVN version, so you can use
multiple versions concurrently. The location of the configuration root directory depends
on the operating system.

12.1 Location of SmartSVN’s settings directory

• Windows:: The configuration files are located below %APPDATA%\syntevo\SmartSVN.
Note: Before version 5, configurations files have been stored below %USERPROFILE%\.smartsvn.

• Mac OS:: The configuration files are located below ~/Library/Preferences/SmartSVN.

• Unix/Other:: The configuration files are located below ~/.smartsvn.

Tip You can change the directory where the configuration files are
stored by the system property smartsvn.home (see 13.1).

12.2 Notable configuration files

• accelerators.xml stores the accelerators (see 9.17.1) configuration.

• license stores your SmartSVN’s license key.

• log.txt contains debug log information. It’s configured via log4j.xml.

• passwords is an encrypted file and stores the passwords (see 6.4) used throughout
SmartSVN.

• project-defaults.xml stores the default project settings (see 7.3.4).

• projects.xml stores all configured projects (see 7), including their settings.

• repositories.xml stores the Repository Profiles (see 6), except the corresponding
passwords.

124

Chapter 12. Installation and Files

• settings.xml stores the application-wide Preferences (see 9) of SmartSVN.

• tag-branch-layouts.xml stores the configured Tag-Branch-Layouts (see 3.8.1).

• transactionsFrame.xml stores the configuration of the Transactions frame (see
5.1).

• uiSettings.xml stores the context menu (see 9.17.2) configuration.

12.3 Company-wide installation

For company-wide installations, the administrator can install SmartSVN on a network
share. To make deployment and initial configuration for the users easier, certain configu-
ration files can be prepared and put into the subdirectory default (within SmartSVN’s
installation directory).

When a user starts SmartSVN for the first time, following files will be copied from the
default directory to his private configuration area:

• accelerators.xml

• project-defaults.xml

• repositories.xml

• settings.xml

• tag-branch-layouts.xml

• transactionsFrame.xml

• uiSettings.xml

The license file (only for Enterprise licenses and 10+ users Professional licenses)
can also be placed into the default directory. In this case, SmartSVN will prefill the
License field in the Set Up wizard when a user starts SmartSVN for the first time. When
upgrading SmartSVN, this license file will also be used, so users won’t be prompted
with an “license expired” message, but can continue working seamlessly.

Note Typically, you will receive license files from us wrapped into a ZIP
archive. In this case you have to unzip the contained license file
into the default directory.

c© 2011 syntevo GmbH, www.syntevo.com 125

Chapter 12. Installation and Files

12.4 Command line arguments

SmartSVN supports a couple of command line arguments.

• --server-mode will just start up the core process and bring up the tray icon (see
10.8), if present. This startup mode is used for the Shell Integration (see 10).

• --exit will try to detect a running SmartSVN process and force this process to
exit. This allows to stop SmartSVN programmatically.

• --transactions will bring up the Transactions Frame (see 5.1) instead of the
Project Window (see 2) on startup.

• --repository-browser will bring up the Repository Browser (see 4) instead of the
Project Window (see 2) on startup.

• project-path will bring up the Project Window (see 2) and load the project contain-
ing the specified project-path.

12.5 JRE search order (Windows)

On Windows, the smartsvn.exe launcher will search for an appropriate JRE in the
following order (from top to bottom):

• Environment variable SMARTSVN JAVA HOME

• Sub-directory jre within SmartSVN’s installation directory

• Environment variable JAVA HOME

• Environment variable JDK HOME

• Registry key HKEY LOCAL MACHINE\SOFTWARE\JavaSoft\Java Runtime En-
vironment

c© 2011 syntevo GmbH, www.syntevo.com 126

Chapter 13

System properties/VM options

Some very fundamental options, which have to be known early at startup time or which
typically need not to be changed are specified by Java VM options instead of SmartSVN
preferences.

Options suppied to the VM are either actual standard or non-standard options, like
-Xmx to set the maximum memory limit, or system properties, typically prefixed by -D.
This chapter is mainly about SmartSVN-specific system properties.

13.1 General properties

Following general purpose properties are supported by SmartSVN.

smartsvn.home

This propery specifies the directory into which SmartSVN will put its configuration
files; refer to Section 12 for details. The value of smartsvn.home may also contain
other default Java system properties, like user.home. It may also contain the special
smartsvn.installation property, which refers to the installation directory of SmartSVN.

Example
To store all settings into the subdirectory .settings of SmartSVN’s installation
directory, you can set smartsvn.home=${smartsvn.installation}\.settings.

13.2 SVN properties

Following properties are related to the core SVN functions.

svnkit.admindir

This property specifies the name of the directory into which Subversion’s administrative
files are stored. By default, this is the .svn directory.

127

Chapter 13. System properties/VM options

Example
ASP.NET does not allow directories to start with a “.”, as “.svn” does. Therefore,
to use ASP.NET in combination with SmartSVN, you can change the administrative
directory name e.g. to svn by svnkit.admindir= svn

smartsvn.tcp.connect-timeout

This property specifies the CONNECT timeout for repository connections. By default,
this timeout is set to 60 seconds.

Example
With smartsvn.tcp.connect-timeout=10 you can set the CONNECT timeout to
10 seconds.

smartsvn.tcp.read-timeout

This property specifies the READ timeout for repository connections. By default,this
timeout is set to one hour, which gives the server enough time to respond to time-expensive
requests. On the other hand, if a server is not responding at all, SmartSVN may block for
one hour, until it reports the problem. This may be annoying under certain circumstances
and hence can be changed by this property. The timeout value is specified in seconds.

Example
With smartsvn.tcp.read-timeout=60 you can set the READ timeout to 60 sec-
onds.

smartsvn.default-connection-logging

With this property you can enable the connection logging (see 2.5.13) by default for all
commands. This can be useful when searching for connection-related problems, which
occur only rarely. By default, this property is not enabled.

Example
Use smartsvn.default-connection-logging=true to enable connection logging
by default.

Note The connection.log file is freshly created on every start-up of
SmartSVN. So immediately after the problem has occurred make a
backup of this file, only then stop/restart SmartSVN (if necessary).

smartsvn.http-spool-directory

With this property you can define a “spool” directory into which HTTP connection data
is temporarily spooled. Spooling is the process in which server response is completely
(fully) read first and only then processed. This approach may result in a certain initial
delay (notifications usually displayed for certain operation will only be displayed after all
data is fetched), but may be necessary in case the server uses to close connection when
data it provides is not completely read in a prompt manner.

c© 2011 syntevo GmbH, www.syntevo.com 128

Chapter 13. System properties/VM options

In general spooling does not result in a slow down, as file system access is much
faster compared to network access; the main drawback of spooling is that no events are
generated while data is spooled, so you may perceive that the operation is significantly
slower than with spooling turned off.

Example
Use smartsvn.http-spool-directory=c:/temp/smartsvn on Windows or
smartsvn.http-spool-directory=/tmp/smartsvn on Unix or Mac OS to enable
HTTP connection spooling.

smartsvn.commit.disallowed-filename-characters

With this property you can configure which filename characters should be disallowed for
committing. This property defauls to <>:"/\|?*, representing those characters which
are either reserved on Windows, Unix or Mac OS. The purpose of this check is to ensure
that committed files can be checked out on every platform.

Example
Use smartsvn.commit.disallowed-filename-characters= to disable the check
for disallowed characters completely.

svnkit.wccopy.nomergeinfo

With this property you can configure svn:mergeinfo creation/modification on local copy
(see 3.4.9) operations.

Example
Use svnkit.wccopy.nomergeinfo=true to skip svn:mergeinfo cre-
ation/modification.

Warning! When setting this property to true, SmartSVN’s behaviour is not
fully compatible with Subversion 1.5 merge tracking.

13.3 User interface properties

Following properties are related to the user interface of SmartSVN.

smartsvn.lookAndFeel.usePlatformIndependent

This property switches to SmartSVN’s own, platform-independent Look’n’Feel.

Example
To use SmartSVN’s platform independent Look’n’Feel, set
smartsvn.lookAndFeel.usePlatformIndependent=true

c© 2011 syntevo GmbH, www.syntevo.com 129

Chapter 13. System properties/VM options

smartsvn.lookandfeel

This property specifies the Look’n’Feel of SmartSVN. The value must be the fully qualified
class name of a valid Look’n’Feel on your system.

Example
To use the Plastic Look’n’Feel from JGoodies Looks, put the
looks*.jar into the lib directory (for non-Windows systems, you
need to modify the launcher script, too) and set the following option
smartsvn.lookandfeel=com.jgoodies.looks.plastic.PlasticLookAndFeel

Note SmartSVN’s standard Look’n’Feels have been optimized for
SmartSVN. Changing the Look’n’Feel may result in the GUI less
nice looking.

smartsvn.ui.font

This property specifies the font family which is used for SmartSVN’s own Look’n’Feel.
The value must be a valid Java font name.

Example
To change the font family to Dialog, you may use smartsvn.uifont=Dialog

smartsvn.ui.fontsize

This property specifies the font size which is used for the platform independent Look’n’Feel
(property smartsvn.lookAndFeel.usePlatformIndependent needs to be set, too, on
Windows). The value specifies the point size of the font, which defaults to 12.

smartsvn.ui.brightness

This property specifies the brightness of menu bars, toolbar, dialog backgrounds, etc.
Valid values are in the range of 0.0 to 1.0. This property is only applicable, if SmartSVN’s
own Look’n’Feel is used, i.e. smartsvn.lookandfeel has not been changed.

smartsvn.ui.window-background-brightness

This property specifies the brightness of the “White” of window backgrounds, like the file
table. Valid values are in the range of 0.0 to 1.0. This property is only applicable, if
SmartSVN’s own Look’n’Feel is used, i.e. smartsvn.lookandfeel has not been changed.

smartsvn.lookAndFeel.tooltipDisplayDuration

This property specifies the duration in seconds for displaying a tooltip.

c© 2011 syntevo GmbH, www.syntevo.com 130

Chapter 13. System properties/VM options

smartsvn.splashScreen.show

This property specifies whether to show the splash screen on startup or not. It defaults
to true.

Example
Use smartsvn.splashScreen.show=false to disable the splash screen.

smartsvn.toolbar.textBelowIcon

This property specifies whether to show toolbar icon texts or not.

Example
Use smartsvn.toolbar.textBelowIcon=false to switch off toolbar icon texts.

q.lookAndFeel.treeStriped

This property specifies whether to show trees striped (alternating while/gray columns) or
not.

Example
Use q.lookAndFeel.treeStriped=false to switch striping off.

q.verboseDate

This property specifies whether to use “Today” and “Yesterday” when displaying dates/timestamps.
It is on by default.

Example
Use q.verboseDate=false to switch verbose dates off.

q.verboseDate.showOnlyTimeForToday

This property specifies whether to skip “Today” and just display the time when display-
ing dates/timestamps referring to the current day. It is on, by default and it requires
q.verboseDate to be on, too.

Example
Use q.verboseDate.showOnlyTimeForToday=false to keep displaying “Today”.

13.4 Transaction-related properties

There are following VM properties related to the Transactions (see 5) views.

smartsvn.transaction.message-length

This property specifies the maximum commit message length which will be displayed for
Transactions. Longer commit messages will be truncated to save memory usage. The
default value is set to 256.

c© 2011 syntevo GmbH, www.syntevo.com 131

Chapter 13. System properties/VM options

smartsvn.transaction.maximum-file-count

This property specifies the maximum file/directory count per revision which will be dis-
played for Transactions. If a revision contains more changed files/directories, it will be
truncated and SmartSVN will add a note “[File display limited]” to the commit message.
The default value is set to 1000.

smartsvn.transactions.connect-timeout

This property specifies the CONNECT timeout for repository connections established by
the Transactions. The default value is set to 10 seconds. For details refer to smartsvn.tcp.connect-
timeout (see 13.2).

smartsvn.transactions.read-timeout

This property specifies the READ timeout for repository connections established by the
Transactions (except of cache updates, which require a log command to be executed).
The default value is set to 60 seconds. For details refer to smartsvn.tcp.read-timeout (see
13.2).

smartsvn.transactions.update-timeout

This property specifies the READ timeout during cache updates (which require a log
command that may take significant time until response). The default value is identical to
smartsvn.tcp.read-timeout (see 13.2).

smartsvn.logcache.refresh-chill-out-cycle

This property specifies the chill out cycle (in counts of revisions) for building the Log
Cache (see 5.3). It can be used to alleviate the server in perspective that many clients
will be building the cache at the same time. The default value is set to 0 revisions,
meaning no chill out cycle.

Warning! Use this property only if necessary; it can slow down the build
process of a Log Cache significantly, making it even unusable.

smartsvn.logcache.refresh-chill-out-seconds

This property specifies the maximum number of seconds to sleep during a chill out cycle
for building the Log Cache (see 5.3). This property is only used in combination with
smartsvn.logcache.refresh-chill-out-cycle. The default value is set to 10 seconds.

Example
Use smartsvn.logcache.refresh-chill-out-cycle=1000 and
smartsvn.logcache.refresh-chill-out-seconds=60 to have SmartSVN sleeping
60 seconds after every 1000 received revisions.

c© 2011 syntevo GmbH, www.syntevo.com 132

Chapter 13. System properties/VM options

smartsvn.logcache.maximum-message-length

This property specifies the maximum length (in characters) of a commit message to be
stored. Commit messages which exceed this limit will be truncated, ending with a special
note that this truncation happened. The default value is set to 16384 characters.

Example
Use smartsvn.logcache.maximum-message-length=1024 to set the limit to 1024
characters.

13.5 JIRA plugin properties

Following system properties are related to the JIRA plugin (see 11.1).

smartsvn.plugin.jira.unreleased-versions-to-display

With this property you can configure the number of unreleased versions for which in-
progress and open issues will be loaded (the default value is 3).

Example
Set smartsvn.plugin.jira.unreleased-versions-to-display=5 to increase to 5
unreleased versions.

smartsvn.plugin.jira.resolved-constant

If you are using custom workflows, it may be necessary to reconfigure the constant which
is sent when you select to resolve an issue (the default value of the constant is “5”).

Example
Set smartsvn.plugin.jira.resolved-constant=31 to send “31” for resolving is-
sues.

Tip To find out the correct value of the constant, either ask your Ad-
ministrator or do the following yourself:

• Login to JIRA as Administrator

• Go to Administration - Global Settings - Workflow

• Invoke Steps on the Active workflow

• Check the Transitions column for the desired Resolve transi-
tion, in the default workflow it’s the Resolve Issue transition

• Use the ID given in parenthesis for SmartSVN’s
smartsvn.plugin.jira.resolved-constant

c© 2011 syntevo GmbH, www.syntevo.com 133

Chapter 13. System properties/VM options

smartsvn.plugin.jira.show-resolve-dialog

Use this property to disable the Resolve JIRA Issue dialog and leave issues in their
current state.

Example
Set smartsvn.plugin.jira.show-resolve-dialog=false to have the dialog dis-
abled.

smartsvn.plugin.jira.load-all-issues

Use this property to load all issues (instead of only in-progress and open issues). This
may require transferring of large amounts of data and is in general not recommended.

Example
Set smartsvn.plugin.jira.load-all-issues=true to have this property enabled.

13.6 Other properties

There are following other VM properties available.

smartsvn.logcache.useURLasUUID

The Log Cache (see 5.3) uses repository UUIDs to distinguish between different reposito-
ries resp. to detect whether two repositories are equal even when different URLs are used
to access them. This for instance happens when using different protocols, like ssh:// and
https://.

Although not recommended, sometimes a repository has been created from another
repository just by copying the raw files. In this case both repositories will have the same
UUID what will confuse the Log Cache. For such cases the distinction between repositories
has to be based on their URLs.

Example
Set smartsvn.logcache.useURLasUUID=true to have this property enabled.

smartsvn.log.maximum-custom-properties

This property specifies the maximum number of custom property columns displayed
within the Log frame (see 8.7) after having invoked Log|Load Properties. The default
value is set to 10.

smartsvn.disable-check-for-new-version

With this property the automatic/manual Check for New Version (see 2.5.13) can be
disabled.

Example
Set smartsvn.disable-check-for-new-version=true to disable the check.

c© 2011 syntevo GmbH, www.syntevo.com 134

Chapter 13. System properties/VM options

smartsvn.output.maximum-file-count

With this property you can change the maximum number of files/directories which will
be displayed in the Output area for each command.

Example
Set smartsvn.output.maximum-file-count=500 to display at most 500 files.

smartsvn.revision-graph.show-raw-mergeinfo

With this property the display of the raw svn:mergeinfo information in the Revision Graph
(see 3.9.8) can be enabled.

Example
Set smartsvn.revision-graph.show-raw-mergeinfo=true to display raw
svn:mergeinfo information.

13.7 Specifying VM options and system properties

Depending on your operating system, VM options resp. system properties are specified
in different ways.

smartsvn.properties file

The smartsvn.properties file is present on all operating systems. It’s located in SmartSVN’s
settings directory; refer to Section 13.1 for details. All system properties can be specified
in this file.

Note System properties are VM options which would be specified by the
-D prefix when directly providing them with the start of the java

process. All options listed in this chapter are system properties and
hence can be specified in the smartsvn.properties file.

Every option is specified on a new line, with its name followed by a “=” and the
corresponding value.

Example Add

smartsvn.http.timeout=60

to set the HTTP-timeout to 60 seconds.

Microsoft Windows

VM options are specified in bin/smartsvn.vmoptions within the installation directory of
SmartSVN. You can also specify system properties by adding a new line with the property
name, prefixed by -D, and appending = and the corresponding property value.

c© 2011 syntevo GmbH, www.syntevo.com 135

Chapter 13. System properties/VM options

Example Add the line

-Dsmartsvn.http.timeout=60

to set the HTTP-timeout to 60 seconds.

Apple Mac OS X

System properties are specified in the Info.plist file. Right click the SmartSVN.app in
the Finder and select Show Package Contents, double click the Contents directory and
there you will find the Info.plist file. Open it in a text editor of your choice. Specify the
system properties as key-string pairs in the dict-tag after the key with the Properties

content.

Example Use the following key-string pairs

<key>Properties</key>

<dict>

...

<key>smartsvn.http.timeout</key>

<string>60</string>

</dict>

to set the HTTP-timeout to 60 seconds.

Specify a VM option by placing them in the string-tag to the VMOptions array.

Unix

System properties are specified e.g. in bin/smartsvn.sh within the installation directory
of SmartSVN. You can specify a property by adding the property name, prefixed by -D and
appending = and the corresponding property value to the VM PROPERTIES environment
variable. Multiple properties are simply separated by a whitespace; make sure to use
quotes when specifying several properties.

Example Add

_VM_PROPERTIES="$_VM_PROPERTIES -Dsmartsvn.http.timeout=60"

before the $ JAVA EXEC call to set the HTTP-timeout to 60 seconds.

c© 2011 syntevo GmbH, www.syntevo.com 136

Chapter 14

xMerge add-on

The xMerge (“cross-merge”) add-on helps to automate merging of moved and renamed
files for single-source merges (see 3.6.1).

14.1 Introduction

The default merge implementation provided by Subversion lacks “true rename” support.
The most recent stable version (SVN 1.6.x) currently is able only to raise a tree conflict
for a file which was copied or moved at some certain moment in history, if that copy
breaks somehow normal merge process on that file. The user then has to manually fix
that kind of conflict by running sub-merges or reverting modified files.

xMerge inherits the default merge implementation. This means, that xMerge behaves
the way default merge implementation does in case a file can be processed properly. In
addition, xMerge also overrides the default merge behavior to process those files which
are skipped by the default merge implementation.

14.2 A sample use-case

Diagram 14.1 illustrates a basic use-case of xMerge when working with a “release branch”.
The release branch branch has been forked off the trunk. The branch should only receive
the minimal amount of changes which are required to fix a bug. In terms of revisions this
means that only those revisions should be merged from trunk which are actually bug-
fixes. Now, a common problem is that restructuring/refactoring in trunk may result in
file moves/renames and hence fixes to those files can’t be merged back to the trunk using
default SVN merge implementation anymore. The older a branch is the more pressing
this problem can get.

With default SVN merge, the solution is either to manually merge the bug-fix revision
by selecting the file in the branch and merging from the corresponding trunk file. This
can be cumbersome for a larger amount of files and is error-prone. Or one could merge
the necessary restructurings/refactorings to the branch, too, but this contradicts the
requirement of “minimal amount of changes required”.

137

Chapter 14. xMerge add-on

This is where xMerge comes into play. xMerge will be able to identify the correspond-
ing file(s) in the branch. It will display an overview of the planned merge showing which
files from the merge source will be merged to which files in the local working copy and on
confirmation, properly perform that merge.

Figure 14.1: xMerge diagram

14.3 User Interface

To enable xMerge, select Enable xMerge for merging renamed/moved files in the Merge
dialog (see 3.6.1). Optionally, select For xMerge, ignore simple copies on the Advanced
page.

When performing Merge, SmartSVN will now start a dry-merge run to collect infor-
mation on what will happen during the merge. xMerge requires the working copy to be
at a clean revision. It will ask you to update to the maximum revision found in your
working copy, in case you have mixed revisions. This usually is a safe operation, however
note that by the update missing files might be re-fetched, so it’s recommended to schedule
such files for removal before performing the merge.

If during this dry-run phase, files which will be skipped by SVN’s default merge will
be encountered or – if option For xMerge, ignore simple copies had been de-selected –
will be encountered, the Merge Preview (see 8.10) will come up, containing the xMerge
Resolutions control in the upper area.

The xMerge Resolutions control shows all files which are processible by xMerge. For
every file, the table displays the merge Source path, the selected Resolution, the Target
path in the local working copy and the adjusted Copy From information. The resolution
can be adjusted by the radio controls below the table which will also affect Target and

c© 2011 syntevo GmbH, www.syntevo.com 138

Chapter 14. xMerge add-on

Copy From. Resolutions can also be adjusted for multiple files at once by selecting those
files and using the radio controls.

Depending on the selected resolutions, the Directories/Files preview will show the
overall planned merge result. Use Merge|Perform Merge to finally perform the merge
as previewed.

Process by default SVN merge

Use this option to let SVN’s default merge implementation process the file. This option
will only be available, if the file is actually processible, i.e. if it wouldn’t be skipped. This
is typically the case for copied files, if option For xMerge, ignore simple copies had been
selected in the Merge dialog.

Skip file

Use this option to not process the file by the merge. This option is available, if the file is
not processible by SVN’s default merge implementation, i.e. if the file would be skipped.

Apply source changes to

Use this option to apply the changes of the selected file (in the selected revisions) onto
an existing working copy file. This option will be available, if xMerge could associate the
source file with an existing file in the working copy.

Copy source file to

Use this option to copy the source file as it is to a new file in the local working copy.
Optionally you may select and set ’copy-from’ to to adjust the history-information of
the newly added file in the working copy:

By default, SVN will link the added file’s history to that of the source file. For exam-
ple, if branch/dir/oldfile will be merged to trunk/dir/newfile, trunk/dir/newfile
will be linked with branch/dir/oldfile. In most cases, it will be more appropriate to
link trunk/dir/newfile to trunk/dir/oldfile, if that file exists. The history link is
adjusted this way when and set ’copy-from’ to has been selected.

Copy source file to will be available for added, copied or moved/renamed source files.
and set ’copy-from’ to will only be available for copied or moved/renamed source files
for which the copy-source in the merge source could be associated with a corresponding
file in the working copy.

Merge source changes with

Use this option to apply the changes of the selected file (in the selected revisions) onto
the content of an existing working copy file, but store the merge result as a new file in
the working copy. The history of the new file (’copy-from’) will be linked to the existing
working copy file.

c© 2011 syntevo GmbH, www.syntevo.com 139

Chapter 14. xMerge add-on

This option is a kind of combination of Apply source changes to and Copy source
file to and will be available if the source file has been moved/renamed in the selected
source revisions and xMerge could associate this file with an existing file in the working
copy.

14.4 Known Limitations

• xMerge requires that files and directories have been moved resp. copied by proper
SVN actions, so that the history links are correct.

• Content-related actions, like Merge|Show Changes are currently not working on
preview files which are processed by xMerge, because the corresponding file contents
have not been received during the underlying merge protocol.

• xMerge currently processes only files, hence for directories, Skipped-warnings may
still be reported during the merge.

c© 2011 syntevo GmbH, www.syntevo.com 140

