

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Message Service Specification

v1.0

Transport, Routing & Packaging Team

11 May 2001

(This document is the non-normative version formatted for printing, July 2001)

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 2 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on

or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole

or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included

on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as

by removing the copyright notice or references to the ebXML, UN/CEFACT, or OASIS, except as required to

translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ebXML disclaims all

warranties, express or implied, including but not limited to any warranty that the use of the information herein will

not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 3 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Table of Contents

1 Status of this Document.. 9

2 ebXML Participants ... 10

3 Introduction... 12

3.1 Summary of contents of document .. 12

3.2 Document conventions .. 13

3.3 Audience.. 14

3.4 Caveats and assumptions.. 14

3.5 Related documents .. 14

4 Design Objectives .. 15

5 System Overview... 16

5.1 Message service purpose .. 16

5.2 Message service overview... 16

5.3 Use of version attribute... 18

6 Packaging Specification.. 19

6.1 Introduction... 19

6.1.1 SOAP structural conformance ...20

6.2 Message package .. 20

6.3 Header container .. 21

6.3.1 Content-type ..21

6.3.1.1 charset attribute... 21

6.3.2 Header container example ...21

6.4 Payload container... 22

6.4.1 Example of a payload container...22

6.5 Additional MIME parameters ... 22

6.6 Reporting MIME errors .. 23

7 ebXML SOAP Extensions .. 24

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 4 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.1 XML prolog... 24

7.1.1 XML declaration..24

7.1.2 Encoding declaration ...24

7.2 ebXML SOAP Envelope extensions .. 25

7.2.1 Namespace pseudo attribute ..25

7.2.2 xsi:schemaLocation attribute ...25

7.2.3 ebXML SOAP Extensions ...26

7.2.4 #wildcard element content ...27

7.2.5 id attributes ..28

7.3 SOAP Header element .. 28

7.4 MessageHeader element ... 28

7.4.1 From and To elements ...29

7.4.1.1 PartyID element .. 29

7.4.2 CPAId element...30

7.4.3 ConversationId element ...30

7.4.4 Service element..31

7.4.4.1 type attribute ... 31

7.4.5 Action element...31

7.4.6 MessageData element ..32

7.4.6.1 MessageId element.. 32

7.4.6.2 Timestamp element... 32

7.4.6.3 RefToMessageId element ... 32

7.4.6.4 TimeToLive element... 33

7.4.7 QualityOfServiceInfo element ...33

7.4.7.1 deliveryReceiptRequested attribute .. 33

7.4.7.2 messageOrderSemantics attribute... 34

7.4.8 SequenceNumber element ...35

7.4.9 Description element ...36

7.4.10 version attribute ..36

7.4.11 SOAP mustUnderstand attribute ...36

7.4.12 MessageHeader sample...37

7.5 TraceHeaderList element.. 37

7.5.1 SOAP actor attribute..37

7.5.2 TraceHeader element ...38

7.5.2.1 Sender element.. 38

7.5.2.2 Receiver element... 39

7.5.2.3 Timestamp element... 39

7.5.2.4 #wildcard element... 39

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 5 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.5.3 Single hop TraceHeader sample ..39

7.5.4 Multi-hop TraceHeader sample ...40

7.6 Acknowledgment element.. 42

7.6.1 Timestamp element..43

7.6.2 From element ...43

7.6.3 ds:Reference element...43

7.6.4 SOAP actor attribute..43

7.6.5 Acknowledgement sample ...43

7.7 Via element.. 43

7.7.1 SOAP mustUnderstand attribute..44

7.7.2 SOAP actor attribute..44

7.7.3 syncReply attribute ..45

7.7.4 reliableMessagingMethod attribute ...45

7.7.5 ackRequested attribute ...45

7.7.6 CPAId element...45

7.7.7 Service and action elements...46

7.7.8 Via element sample..46

7.8 ErrorList element .. 46

7.8.1 id attribute..46

7.8.2 highestSeverity attribute ..47

7.8.3 Error element ...47

7.8.3.1 codeContext attribute .. 47

7.8.3.2 errorCode attribute .. 47

7.8.3.3 severity attribute.. 47

7.8.3.4 location attribute ... 48

7.8.3.5 Error element content.. 48

7.8.4 ErrorList sample ..48

7.8.5 errorCode values ..48

7.8.5.1 Reporting errors in the ebXML elements ... 49

7.8.5.2 Non-XML document errors .. 49

7.9 ds:Signature element... 50

7.10 SOAP Body extensions.. 50

7.11 Manifest element ... 51

7.11.1 id attribute ...51

7.11.2 #wildcard element ...51

7.11.3 Reference element...51

7.11.3.1 Schema element .. 52

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 6 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.11.3.2 Description element .. 52

7.11.3.3 #wildcard element... 53

7.11.4 References included in a manifest...53

7.11.5 Manifest validation ...53

7.11.6 Manifest sample ..53

7.12 StatusRequest element... 53

7.12.1 StatusRequest sample..54

7.13 StatusResponse element .. 54

7.13.1 RefToMessageId element ...54

7.13.2 Timestamp element ...54

7.13.3 messageStatus attribute ...54

7.13.4 StatusResponse sample ...55

7.14 DeliveryReceipt element ... 55

7.14.1 Timestamp element ...55

7.14.2 ds:Reference element ..56

7.14.3 DeliveryReceipt sample ..56

7.15 Combining ebXML SOAP extension elements .. 56

7.15.1 Manifest element...56

7.15.2 MessageHeader element ...56

7.15.3 TraceHeaderList element ..56

7.15.4 StatusRequest element ..56

7.15.5 StatusResponse element ..57

7.15.6 ErrorList element ..57

7.15.7 Acknowledgment element...57

7.15.8 Delivery receipt element ...57

7.15.9 Signature element..57

7.15.10 Via element ...57

8 Message Service Handler Services .. 58

8.1 Message status request service ... 58

8.1.1 Message status request message ..58

8.1.2 Message status response message ..59

8.1.3 Security considerations ..60

8.2 Message service handler ping service .. 60

8.2.1 Message service handler ping message..60

8.2.2 Message service handler pong message...61

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 7 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8.2.3 Security considerations ..62

9 Reliable Messaging.. 63

9.1.1 Persistent storage and system failure ...63

9.1.2 Methods of implementing reliable messaging ...63

9.2 Reliable messaging parameters .. 64

9.2.1 Delivery semantics...64

9.2.2 mshTimeAccuracy...64

9.2.3 TimeToLive ...65

9.2.4 reliableMessagingMethod..65

9.2.5 ackRequested ...65

9.2.6 retries ...66

9.2.7 retryInterval ...66

9.2.8 persistDuration...66

9.3 ebXML reliable messaging protocol... 66

9.3.1 Sending message behavior...67

9.3.2 Receiving message behavior..67

9.3.3 Generating an acknowledgement message ..68

9.3.4 Resending lost messages and duplicate filtering..69

9.3.5 Duplicate message handling ..71

9.4 Failed message delivery.. 72

10 Error Reporting and Handling.. 73

10.1 Definitions... 73

10.2 Types of errors .. 73

10.3 When to generate error messages... 74

10.3.1 Security considerations ...74

10.4 Identifying the error reporting location.. 74

10.5 Service and action element values .. 75

11 Security .. 76

11.1 Security and management ... 76

11.2 Collaboration protocol agreement ... 76

11.3 Countermeasure technologies... 77

11.3.1 Persistent digital signature ..77

11.3.1.1 Signature generation ... 77

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 8 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11.3.2 Persistent signed receipt..79

11.3.3 Non-persistent authentication..80

11.3.4 Non-persistent Integrity ..80

11.3.5 Persistent confidentiality...80

11.3.6 Non-persistent confidentiality...80

11.3.7 Persistent authorization ...80

11.3.8 Non-persistent authorization ...81

11.3.9 Trusted timestamp...81

11.3.10 Supported security services...81

12 References.. 84

12.1 Normative references .. 84

12.2 Non-normative references... 85

13 Contact Information ... 87

14 Disclaimer .. 92

Appendix A ebXML SOAP Extension Elements Schema... 93

Appendix B Communication Protocol Bindings ... 99

Introduction .. 99

HTTP... 99

Minimum level of HTTP protocol..99

Sending ebXML service messages over HTTP..99

HTTP response codes...101

SOAP error conditions and synchronous exchanges..101

Synchronous vs. asynchronous ..102

Access control ..102

Confidentiality and communication protocol level security...102

SMTP .. 103

Minimum level of supported protocols ..104

Sending ebXML messages over SMTP..104

Response messages ..106

Access control ..106

Confidentiality and communication protocol level security...106

SMTP model ..107

Communication errors during reliable messaging... 107

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 9 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1 Status of this Document

This document specifies an ebXML Technical Specification for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version

http://www.ebxml.org/specs/ebMS.pdf

Latest version

http://www.ebxml.org/specs/ebMS.pdf

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 10 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2 ebXML Participants

The authors wish to acknowledge the support of the members of the Transport, Routing and

Packaging Project Team who contributed ideas to this specification by the group’s discussion

eMail list, on conference calls and during face-to-face meeting.

Ralph Berwanger bTrade.com

Jonathan Borden Author of XMTP

Jon Bosak Sun Microsystems

Marc Breissinger webMethods

Dick Brooks Group 8760

Doug Bunting Ariba

David Burdett Commerce One

David Craft VerticalNet

Philippe De Smedt Viquity

Lawrence Ding WorldSpan

Rik Drummond Drummond Group

Andrew Eisenberg Progress Software

Colleen Evans Progress / Sonic Software

David Fischer Drummond Group

Christopher Ferris Sun Microsystems

Robert Fox Softshare

Brian Gibb Sterling Commerce

Maryann Hondo IBM

Jim Hughes Fujitsu

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 11 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

John Ibbotson IBM

Ian Jones British Telecommunications

Ravi Kacker Kraft Foods

Henry Lowe OMG

Jim McCarthy webXI

Bob Miller GXS

Dale Moberg Sterling Commerce

Joel Munter Intel

Shumpei Nakagaki NEC Corporation

Farrukh Najmi Sun Microsystems

Akira Ochi Fujitsu

Martin Sachs IBM

Saikat Saha Commerce One

Masayoshi Shimamura Fujitsu

Prakash Sinha Netfish Technologies

Rich Salz Zolera Systems

Tae Joon Song eSum Technologies, Inc.

Kathy Spector Extricity

Nikola Stojanovic Encoda Systems, Inc.

David Turner Microsoft

Gordon Van Huizen Progress Software

Martha Warfelt DaimlerChrysler Corporation

Prasad Yendluri Web Methods

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 12 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3 Introduction

This specification is one of a series of specifications that realize the vision of creating a single

global electronic marketplace where enterprises of any size and in any geographical location can

meet and conduct business with each other through the exchange of XML based messages. The

set of specifications enable a modular, yet complete electronic business framework.

This specification focuses on defining a communications-protocol neutral method for exchanging

the electronic business messages. It defines specific enveloping constructs that support reliable,

secure delivery of business information. Furthermore, the specification defines a flexible

enveloping technique that permits ebXML-compliant messages to contain payloads of any

format type. This versatility ensures that legacy electronic business systems employing

traditional syntaxes (i.e. UN/EDIFACT, ASC X12, or HL7) can leverage the advantages of the

ebXML infrastructure along with users of emerging technologies

3.1 Summary of contents of document

This specification defines the ebXML Message Service Protocol that enables the secure and

reliable exchange of messages between two parties. It includes descriptions of:

• the ebXML Message structure used to package payload data for transport between parties

• the behavior of the Message Service Handler that sends and receives those messages over a

data communication protocol.

This specification is independent of both the payload and the communication protocol used,

although Appendices to this specification describe how to use this specification with [HTTP] and

[SMTP].

This specification is organized around the following topics:

• Packaging Specification – A description of how to package an ebXML Message and its

associated parts into a form that can sent using a communications protocol such as HTTP or

SMTP (section 6)

• ebXML SOAP Extensions – A specification of the structure and composition of the

information necessary for an ebXML Message Service to successfully generate or process an

ebXML Message (section 7)

• Message Service Handler Services – A description of two services that enable one service

to discover the status of another Message Service Handler (MSH) or an individual message

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 13 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• Reliable Messaging – The Reliable Messaging function defines an interoperable protocol

such that any two Message Service implementations can “reliably” exchange messages that

are sent using “reliable messaging” once-and-only-once delivery semantics (section 9)

• Error Handling – This section describes how one ebXML Message Service reports errors it

detects to another ebXML Message Service Handler (section 10)

• Security – This provides a specification of the security semantics for ebXML Messages

(section11).

Appendices to this specification cover the following:

• Appendix A Schema – This normative appendix contains [XMLSchema] for the ebXML

SOAP Header and Body.

• Appendix B Communication Protocol Envelope Mappings – This normative appendix

describes how to transport ebXML Message Service compliant messages over [HTTP] and

[SMTP]

3.2 Document conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold

Italics represent the element and/or attribute content. Terms listed in Courier font relate to

MIME components. Notes are listed in Times New Roman font and are informative (non-

normative).

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD

NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be

interpreted as described in [RFC2119] as quoted here:

Note The force of these words is modified by the requirement level of the document in which

they are used.

• MUST: This word, or the terms “REQUIRED” or “SHALL”, means that the definition is an

absolute requirement of the specification.

• MUST NOT: This phrase, or the phrase “SHALL NOT”, means that the definition is an

absolute prohibition of the specification.

• SHOULD: This word, or the adjective “RECOMMENDED”, means that there may exist

valid reasons in particular circumstances to ignore a particular item, but the full

implications must be understood and carefully weighed before choosing a different course.

• SHOULD NOT: This phrase, or the phrase “NOT RECOMMENDED”, means that there

may exist valid reasons in particular circumstances when the particular behavior is

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 14 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

acceptable or even useful, but the full implications should be understood and the case

carefully weighed before implementing any behavior described with this label.

• MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One

vendor may choose to include the item because a particular marketplace requires it or

because the vendor feels that it enhances the product while another vendor may omit the

same item. An implementation which does not include a particular option MUST be

prepared to interoperate with another implementation which does include the option, though

perhaps with reduced functionality. In the same vein an implementation which does include a

particular option MUST be prepared to interoperate with another implementation which

does not include the option (except, of course, for the feature the option provides.)

3.3 Audience

The target audience for this specification is the community of software developers who will

implement the ebXML Message Service.

3.4 Caveats and assumptions

It is assumed that the reader has an understanding of transport protocols, MIME, XML, SOAP,

SOAP Messages with Attachments and security technologies.

All examples are to be considered non-normative. If inconsistencies exist between the

specification and the examples, the specification supersedes the examples.

3.5 Related documents

The following set of related specifications are developed independent of this specification as part

of the ebXML initiative:

[ebTA] ebXML Technical Architecture Specification v1.04 – defines the overall technical

architecture for ebXML

[secRISK] ebXML Technical Architecture Security Risk Assessment v1.0 – identifies the

security risks associated with the ebXML technical architecture

[ebCPP] ebXML Collaboration Protocol Profile and Agreement Specification v1.0 - defines how

one party can discover and/or agree upon the information that party needs to know about another

party prior to sending them a message that complies with this specification

[ebRS] ebXML Registry/Repository Services Specification v1.0 – defines a registry service for

the ebXML environment

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 15 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4 Design Objectives

The design objectives of this specification are to define a wire format and protocol for a Message

Service to support XML-based electronic business between small, medium, and large enterprises.

While the specification has been primarily designed to support XML-based electronic business,

the authors of the specification have made every effort to ensure that the exchange of non-XML

business information is fully supported. This specification is intended to enable a low cost

solution, while preserving a vendor's ability to add unique value through added robustness and

superior performance. It is the intention of the Transport, Routing and Packaging Project Team

to keep this specification as straightforward and succinct as possible.

Every effort has been made to ensure that the REQUIRED functionality described in this

specification has been prototyped by the ebXML Proof of Concept Team in order to ensure the

clarity, accuracy and efficiency of this specification.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 16 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5 System Overview

This document defines the ebXML Message Service component of the ebXML infrastructure.

The ebXML Message Service defines the message enveloping and header document schema used

to transfer ebXML Messages over a communication protocol such as HTTP, SMTP, etc. This

document provides sufficient detail to develop software for the packaging, exchange and

processing of ebXML Messages.

The ebXML Message Service is defined as a set of layered extensions to the base Simple Object

Access Protocol [SOAP] and SOAP Messages with Attachments [SOAPATTACH]

specifications that have a broad industry acceptance, and that serve as the foundation of the work

of the W3C XML Protocol Core working group. The ebXML Message Service provides the

security and reliability features necessary to support international electronic business that are not

provided in the SOAP and SOAP Messages with Attachments specifications.

5.1 Message service purpose

The ebXML Message Service defines robust, yet basic, functionality to transfer messages

between trading parties using various existing communication protocols. The ebXML Message

Service is structured to allow for messaging reliability, persistence, security and extensibility.

The ebXML Message Service is provided for environments requiring a robust, yet low cost

solution to enable electronic business. It is one of the four "infrastructure" components of

ebXML. The other three are: Registry/Repository [ebRS], Collaboration Protocol

Profile/Agreement [ebCPP] and ebXML Technical Architecture [ebTA].

5.2 Message service overview

The ebXML Message Service may be conceptually broken down into following three parts: (1) an

abstract Service Interface, (2) functions provided by the Message Service Handler (MSH), and

(3) the mapping to underlying transport service(s).

The following diagram depicts a logical arrangement of the functional modules that exist within

one possible implementation of the ebXML Message Services architecture. These modules are

arranged in a manner to indicate their inter-relationships and dependencies.

• Header Processing - the creation of the SOAP Header elements for the ebXML Message

uses input from the application, passed through the Message Service Interface, information

from the Collaboration Protocol Agreement (CPA defined in [ebCPP]) that governs the

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 17 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

message, and generated information such as digital signature, timestamps and unique

identifiers.

• Header Parsing - extracting or transforming information from a received SOAP Header or

Body element into a form that is suitable for processing by the MSH implementation.

• Security Services - digital signature creation and verification, authentication and

authorization. These services MAY be used by other components of the MSH including the

Header Processing and Header Parsing components.

• Reliable Messaging Services - handles the delivery and acknowledgment of ebXML

Messages sent with deliverySemantics of OnceAndOnlyOnce. The service includes

handling for persistence, retry, error notification and acknowledgment of messages requiring

reliable delivery.

• Message Packaging - the final enveloping of an ebXML Message (SOAP Header or Body

elements and payload) into its SOAP Messages with Attachments [SOAPATTACH]

container.

• Error Handling - this component handles the reporting of errors encountered during MSH

or Application processing of a message.

• Message Service Interface - an abstract service interface that applications use to interact

with the MSH to send and receive messages and which the MSH uses to interface with

applications that handle received messages.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 18 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 5-1 Typical Relationship between ebXML Message Service Handler Components

5.3 Use of version attribute

Each ebXML SOAP extension element has its own version attribute, with a value that matches

the ebXML Message Service Specification version level, to allow for elements to change in

semantic meaning individually without changing the entire specification.

Use of multiple versions of ebXML SOAP extensions elements within the same ebXML SOAP

document, while supported, should only be used in extreme cases where it becomes necessary to

semantically change an element, which cannot wait for the next ebXML Message Service

Specification version release.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 19 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6 Packaging Specification

6.1 Introduction

An ebXML Message is a communication protocol independent MIME/Multipart message

envelope, structured in compliance with the SOAP Messages with Attachments

[SOAPATTACH] specification, referred to as a Message Package.

There are two logical MIME parts within the Message Package:

• A MIME part, referred to as the Header Container, containing one SOAP 1.1 compliant

message. This XML document is referred to as a SOAP Message for the remainder of this

specification,

• zero or more MIME parts, referred to as Payload Containers, containing application level

payloads.

The SOAP Message is an XML document that consists of the SOAP Envelope element. This is

the root element of the XML document representing the SOAP Message. The SOAP Envelope

element consists of the following:

• One SOAP Header element. This is a generic mechanism for adding features to a SOAP

Message, including ebXML specific header elements.

• One SOAP Body element. This is a container for message service handler control data and

information related to the payload parts of the message.

The general structure and composition of an ebXML Message is described in the following

figure.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 20 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 6-1 ebXML Message Structure

6.1.1 SOAP structural conformance

ebXML Message packaging SHALL comply with the following specifications:

• Simple Object Access Protocol (SOAP) 1.1 [SOAP]

• SOAP Messages with Attachments [SOAPATTACH]

Carrying ebXML headers in SOAP Messages does not mean that ebXML overrides existing

semantics of SOAP, but rather that the semantics of ebXML over SOAP maps directly onto

SOAP semantics.

6.2 Message package

All MIME header elements of the Message Package MUST be in conformance with the SOAP

Messages with Attachments [SOAPATTACH] specification. In addition, the Content-Type

MIME header in the Message Package MUST contain a type attribute that matches the MIME

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 21 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

media type of the MIME body part that contains the SOAP Message document. In accordance

with the [SOAP] specification, the MIME media type of the SOAP Message MUST have the

value “text/xml.”

It is strongly RECOMMENDED that the root part contain a Content-ID MIME header

structured in accordance with [RFC2045], and that in addition to the required parameters for the

Multipart/Related media type, the start parameter (OPTIONAL in [RFC2387]) always be

present. This permits more robust error detection. For example the following fragment:

 Content-Type: multipart/related; type=”text/xml”; boundary=”boundaryValue”;
 start=messagepackage-123@example.com

 --boundaryValue
 Content-ID: messagepackage-123@example.com

6.3 Header container

The root body part of the Message Package is referred to in this specification as the Header

Container. The Header Container is a MIME body part that MUST consist of one SOAP

Message as defined in the SOAP Messages with Attachments [SOAPATTACH] specification.

6.3.1 Content-type

The MIME Content-Type header for the Header Container MUST have the value

“text/xml” in accordance with the [SOAP] specification. The Content-Type header

MAY contain a “charset” attribute. For example:

 Content-Type: text/xml; charset="UTF-8"

6.3.1.1 charset attribute

The MIME charset attribute identifies the character set used to create the SOAP Message.

The semantics of this attribute are described in the “charset parameter / encoding considerations”

of text/xml as specified in [XMLMedia]. The list of valid values can be found at

http://www.iana.org/.

If both are present, the MIME charset attribute SHALL be equivalent to the encoding

declaration of the SOAP Message. If provided, the MIME charset attribute MUST NOT

contain a value conflicting with the encoding used when creating the SOAP Message.

For maximum interoperability it is RECOMMENDED that [UTF-8] be used when encoding this

document. Due to the processing rules defined for media types derived from text/xml
[XMLMedia], this MIME attribute has no default. For example:

 charset="UTF-8"

6.3.2 Header container example

The following fragment represents an example of a Header Container:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 22 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Content-ID: messagepackage-123@example.com ---| Header
Content-Type: text/xml; |
 charset=”UTF-8” |
 |
<SOAP-ENV:Envelope --|SOAP Message|
 xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”> | |
 <SOAP-ENV:Header> | |
 … | |
 </SOAP-ENV:Header> | |
 <SOAP-ENV:Body> | |
 … | |
 </SOAP-ENV:Body> | |
</SOAP-ENV:Envelope> --| |
---boundaryValue ---|

6.4 Payload container

Zero or more Payload Containers MAY be present within a Message Package in conformance

with the SOAP Messages with Attachments [SOAPATTACH] specification.

If the Message Package contains an application payload, it MUST be enclosed within a Payload

Container.

If there is no application payload within the Message Package then a Payload Container MUST

NOT be present.

The contents of each Payload Container MUST be identified by the ebXML Message Manifest

element within the SOAP Body (see section 7.11).

The ebXML Message Service Specification makes no provision, nor limits in any way, the

structure or content of application payloads. Payloads MAY be a simple-plain-text object or

complex nested multipart objects. The specification of the structure and composition of payload

objects is the prerogative of the organization that defines the business process or information

exchange that uses the ebXML Message Service.

6.4.1 Example of a payload container

The following fragment represents an example of a Payload Container and a payload:

 Content-ID: <domainname.example.com> -------------| ebXML MIME |
 Content-Type: application/xml -------------| |
 | Payload
 <Invoice> -------------| | Container
 <Invoicedata> | Payload |
 … | |
 </Invoicedata> | |
 </Invoice> -------------| |

6.5 Additional MIME parameters

Any MIME part described by this specification MAY contain additional MIME headers in

conformance with the [RFC2045] specification. Implementations MAY ignore any MIME

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 23 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

header not defined in this specification. Implementations MUST ignore any MIME header that

they do not recognize.

For example, an implementation could include content-length in a message. However, a

recipient of a message with content-length could ignore it.

6.6 Reporting MIME errors

If a MIME error is detected in the Message Package then it MUST be reported as specified in

[SOAP].

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 24 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7 ebXML SOAP Extensions

The ebXML Message Service Specification defines a set of namespace-qualified SOAP Header

and Body element extensions within the SOAP Envelope. In general, separate ebXML SOAP

extension elements are used where:

• different software components are likely to be used to generate ebXML SOAP extension

elements,

• an ebXML SOAP extension element is not always present or,

• the data contained in the ebXML SOAP extension element MAY be digitally signed

separately from the other ebXML SOAP extension elements.

7.1 XML prolog

The SOAP Message’s XML Prolog, if present, MAY contain an XML declaration. This

specification has defined no additional comments or processing instructions that may appear in

the XML prolog. For example:

 Content-Type: text/xml; charset=”UTF-8”

 <?xml version="1.0" encoding="UTF-8"?>

7.1.1 XML declaration

The XML declaration MAY be present in a SOAP Message. If present, it MUST contain the

version specification required by the XML Recommendation [XML]: version=’1.0’ and MAY

contain an encoding declaration. The semantics described below MUST be implemented by a

compliant ebXML Message Service.

7.1.2 Encoding declaration

If both the encoding declaration and the Header Container MIME charset are present, the XML

prolog for the SOAP Message SHALL contain the encoding declaration that SHALL be

equivalent to the charset attribute of the MIME Content-Type of the Header Container

(see section 6.3).

If provided, the encoding declaration MUST NOT contain a value conflicting with the encoding

used when creating the SOAP Message. It is RECOMMENDED that UTF-8 be used when

encoding the SOAP Message.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 25 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

If the character encoding cannot be determined by an XML processor using the rules specified in

section 4.3.3 of [XML], the XML declaration and its contained encoding declaration SHALL be

provided in the ebXML SOAP Header Document.

Note The encoding declaration is not required in an XML document according to XML v1.0

specification [XML].

7.2 ebXML SOAP Envelope extensions

In conformance with the [SOAP] specification, all extension element content MUST be

namespace qualified. All of the ebXML SOAP extension element content defined in this

specification MUST be namespace qualified to the ebXML SOAP Envelope extensions

namespace as defined in section 7.2.1.

Namespace declarations (xmlns psuedo attribute) for the ebXML SOAP extensions MAY be

included in the SOAP Envelope, Header or Body elements, or directly in each of the ebXML

SOAP extension elements.

7.2.1 Namespace pseudo attribute

The namespace declaration for the ebXML SOAP Envelope extensions (xmlns pseudo attribute)

(see [XML Namespace]) has a REQUIRED value of

"http://www.ebxml.org/namespaces/messageHeader".

7.2.2 xsi:schemaLocation attribute

The SOAP namespace:

 http://schemas.xmlsoap.org/soap/envelope/

resolves to a schema that conforms to an early Working Draft version of the W3C XML Schema

specification, specifically identified by the following URI:

 http://www.w3.org/1999/XMLSchema

The W3C XML Schema specification[XMLSchema] has since gone to Candidate

Recommendation status, effective October 24, 2000 and more recently to Proposed

Recommendation effective March 30, 2001. Many, if not most, tool support for schema

validation and validating XML parsers available at the time that this specification was written

have been designed to support the Candidate Recommendation draft of the XML Schema

specification[XMLSchema]. In addition, the ebXML SOAP extension element schema has been

defined using the Candidate Recommendation draft of the XML Schema

specification[XMLSchema] (see Appendix A).

In order to enable validating parsers and various schema validating tools to correctly process and

parse ebXML SOAP Messages, it has been necessary that the ebXML TR&P team adopt an

equivalent, but updated version of the SOAP schema that conforms to the W3C Candidate

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 26 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Recommendation draft of the XML Schema specification[XMLSchema]. ebXML MSH

implementations are strongly RECOMMENDED to include the XMLSchema-instance

namespace qualified schemaLocation attribute in the SOAP Envelope element to indicate to

validating parsers the location of the schema document that should be used to validate the

document. Failure to include the schemaLocation attribute will possibly preclude Receiving

MSH implementations from being able to validate messages received.

For example:

 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
 http://ebxml.org/project_teams/transport/envelope.xsd" ...>

In addition, ebXML SOAP Header and Body extension element content must be similarly

qualified so as to identify the location that validating parsers can find the schema document that

contains the ebXML namespace qualified SOAP extension element definitions. Thus, the

XMLSchema-instance namespace qualified schemaLocation attribute should include a mapping

of the ebXML SOAP Envelope extensions namespace to its schema document in the same

element that declares the ebXML SOAP Envelope extensions namespace.

It is RECOMMENDED that use of a separate schemaLocation attribute be used so that tools

that may not correctly use the schemaLocation attribute to resolve schema for more than one

namespace will still be capable of validating an ebXML SOAP message. For example:

 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
 http://ebxml.org/project_teams/transport/envelope.xsd" ...>
 <SOAP-ENV:Header xmlns:eb="http://www.ebxml.org/namespaces/messageHeader"
 xsi:schemaLocation="http://www.ebxml.org/namespaces/messageHeader
 http://ebxml.org/project_teams/transport/messageHeaderv0_99.xsd" ...>
 <eb:MessageHeader ...> ...
 </eb:MessageHeader>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body xmlns:eb="http://www.ebxml.org/namespaces/messageHeader"
 xsi:schemaLocation="http://www.ebxml.org/namespaces/messageHeader
 http://ebxml.org/project_teams/transport/messageHeaderv0_99.xsd" ...>
 <eb:Manifest ...> ...
 </eb:Manifest>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

7.2.3 ebXML SOAP Extensions

An ebXML Message extends the SOAP Message with the following principal extension

elements:

• SOAP Header extensions:

• MessageHeader – a REQUIRED element that contains routing information for the

message (To/From, etc.) as well as other context information about the message.

• TraceHeaderList – an element that contains entries that identifies the Message Service

Handler(s) that sent and should receive the message. This element MAY be omitted.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 27 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• ErrorList – an element that contains a list of the errors that are being reported against a

previous message. The ErrorList element is only used if reporting an error on a

previous message. This element MAY be omitted.

• Signature – an element that contains a digital signature that conforms to [XMLDSIG]

that signs data associated with the message. This element MAY be omitted.

• Acknowledgment– an element that is used by a Receiving MSH to acknowledge to the

Sending MSH that a previous message has been received. This element MAY be omitted.

• Via– an element that is used to convey information to the next ebXML Message Service

Handler that receives the message. This element MAY be omitted.

• SOAP Body extensions:

• Manifest – an element that points to any data present either in the Payload Container or

elsewhere, e.g. on the web. This element MAY be omitted.

• StatusRequest – an element that is used to identify a message whose status is being

requested. This element MAY be omitted.

• StatusResponse – an element that is used by a MSH when responding to a request on the

status of a message that was previously received. This element MAY be omitted.

• DeliveryReceipt – an element used by the To Party that received a message, to let the

From Party that sent the message know the message was received. This element MAY be

omitted.

7.2.4 #wildcard element content

Some ebXML SOAP extension elements allow for foreign namespace-qualified element content

to be added to provide for extensibility. The extension element content MUST be namespace-

qualified in accordance with [XMLNamespaces] and MUST belong to a foreign namespace. A

foreign namespace is one that is NOT http://www.ebxml.org/namespaces/messageHeader.

Any foreign namespace-qualified element added SHOULD include the SOAP mustUnderstand

attribute. If the SOAP mustUnderstand attribute is NOT present, the default value implied is

‘0’ (false). If an implementation of the MSH does not recognize the namespace of the element

and the value of the SOAP mustUnderstand attribute is ‘1’ (true), the MSH SHALL report an

error (see section 10) with errorCode set to NotSupported and severity set to error. If the

value of the mustUnderstand attribute is ‘0' or if the mustUnderstand attribute is not present,

then an implementation of the MSH MAY ignore the namespace-qualified element and its

content.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 28 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.2.5 id attributes

Each of the ebXML SOAP extension elements listed above has an optional id attribute which is

an XML ID that MAY be added to provide for the ability to uniquely identify the element within

the SOAP Message. This MAY be used when applying a digital signature to the ebXML SOAP

Message as individual ebXML SOAP extension elements can be targeted for inclusion or

exclusion by specifying a URI of "#<idvalue>" in the Reference element.

7.3 SOAP Header element

The SOAP Header element is the first child element of the SOAP Envelope element. It MUST

have a namespace qualifier that matches the SOAP Envelope namespace declaration for the

namespace "http://schemas.xmlsoap.org/soap/envelope/". For example:

 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" …>
 <SOAP-ENV:Header>…</SOAP-ENV:Header>
 <SOAP-ENV:Body>…</SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The SOAP Header element contains the ebXML SOAP Header extension element content

identified above and described in the following sections.

7.4 MessageHeader element

The MessageHeader element is REQUIRED in all ebXML Messages. It MUST be present as a

child element of the SOAP Header element.

The MessageHeader element is a composite element comprised of the following ten subordinate

elements:

• From

• To

• CPAId

• ConversationId

• Service

• Action

• MessageData

• QualityOfServiceInfo

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 29 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• SequenceNumber

• Description

The MessageHeader element has two REQUIRED attributes as follows:

• SOAP mustUnderstand

• Version

In addition, the MessageHeader element MAY include an id attribute. See section 7.2.5 for

details.

7.4.1 From and To elements

The REQUIRED From element identifies the Party that originated the message. The

REQUIRED To element identifies the Party that is the intended recipient of the message. Both

To and From can contain logical identifiers such as a DUNS number, or identifiers that also

imply a physical location such as an eMail address.

The From and the To elements each contain one or more PartyId child elements.

If either the From or To elements contain multiple PartyId elements, all members of the list

must identify the same organisation. Unless a single type value refers to multiple identification

systems, a type attribute value must not appear more than once in a single list of PartyId

elements.

Note This mechanism is particularly useful when transport of a message between the parties

may involve multiple intermediaries (see Sections 7.5.4, Multi-hop TraceHeader Sample

and 9.3, ebXML Reliable Messaging Protocol). More generally, the From Party should

provide identification in all domains it knows in support of intermediaries and

destinations that may give preference to particular identification systems.

7.4.1.1 PartyID element

The PartyId element has a single attribute, type and content that is a string value. The type

attribute indicates the domain of names to which the string in the content of the PartyId element

belongs. The value of the type attribute MUST be mutually agreed and understood by each of

the Parties. It is RECOMMENDED that the value of the type attribute be a URI. It is further

recommended that these values be taken from the EDIRA (ISO 6523), EDIFACT ISO 9735 or

ANSI ASC X12 I05 registries.

If the PartyId type attribute is not present, the content of the PartyId element MUST be a URI

[RFC2396], otherwise the Receiving MSH SHOULD report an error (see section 10) with

errorCode set to Inconsistent and severity set to Error. It is strongly RECOMMENDED that

the content of the PartyID element be a URI.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 30 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The following fragment demonstrates usage of the From and To elements.

 <eb:From>
 <eb:PartyId eb:type="urn:duns">123456789</eb:PartyId>
 <eb:PartyId eb:type="SCAC">RDWY</PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>mailto:joe@example.com</eb:PartyId>
 </eb:To>

7.4.2 CPAId element

The REQUIRED CPAId element is a string that identifies the parameters governing the

exchange of messages between the parties. The recipient of a message MUST be able to resolve

the CPAId to an individual set of parameters, taking into account the sender of the message.

The value of a CPAId element MUST be unique within a namespace that is mutually agreed by

the two parties. This could be a concatenation of the From and To PartyId values, a URI that is

prefixed with the Internet domain name of one of the parties, or a namespace offered and

managed by some other naming or registry service. It is RECOMMENDED that the CPAId be a

URI.

The CPAId MAY reference an instance of a CPA as defined in the ebXML Collaboration

Protocol Profile and Agreement Specification [ebCPP]. An example of the CPAId element

follows:

 <eb:CPAId>http://example.com/cpas/ourcpawithyou.xml</eb:CPAId>

If the parties are operating under a CPA, then the reliable messaging parameters are determined

by the appropriate elements from that CPA, as identified by the CPAId element.

If a receiver determines that a message is in conflict with the CPA, the appropriate handling of

this conflict is undefined by this specification. Therefore, senders SHOULD NOT generate such

messages unless they have prior knowledge of the receiver's capability to deal with this conflict.

If a receiver chooses to generate an error as a result of a detected inconsistency, then it MUST

report it with an errorCode of Inconsistent and a severity of Error. If it chooses to generate an

error because the CPAId is not recognized, then it MUST report it with an errorCode of

NotRecognized and a severity of Error.

7.4.3 ConversationId element

The REQUIRED ConversationId element is a string identifying the set of related messages that

make up a conversation between two Parties. It MUST be unique within the From and To party

pair. The Party initiating a conversation determines the value of the ConversationId element

that SHALL be reflected in all messages pertaining to that conversation.

The ConversationId enables the recipient of a message to identify the instance of an application

or process that generated or handled earlier messages within a conversation. It remains constant

for all messages within a conversation.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 31 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The value used for a ConversationId is implementation dependent. An example of the

ConversationId element follows:

 <eb:ConversationId>20001209-133003-28572</eb:ConversationId>

Note Implementations are free to choose how they will identify and store conversational state

related to a specific conversation. Implementations SHOULD provide a facility for

mapping between their identification schema and a ConversationId generated by another

implementation.

7.4.4 Service element

The REQUIRED Service element identifies the service that acts on the message and it is

specified by the designer of the service. The designer of the service may be:

• a standards organization, or

• an individual or enterprise

Note In the context of an ebXML business process model, an action equates to the lowest

possible role based activity in the [ebBPSS] (requesting or responding role) and a service

is a set of related actions for an authorized role within a party.

An example of the Service element follows:

 <eb:Service>urn:services:SupplierOrderProcessing</eb:Service>

Note URIs in the Service element that start with the namespace:

uri:www.ebxml.org/messageService/ are reserved for use by this specification.

The Service element has a single type attribute.

7.4.4.1 type attribute

If the type attribute is present, it indicates the parties sending and receiving the message know,

by some other means, how to interpret the content of the Service element. The two parties MAY

use the value of the type attribute to assist in the interpretation.

If the type attribute is not present, the content of the Service element MUST be a URI

[RFC2396]. If it is not a URI then report an error with an errorCode of Inconsistent and a

severity of Error (see section 10).

7.4.5 Action element

The REQUIRED Action element identifies a process within a Service that processes the

Message. Action SHALL be unique within the Service in which it is defined. An example of the

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 32 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Action element follows:

 <eb:Action>NewOrder</eb:Action>

7.4.6 MessageData element

The REQUIRED MessageData element provides a means of uniquely identifying an ebXML

Message. It contains the following four subordinate elements:

• MessageId

• Timestamp

• RefToMessageId

• TimeToLive

The following fragment demonstrates the structure of the MessageData element:

 <eb:MessageData>
 <eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>
 <eb:Timestamp>2001-02-15T11:12:12Z</eb:Timestamp>
 <eb:RefToMessageId>20001209-133003-28571@example.com</eb:RefToMessageId>
 </eb:MessageData>

7.4.6.1 MessageId element

The REQUIRED element MessageId is a unique identifier for the message conforming to

[RFC2392]. The "local part" of the identifier as defined in [RFC2392] is implementation

dependent.

7.4.6.2 Timestamp element

The REQUIRED Timestamp is a value representing the time that the message header was

created conforming to an [XMLSchema] timeInstant.

7.4.6.3 RefToMessageId element

The RefToMessageId element has a cardinality of zero or one. When present, it MUST contain

the MessageId value of an earlier ebXML Message to which this message relates. If there is no

earlier related message, the element MUST NOT be present.

For Error messages, the RefToMessageId element is REQUIRED and its value MUST be the

MessageId value of the message in error (as defined in section 10).

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 33 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

For Acknowledgment Messages, the RefToMessageId element is REQUIRED, and its value

MUST be the MessageId value of the ebXML Message being acknowledged. See also sections

7.13.4 and 9.

When RefToMessageId is contained inside either a StatusRequest or a StatusResponse

element then it identifies a Message whose current status is being queried (see section 8.1)

7.4.6.4 TimeToLive element

The TimeToLive element indicates the time by which a message should be delivered to and

processed by the To Party. The TimeToLive element is discussed under Reliable Messaging in

section 9.

7.4.7 QualityOfServiceInfo element

The QualityOfServiceInfo element identifies the quality of service with which the message is

delivered. This element has three attributes:

• deliverySemantics

• messageOrderSemantics

• deliveryReceiptRequested

The QualityOfServiceInfo element SHALL be present if any of the attributes within the

element need to be set to their non-default value. The deliverySemantics attribute supports

Reliable Messaging and is discussed in detail in section 9. The deliverySemantics attribute

indicates whether or not a message is sent reliably.

7.4.7.1 deliveryReceiptRequested attribute

The deliveryReceiptRequested attribute is used by a From Party to indicate whether a message

received by the To Party should result in the To Party returning an acknowledgment message

containing a DeliveryReceipt element.

Note To clarify the distinction between an acknowledgement message containing a

DeliveryReceipt and a Reliable Messaging Acknowledgement: (1) An

acknowledgement message containing a Delivery Receipt indicates the To Party has

received the message. (2) The Reliable Messaging Acknowledgment indicates a MSH,

possibly only an intermediate MSH, has received the message.

Before setting the value of deliveryReceiptRequested, the From Party SHOULD check if the

To Party supports Delivery Receipts of the type requested (see also [ebCPP]).

Valid values for deliveryReceiptRequested are:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 34 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• Unsigned - requests that an unsigned Delivery Receipt is requested

• Signed - requests that a signed Delivery Receipt is requested, or

• None - indicates that no Delivery Receipt is requested.

The default value for deliveryReceiptRequested is None.

When a To Party receives a message with deliveryReceiptRequested attribute set to Signed or

Unsigned then it should verify that it is able to support the type of Delivery Receipt requested.

If the To Party can produce the Delivery Receipt of the type requested, then it MUST return to

the From Party a message containing a DeliveryReceipt element.

If the To Party cannot return a Delivery Receipt of the type requested then it MUST report the

error to the From Party using an errorCode of NotSupported and a severity of Error.

If there are no errors in the message received and a DeliveryReceipt is being sent on its own, not

as part of message containing payload data, then the Service and Action MUST be set as

follows:

• the Service element MUST be set to uri:www.ebXML.org/messageService/

• the Action element MUST be set to DeliveryReceipt

An example of deliveryReceiptRequested follows:

 <eb:QualityOfServiceInfo eb:deliverySemantics="OnceAndOnlyOnce"
 eb:messageOrderSemantics="Guaranteed"
 eb:deliveryReceiptRequested="Unsigned"/>

7.4.7.2 messageOrderSemantics attribute

The messageOrderSemantics attribute is used to indicate whether the message is passed to the

receiving application in the order the sending application specified. Valid Values are:

• Guaranteed - The messages are passed to the receiving application in the order that the

sending application specified.

• NotGuaranteed - The messages may be passed to the receiving application in different order

from the order the sending application specified.

The default value for messageOrderSemantics is specified in the CPA or in MessageHeader.

If a value is not specified, the default value is NotGuaranteed.

If messageOrderSemantics is set to Guaranteed, the To Party MSH MUST correct invalid

order of messages using the value of SequenceNumber in the conversation specified by the

ConversationId. The Guaranteed semantics can be set only when deliverySemantics is

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 35 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

OnceAndOnlyOnce. If messageOrderSemantics is set to Guaranteed the SequenceNumber

element MUST be present.

If deliverySemantics is not OnceAndOnlyOnce and messageOrderSemantics is set to

Guaranteed then report the error to the From Party with an errorCode of Inconsistent and a

severity of Error (see sections 9 and 10).

All messages sent within the same conversation, as identified by the ConversationId element,

that have a deliverySemantics attribute with a value of OnceandOnlyOnce SHALL each have

the same value messageOrderSemantics (either Guaranteed or NotGuaranteed).

If messageOrderSemantics is set to NotGuaranteed, then the To Party MSH does not need to

correct invalid order of messages.

If the To Party is unable to support the type of messageOrderSemantics requested, then the To

Party MUST report the error to the From Party using an errorCode of NotSupported and a

severity of Error. A sample of messageOrderSemantics follows.

 <eb:QualityOfServiceInfo eb:deliverySemantics=”OnceAndOnlyOnce”
 eb:messageOrderSemantics=”Guaranteed”/>

7.4.8 SequenceNumber element

The SequenceNumber element indicates the sequence in which messages MUST be processed

by a Receiving MSH. The SequenceNumber is unique within the ConversationId and MSH.

The From Party MSH and the To Party MSH each set an independent SequenceNumber as the

Sending MSH within the ConversationID. It is set to zero on the first message from that MSH

for a conversation and then incremented by one for each subsequent message sent.

The SequenceNumber element MUST appear only when deliverySemantics has a value of

OnceAndOnlyOnce and messageOrderSemantics has a value of Guaranteed. If this criterion

is not met, an error MUST be reported to the From Party MSH with an errorCode of

Inconsistent and a severity of Error.

A MSH that receives a message with a SequenceNumber element MUST NOT pass the

message to an application as long as the storage required to save out-of-sequence messages is

within the implementation defined limits and until all the messages with lower

SequenceNumbers have been received and passed to the application.

If the implementation defined limit for saved out-of-sequence messages is reached, then the

Receiving MSH MUST indicate a delivery failure to the Sending MSH with errorCode set to

DeliveryFailure and severity set to Error (see section 10).

The SequenceNumber element is an integer value that is incremented by the Sending MSH (e.g.

0, 1, 2, 3, 4...) for each application-prepared message sent by that MSH within the

ConversationId. The next value of 99999999 in the increment is “0”. The value of

SequenceNumber consists of ASCII numerals in the range 0-99999999. In following cases,

SequenceNumber takes the value “0”:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 36 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1. First message from the Sending MSH within the conversation

2. First message after resetting SequenceNumber information by the Sending MSH

3. First message after wraparound (next value after 99999999)

The SequenceNumber element has a single attribute, status. This attribute is an enumeration,

which SHALL have one of the following values:

• Reset – the SequenceNumber is reset as shown in 1 or 2 above

• Continue – the SequenceNumber continues sequentially (including 3 above)

When the SequenceNumber is set to “0” because of 1 or 2 above, the Sending MSH MUST set

the status attribute of the message to Reset. In all other cases, including 3 above, the status

attribute MUST be set to Continue.

A Sending MSH MUST wait before resetting the SequenceNumber of a conversation until it has

received all of the Acknowledgement Messages for Messages previously sent for the

conversation. Only when all the sent Messages are acknowledged, can the Sending MSH reset

the SequenceNumber. An example of SequenceNumber follows.

 <eb:SequenceNumber eb:status=”Reset”>0</eb:SequenceNumber>

7.4.9 Description element

The Description element is present zero or more times as a child element of MessageHeader.

Its purpose is to provide a human readable description of the purpose or intent of the message.

The language of the description is defined by a required xml:lang attribute. The xml:lang

attribute MUST comply with the rules for identifying languages specified in [XML]. Each

occurrence SHOULD have a different value for xml:lang.

7.4.10 version attribute

The REQUIRED version attribute indicates the version of the ebXML Message Service Header

Specification to which the ebXML SOAP Header extensions conform. Its purpose is to provide

future versioning capabilities. The value of the version attribute MUST be “1.0”. Future

versions of this specification SHALL require other values of this attribute. The version attribute

MUST be namespace qualified for the ebXML SOAP Envelope extensions namespace defined

above.

7.4.11 SOAP mustUnderstand attribute

The REQUIRED SOAP mustUnderstand attribute, namespace qualified to the SOAP

namespace (http://schemas.xmlsoap.org/soap/envelope/), indicates that the contents of the

MessageHeader element MUST be understood by a receiving process or else the message

MUST be rejected in accordance with [SOAP]. This attribute MUST have a value of '1' (true).

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 37 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.4.12 MessageHeader sample

The following fragment demonstrates the structure of the MessageHeader element within the

SOAP Header:

<eb:MessageHeader id="…" eb:version="1.0" SOAP-ENV:mustUnderstand="1">
 <eb:From><eb:PartyId>uri:example.com</eb:PartyId></eb:From>
 <eb:To eb:type="someType">
 <eb:PartyId eb:type="someType">QRS543</eb:PartyId>
 </eb:To>
 <eb:CPAId>http://www.ebxml.org/cpa/123456</eb:CPAId>
 <eb:ConversationId>987654321</eb:ConversationId>
 <eb:Service eb:type="myservicetypes">QuoteToCollect</eb:Service>
 <eb:Action>NewPurchaseOrder</eb:Action>
 <eb:MessageData>
 <eb:MessageId>mid:UUID-2</eb:MessageId>
 <eb:Timestamp>2000-07-25T12:19:05Z</eb:Timestamp>
 <eb:RefToMessageId>mid:UUID-1</eb:RefToMessageId>
 </eb:MessageData>
 <eb:QualityOfServiceInfo
 eb:deliverySemantics=”OnceAndOnlyOnce”
 eb:deliveryReceiptRequested=”Signed”/>
</eb:MessageHeader>

7.5 TraceHeaderList element

A TraceHeaderList element consists of one or more TraceHeader elements. Exactly one

TraceHeader is appended to the TraceHeaderList following any pre-existing TraceHeader

before transmission of a message over a data communication protocol.

The TraceHeaderList element MAY be omitted from the header if:

• the message is being sent over a single hop (see section 7.5.3), and

• the message is not being sent reliably (see section 9)

The TraceHeaderList element has three REQUIRED attributes as follows:

• SOAP mustUnderstand (See section 7.4.11 for details)

• SOAP actor attribute with the value "http://schemas.xmlsoap.org/soap/actor/next"

• Version (See section 7.4.10 for details)

In addition, the TraceHeaderList element MAY include an id attribute. See section 7.2.5 for

details.

7.5.1 SOAP actor attribute

The TraceHeaderList element MUST contain a SOAP actor attribute with the value

http://schemas.xmlsoap.org/soap/actor/next and be interpreted and processed as defined in the

[SOAP] specification. This means that the TraceHeaderList element MUST be processed by

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 38 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

the MSH that receives the message and SHOULD NOT be forwarded to the next MSH. A MSH

that handles the TraceHeaderList element is REQUIRED to perform the function of appending

a new TraceHeader element to the TraceHeaderList and (re)inserting it into the message for

the next MSH.

7.5.2 TraceHeader element

The TraceHeader element contains information about a single transmission of a message

between two instances of a MSH. If a message traverses multiple hops by passing through one

or more intermediate MSH nodes as it travels between the From Party MSH and the To Party

MSH, then each transmission over each successive “hop” results in the addition of a new

TraceHeader element by the Sending MSH.

The TraceHeader element is a composite element comprised of the following subordinate

elements:

• Sender

• Receiver

• Timestamp

• #wildcard

In addition, the TraceHeader element MAY include an id attribute. See section 7.2.5 for details.

7.5.2.1 Sender element

The Sender element is a composite element comprised of the following subordinate elements:

• PartyId

• Location

As with the From and To elements, multiple PartyId elements may be listed in the Sender

element. This allows receiving systems to resolve those identifiers to organizations using a

preferred identification scheme without prior agreement among all parties to a single scheme.

7.5.2.1.1 PartyId element

This element has the syntax and semantics described in Section 7.4.1.1, PartyId element. In this

case, the identified party is the sender of the message. This element may be used in a later

message addressed to this party by including it in the To element of that message.

7.5.2.1.2 Location element

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 39 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This element contains the URL of the Sender’s Message Service Handler. Unless there is

another URL identified within the CPA or in MessageHeader (section 7.4.2), the recipient of the

message uses the URL to send a message, when required that:

• responds to an earlier message

• acknowledges an earlier message

• reports an error in an earlier message.

7.5.2.2 Receiver element

The Receiver element is a composite element comprised of the following subordinate elements:

• PartyId

• Location

As with the From and To elements, multiple PartyId elements may be listed in the Receiver

element. This allows sending systems to resolve those identifiers to organisations using a

preferred identification scheme without prior agreement among all parties to a single scheme.

The descendant elements of the Receiver element (PartyId and Location) are implemented in

the same manner as the Sender element (see section 7.5.2.1).

7.5.2.3 Timestamp element

The Timestamp element is the time the individual TraceHeader was created. It is in the same

format as in the Timestamp element in the MessageData element (section 7.4.6.2).

7.5.2.4 #wildcard element

Refer to section 7.2.4 for discussion of #wildcard element handling.

7.5.3 Single hop TraceHeader sample

A single hop message is illustrated by the diagram below.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 40 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Party B

MSH

Application

Party A

MSH

Message X

Message Y

Application

1

2

Figure 7-1 Single Hop Message

The content of the corresponding messages could include:

• Transmission 1 - Message X From Party A To Party B

<eb:MessageHeader eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId>
 </eb:To>
 <eb:ConversationId>219cdj89dj2398djfjn</eb:ConversationId>
 ...
 <eb:MessageData>
 <eb:MessageId>29dmridj103kvna</eb:MessageId>
 ...
 </eb:MessageData>
 ...
</eb:MessageHeader>

<eb:TraceHeaderList eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1">
 <eb:TraceHeader>
 <eb:Sender>
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId>
 <eb:Location>http://PartyA.com/PartyAMsh</eb:Location>
 </eb:Sender>
 <eb:Receiver>
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId>
 <eb:Location>http://PartyB.com/PartyBMsh</eb:Location>
 </eb:Receiver>
 <eb:Timestamp>2000-12-16T21:19:35Z</eb:Timestamp>
 </eb:TraceHeader>
</eb:TraceHeaderList>

7.5.4 Multi-hop TraceHeader sample

Multi-hop messages are not sent directly from one party to another, instead they are sent via an

intermediate party, as illustrated by the diagram below:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 41 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Party C

MSH

Application

Party A

MSH

Message X

Application

Party B

MSH

Routing

Application

MSH
Message Y

Message X

Message Y

1
2

34

Figure 7-2 Multi-hop Message

The content of the corresponding messages could include:

• Transmission 1 - Message X From Party A To Party B

<eb:MessageHeader eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>urn:myscheme.com:id:PartyC-id</eb:PartyId>
 </eb:To>
 <eb:ConversationId>219cdj89dj2398djfjn</eb:ConversationId>
 ...
 <eb:MessageData>
 <eb:MessageId>29dmridj103kvna</eb:MessageId>
 ...
 </eb:MessageData>
 ...
</eb:MessageHeader>

<eb:TraceHeaderList eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1"
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">
 <eb:TraceHeader>
 <eb:Sender>
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId>
 <eb:Location>http://PartyA.com/PartyAMsh</eb:Location>
 </eb:Sender>
 <eb:Receiver>
 <eb:Location>http://PartyB.com/PartyBMsh</eb:Location>
 </eb:Receiver>
 <eb:Timestamp>2000-12-16T21:19:35Z</eb:Timestamp>
 </eb:TraceHeader>
</eb:TraceHeaderList>

• Transmission 2 - Message X From Party B To Party C
<eb:MessageHeader eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1">
 <eb:From>
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>urn:myscheme.com:id:PartyC-id</eb:PartyId>
 </eb:To>
 <eb:ConversationId>219cdj89dj2398djfjn</eb:ConversationId>
 ...
 <eb:MessageData>
 <eb:MessageId>29dmridj103kvna</eb:MessageId>
 ...
 </eb:MessageData>
 ...

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 42 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

</eb:MessageHeader>

<eb:TraceHeaderList eb:id=”...” eb:version="1.0" SOAP-ENV:mustUnderstand="1"
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">
 <eb:TraceHeader>
 <eb:Sender>
 <eb:PartyId>urn:myscheme.com:id:PartyA-id</eb:PartyId>
 <eb:Location>http://PartyA.com/PartyAMsh</eb:Location>
 </eb:Sender>
 <eb:Receiver>
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId>
 <eb:Location>http://PartyB.com/PartyBMsh</eb:Location>
 </eb:Receiver>
 <eb:Timestamp>2000-12-16T21:19:35Z</eb:Timestamp>
 </eb:TraceHeader>
 <eb:TraceHeader>
 <eb:Sender>
 <eb:PartyId>urn:myscheme.com:id:PartyB-id</eb:PartyId>
 <eb:Location>http://PartyB.com/PartyAMsh</eb:Location>
 </eb:Sender>
 <eb:Receiver>
 <eb:PartyId>urn:myscheme.com:id:PartyC-id</eb:PartyId>
 <eb:Location>http://PartyC.com/PartyBMsh</eb:Location>
 </eb:Receiver>
 <eb:Timestamp>2000-12-16T21:19:45Z</eb:Timestamp>
 </eb:TraceHeader>
</eb:TraceHeaderList>

7.6 Acknowledgment element

The Acknowledgment element is an optional element that is used by one Message Service

Handler to indicate that another Message Service Handler has received a message. The

RefToMessageId in a message containing an Acknowledgement element is used to identify the

message being acknowledged by its MessageId.

The Acknowledgment element consists of the following elements and attributes:

• a Timestamp element

• a From element

• zero or more ds:Reference element(s)

• a REQUIRED SOAP mustUnderstand attribute (See section 7.4.11 for details)

• a REQUIRED SOAP actor attribute

• a REQUIRED version attribute (See section 7.4.10 for details)

• an id attribute (See section 7.2.5 for details)

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 43 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.6.1 Timestamp element

The Timestamp element is a value representing the time that the message being acknowledged

was received by the Party generating the acknowledgment message. It must conform to an

[XMLSchema] timeInstant (section 7.4.6.2).

7.6.2 From element

This is the same element as the From element within MessageHeader element (see section

7.4.1). However, when used in the context of an Acknowledgment element, it contains the

identifier of the Party that is generating the acknowledgment message.

If the From element is omitted then the Party that is sending the element is identified by the

From element in the MessageHeader element.

7.6.3 ds:Reference element

An Acknowledgment MAY be used to enable non-repudiation of receipt by a MSH by including

one or more Reference elements from the [XMLDSIG] namespace

(http://www.w3.org/2000/09/xmldsig#) taken, or derived, from the message being

acknowledged. The Reference element(s) MUST be namespace qualified to the aforementioned

namespace and MUST conform to the XML Signature[XMLDSIG] specification.

7.6.4 SOAP actor attribute

The Acknowledgment element MUST contain a SOAP actor attribute with the value

http://schemas.xmlsoap.org/soap/actor/next and be interpreted and processed as defined in the

[SOAP] specification. This means that the Acknowledgment element MUST be processed by

the MSH that receives the message and SHOULD NOT be forwarded to the next MSH.

7.6.5 Acknowledgement sample

An example of the Acknowledgement element is given below:

 <eb:Acknowledgment SOAP-ENV:mustUnderstand="1" eb:version="1.0"
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">
 <eb:Timestamp>2001-03-09T12:22:30Z</eb:Timestamp>
 <eb:From>
 <eb:PartyId>uri:www.example.com</eb:PartyId>
 </eb:From>
 </eb:Acknowledgment>

7.7 Via element

The Via element is an ebXML extension to the SOAP Header that is used to convey information

to the next ebXML Message Service Handler (MSH) that receives the message.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 44 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Note This MSH can be a MSH operated by an intermediary or by the To Party. In particular,

the Via element is used to hold data that can vary from one hop to another.

The Via element MUST contain the following attributes:

• id attribute (See section 7.2.5)

• version attribute (See section 7.4.10 for details)

• SOAP MustUnderstand attribute

• SOAP actor attribute

The Via element MUST also contain one or more of the following elements or attributes:

• syncReply attribute

• reliableMessagingMethod attribute

• ackRequested attribute

• CPAId element

The Via element MAY also contain the following elements:

• Service element

• Action element

7.7.1 SOAP mustUnderstand attribute

The REQUIRED SOAP mustUnderstand attribute, namespace qualified to the SOAP Envelope

namespace (http://schemas.xmlsoap.org/soap/envelope/), indicates that the contents of the Via

element MUST be understood by a receiving process or else the message MUST be rejected in

accordance with [SOAP]. This attribute MUST have a value of '1' (true). In accordance with the

[SOAP] specification, a receiving ebXML Message Service implementation that does not provide

support for the Via element MUST respond with a SOAP Fault with a faultCode of

MustUnderstand.

7.7.2 SOAP actor attribute

The Via element MUST contain a SOAP actor attribute with the value

http://schemas.xmlsoap.org/soap/actor/next and be interpreted and processed as defined in the

[SOAP] specification. This means that the Via element MUST be processed by the MSH that

receives the message and SHOULD NOT be forwarded to the next MSH.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 45 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.7.3 syncReply attribute

The syncReply attribute is used only if the data communication protocol is synchronous (e.g.

HTTP). It is an [XMLSchema] boolean. If the communication protocol is not synchronous, then

the value of syncReply is ignored. If the syncReply attribute is not present, it is semantically

equivalent to its presence with a value of "false". If the syncReply attribute is present with a

value of true, the MSH must return the response from the application or business process in the

payload of the synchronous reply message. See also the description of syncReply in the

[ebCPP] specification.

7.7.4 reliableMessagingMethod attribute

The reliableMessagingMethod attribute is an enumeration that SHALL have one of the

following values:

• ebXML

• Transport

The default implied value for this attribute is ebXML.

7.7.5 ackRequested attribute

The ackRequested attribute is an enumeration that SHALL have one of the following values:

• Signed

• Unsigned

• None

The default implied value for this attribute is None. This attribute is used to indicate to the

Receiving MSH whether an acknowledgment message is expected, and if so, whether the

acknowledgment message should be signed by the Receiving MSH. Refer to section 9.2.5 for a

complete discussion as to the use of this attribute.

7.7.6 CPAId element

The CPAId element is a string that identifies the parameters that govern the exchange of

messages between two MSH instances. It has the same meaning as the CPAId in the

MessageHeader except that the parameters identified by the CPAId apply just to the exchange

of messages between the two MSH instances rather than between the Parties identified in the To

and From elements of the MessageHeader (section 7.4.2). This allows different parameters,

transport protocols, etc, to be used on different hops when a message is passed through

intermediaries.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 46 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

If the CPAId element is present, the identified parameter values SHOULD be used instead of the

values identified by the CPAId in the MessageHeader element.

7.7.7 Service and action elements

The Service and Action elements have the same meaning as the Service and Action elements in

the MessageHeader element (see sections 7.4.4 and 7.4.5) except that they are interpreted and

acted on by the next MSH whether or not the MSH is operated by the To Party.

The designer of the service or business process that is using the ebXML Message Service defines

the values used for Service and Action.

The Service and Action elements are OPTIONAL. However, if the Service element is present

then the Action element MUST also be present and vice versa.

7.7.8 Via element sample

The following is a sample Via element.

 <eb:Via SOAP-ENV:mustUnderstand="1" eb:version="1.0"
 SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"
 eb:syncReply="false">
 <eb:CPAId>yaddaydda</eb:CPAId>
 <eb:Service>urn:services:Proxy</eb:Service>
 <eb:Action>LogActivity</eb:Action>
 </eb:Via>

7.8 ErrorList element

The existence of an ErrorList element within the SOAP Header element indicates that the

message that is identified by the RefToMessageId in the MessageHeader element has an error.

The ErrorList element consists of one or more Error elements and the following attributes:

• id attribute

• SOAP mustUnderstand attribute (See section 7.4.11 for details)

• version attribute (See section 7.4.10 for details)

• highestSeverity attribute

If there are no errors to be reported then the ErrorList element MUST NOT be present.

7.8.1 id attribute

The id attribute uniquely identifies the ErrorList element within the document (See section

7.2.5).

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 47 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.8.2 highestSeverity attribute

The highestSeverity attribute contains the highest severity of any of the Error elements.

Specifically, if any of the Error elements have a severity of Error then highestSeverity must

be set to Error, otherwise set highestSeverity to Warning.

7.8.3 Error element

An Error element consists of the following attributes:

• codeContext

• errorCode

• severity

• location

• xml:lang

• id (See section 7.2.5 for details)

The content of the Error element contains an error message.

7.8.3.1 codeContext attribute

The REQUIRED codeContext attribute identifies the namespace or scheme for the errorCodes.

It MUST be a URI. Its default value is http://www.ebxml.org/messageServiceErrors. If it

does not have the default value, then it indicates that an implementation of this specification has

used its own errorCodes.

Use of non-ebXML values for errorCodes is NOT RECOMMENDED. In addition, an

implementation of this specification MUST NOT use its own errorCodes if an existing

errorCode as defined in this section has the same or very similar meaning.

7.8.3.2 errorCode attribute

The REQUIRED errorCode attribute indicates the nature of the error in the message in error.

Valid values for the errorCode and a description of the code’s meaning are given in sections

7.8.5.1 and 7.8.5.2

7.8.3.3 severity attribute

The REQUIRED severity attribute indicates the severity of the error. Valid values are:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 48 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• Warning - This indicates that although there is an error, other messages in the conversation

will still be generated in the normal way.

• Error - This indicates that there is an unrecoverable error in the message and no further

messages will be generated as part of the conversation.

7.8.3.4 location attribute

The location attribute points to the part of the message that is in error.

If an error exists in an ebXML element and the element is “well formed” (see [XML]), then the

content of the location attribute MUST be an [XPointer].

If the error is associated with the MIME envelope that wraps the SOAP envelope and the

ebXML Payload, then location contains the content-id of the MIME part that is in error, in

the format cid:23912480wsr, where the text after the”:” is the value of the MIME part’s

content-id.

7.8.3.5 Error element content

The content of the error message provides a narrative description of the error in the language

defined by the xml:lang attribute. Typically, it will be the message generated by the XML parser

or other software that is validating the message. This means that the content is defined by the

vendor/developer of the software that generated the Error element.

The xml:lang attribute must comply with the rules for identifying languages specified in [XML].

The content of the Error element can be empty.

7.8.4 ErrorList sample

An example of an ErrorList element is given below.

 <eb:ErrorList eb:id=’3490sdo9’, eb:highestSeverity=”error” eb:version="1.0"
 SOAP-ENV:mustUnderstand="1">
 <eb:Error eb:errorCode=’SecurityFailure’ eb:severity=”Error”
 eb:location=’URI_of_ds:Signature_goes_here’ xml:lang=”us-en”>
 Validation of signature failed </eb:Error>
 <eb:Error ...> ... </eb:Error>
 </eb:ErrorList>

7.8.5 errorCode values

This section describes the values for the errorCode element (see section 7.8.3.2) used in a

message reporting an error. They are described in a table with three headings:

• the first column contains the value to be used as an errorCode, e.g. SecurityFailure

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 49 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• the second column contains a "Short Description" of the errorCode.

Note This narrative MUST NOT be used in the content of the Error element.

• the third column contains a "Long Description" that provides an explanation of the meaning

of the error and provides guidance on when the particular errorCode should be used.

7.8.5.1 Reporting errors in the ebXML elements

The following list contains error codes that can be associated with ebXML elements:

Error Code Short Description Long Description

ValueNotRecognized Element content or

attribute value not

recognized.

Although the document is well formed and valid, the

element/attribute contains a value that could not be

recognized and therefore could not be used by the ebXML

Message Service.

NotSupported Element or attribute not

supported

Although the document is well formed and valid, an

element or attribute is present that is consistent with the

rules and constraints contained in this specification, but is

not supported by the ebXML Message Service processing

the message.

Inconsistent Element content or

attribute value

inconsistent with other

elements or attributes.

Although the document is well formed and valid, according

to the rules and constraints contained in this specification

the content of an element or attribute is inconsistent with

the content of other elements or their attributes.

OtherXml Other error in an element

content or attribute value.

Although the document is well formed and valid, the

element content or attribute value contains values that do

not conform to the rules and constraints contained in this

specification and is not covered by other error codes. The

content of the Error element should be used to indicate the

nature of the problem.

7.8.5.2 Non-XML document errors

The following are error codes that identify errors not associated with the ebXML elements:

Error Code Short Description Long Description

DeliveryFailure Message Delivery Failure A message has been received that either probably or

definitely could not be sent to its next destination.

Note If severity is set to Warning then there is a small

probability that the message was delivered.

TimeToLiveExpired Message Time To Live

Expired

A message has been received that arrived after the time

specified in the TimeToLive element of the

MessageHeader element

SecurityFailure Message Security Checks

Failed

Validation of signatures or checks on the authenticity or

authority of the sender of the message have failed.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 50 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Error Code Short Description Long Description

Unknown Unknown Error Indicates that an error has occurred that is not covered

explicitly by any of the other errors. The content of the

Error element should be used to indicate the nature of the

problem.

7.9 ds:Signature element

An ebXML Message may be digitally signed to provide security countermeasures. Zero or more

ds:Signature elements, belonging to the [XMLDSIG] defined namespace MAY be present in

the SOAP Header. The ds:Signature element MUST be namespace qualified in accordance

with [XMLDSIG]. The structure and content of the ds:Signature element MUST conform to

the [XMLDSIG] specification. If there is more than one ds:Signature element contained within

the SOAP Header, the first MUST represent the digital signature of the ebXML Message as

signed by the From Party MSH in conformance with section 11. Additional ds:Signature

elements MAY be present, but their purpose is undefined by this specification.

Refer to section 11 for a detailed discussion on how to construct the ds:Signature element when

digitally signing an ebXML Message.

7.10 SOAP Body extensions

The SOAP Body element is the second child element of the SOAP Envelope element. It MUST

have a namespace qualifier that matches the SOAP Envelope namespace declaration for the

namespace "http://schemas.xmlsoap.org/soap/envelope/". For example:

 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" …>
 <SOAP-ENV:Header>…</SOAP-ENV:Header>
 <SOAP-ENV:Body>…</SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The SOAP Body element contains the ebXML SOAP Body extension element content as

follows:

• Manifest element

• StatusRequest element

• StatusResponse element

• DeliveryReceipt element

Each is defined in the following sections.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 51 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.11 Manifest element

The Manifest element is a composite element consisting of one or more Reference elements.

Each Reference element identifies data associated with the message, whether included as part of

the message as payload document(s) contained in a Payload Container, or remote resources

accessible via a URL. It is RECOMMENDED that no payload data be present in the SOAP

Body. The purpose of the Manifest is as follows:

• to make it easier to directly extract a particular payload associated with this ebXML

Message,

• to allow an application to determine whether it can process the payload without having to

parse it.

The Manifest element is comprised of the following attributes and elements, each of which is

described below:

• an id attribute

• a REQUIRED version attribute (See section 7.4.10 for details)

• one or more Reference elements

• #wildcard

7.11.1 id attribute

The Manifest element MUST have an id attribute that is an XML ID (See section 7.2.5).

7.11.2 #wildcard element

Refer to section 7.2.4 for discussion of #wildcard element handling.

7.11.3 Reference element

The Reference element is a composite element consisting of the following subordinate elements:

• Schema - information about the schema(s) that define the instance document identified in the

parent Reference element

• Description - a textual description of the payload object referenced by the parent Reference

element

• #wildcard - any namespace-qualified element content belonging to a foreign namespace

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 52 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The Reference element itself is an [XLINK] simple link. XLINK is presently a Candidate

Recommendation (CR) of the W3C. It should be noted that the use of XLINK in this context is

chosen solely for the purpose of providing a concise vocabulary for describing an association.

Use of an XLINK processor or engine is NOT REQUIRED, but MAY prove useful in certain

implementations.

The Reference element has the following attribute content in addition to the element content

described above:

• id - an XML ID for the Reference element,

• xlink:type - this attribute defines the element as being an XLINK simple link. It has a fixed

value of 'simple',

• xlink:href - this REQUIRED attribute has a value that is the URI of the payload object

referenced. It SHALL conform to the [XLINK] specification criteria for a simple link.

• xlink:role - this attribute identifies some resource that describes the payload object or its

purpose. If present, then it SHALL have a value that is a valid URI in accordance with the

[XLINK] specification,

• Any other namespace-qualified attribute MAY be present. A Receiving MSH MAY choose to

ignore any foreign namespace attributes other than those defined above.

7.11.3.1 Schema element

If the item being referenced has schema(s) of some kind that describe it (e.g. an XML Schema,

DTD, or a database schema), then the Schema element SHOULD be present as a child of the

Reference element. It provides a means of identifying the schema and its version defining the

payload object identified by the parent Reference element. The Schema element contains the

following attributes:

• location - the REQUIRED URI of the schema

• version – a version identifier of the schema

7.11.3.2 Description element

The Reference element MAY contain zero or more Description elements. The Description is a

textual description of the payload object referenced by the parent Reference element. The

language of the description is defined by a REQUIRED xml:lang attribute. The xml:lang

attribute MUST comply with the rules for identifying languages specified in [XML]. This

element is provided to allow a human readable description of the payload object identified by the

parent Reference element. If multiple Description elements are present, each SHOULD have a

unique xml:lang attribute value. An example of a Description element follows.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 53 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <eb:Description xml:lang=”en-gb”>Purchase Order for 100,000 widgets</eb:Description>

7.11.3.3 #wildcard element

Refer to section 7.2.4 for discussion of #wildcard element handling.

7.11.4 References included in a manifest

The designer of the business process or information exchange that is using ebXML Messaging

decides what payload data is referenced by the Manifest and the values to be used for

xlink:role.

7.11.5 Manifest validation

If an xlink:href attribute contains a URI that is a content id (URI scheme "cid") then a MIME

part with that content-id MUST be present in the Payload Container of the message. If it is

not, then the error SHALL be reported to the From Party with an errorCode of MimeProblem

and a severity of Error.

If an xlink:href attribute contains a URI that is not a content id (URI scheme "cid"), and that

URI cannot be resolved, then it is an implementation decision on whether to report the error. If

the error is to be reported, then it SHALL be reported to the From Party with an errorCode of

MimeProblem and a severity of Error.

7.11.6 Manifest sample

The following fragment demonstrates a typical Manifest for a message with a single payload

MIME body part:

 <eb:Manifest eb:id="Manifest" eb:version="1.0">
 <eb:Reference eb:id="pay01"
 xlink:href="cid:payload-1"
 xlink:role="http://regrep.org/gci/purchaseOrder">
 <eb:Schema eb:location="http://regrep.org/gci/purchaseOrder/po.xsd" eb:version="1.0"/>
 <eb:Description xml:lang="en-us">Purchase Order for 100,000 widgets</eb:Description>
 </eb:Reference>
 </eb:Manifest>

7.12 StatusRequest element

The StatusRequest element is an immediate child of a SOAP Body and is used to identify an

earlier message whose status is being requested (see section 8.1).

The StatusRequest element consists of the following elements and attributes:

• a REQUIRED RefToMessageId element

• a REQUIRED version attribute (See section 7.4.10 for details)

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 54 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• an id attribute (See section 7.2.5 for details)

7.12.1 StatusRequest sample

An example of the StatusRequest element is given below:

 <eb:StatusRequest eb:version="1.0" >
 <eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId>
 </eb:StatusRequest>

7.13 StatusResponse element

The StatusResponse element is used by one MSH to respond to a request on the status of the

processing of a message that was previously sent (see also section 8.1).

The StatusResponse element consists of the following elements and attributes:

• a REQUIRED RefToMessageId element

• a Timestamp element

• a REQUIRED version attribute (See section 7.4.10 for details)

• a messageStatus attribute

• an id attribute (See section 7.2.5 for details)

7.13.1 RefToMessageId element

A REQUIRED RefToMessageId element that contains the MessageId of the message whose

status is being reported.

7.13.2 Timestamp element

The Timestamp element contains the time that the message, whose status is being reported, was

received (section 7.4.6.2.). This MUST be omitted if the message whose status is being reported

is NotRecognized or the request was UnAuthorized.

7.13.3 messageStatus attribute

The messageStatus attribute identifies the status of the message that is identified by the

RefToMessageId element. It SHALL be set to one of the following values:

• UnAuthorized – the Message Status Request is not authorized or accepted

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 55 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• NotRecognized – the message identified by the RefToMessageId element in the

StatusResponse element is not recognized

• Received – the message identified by the RefToMessageId element in the StatusResponse

element has been received by the MSH

Note If a Message Status Request is sent after the elapsed time indicated by persistDuration

has passed since the message being queried was sent, then the Message Status Response

may indicate that the MessageId was NotRecognized as the MessageId is no longer in

persistent storage.

7.13.4 StatusResponse sample

An example of the StatusResponse element is given below:

 <eb:StatusResponse eb:version="1.0" eb:messageStatus="Received">
 <eb:RefToMessageId>323210:e52151ec74:-7ffc@xtacy</eb:RefToMessageId>
 <eb:Timestamp>2001-03-09T12:22:30Z</eb:Timestamp>
 </eb:StatusResponse>

7.14 DeliveryReceipt element

The DeliveryReceipt element is an optional element that is used by the To Party that received a

message, to let the From Party that sent the original message, know that the message was

received. The RefToMessageId in a message containing a DeliveryReceipt element is used to

identify the message being for which the receipt is being generated by its MessageId.

The DeliveryReceipt element consists of the following elements and attributes:

• an id attribute (See section 7.2.5)

• a REQUIRED version attribute (See section 7.4.10 for details)

• a Timestamp element

• zero or more ds:Reference element(s)

7.14.1 Timestamp element

The Timestamp element is a value representing the time that the message for which a

DeliveryReceipt element is being generated was received by the To Party. It must conform to an

[XMLSchema] timeInstant.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 56 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.14.2 ds:Reference element

An Acknowledgment MAY be used to enable non-repudiation of receipt by a MSH by including

one or more Reference elements from the [XMLDSIG] namespace

(http://www.w3.org/2000/09/xmldsig#) taken, or derived, from the message being

acknowledged. The Reference element(s) MUST be namespace qualified to the aforementioned

namespace and MUST conform to the XML Signature [XMLDSIG] specification.

7.14.3 DeliveryReceipt sample

An example of the DeliveryReceipt element is given below:

 <eb:DeliveryReceipt eb:version="1.0">
 <eb:Timestamp>2001-03-09T12:22:30Z</eb:Timestamp>
 <ds:Reference URI="cid://blahblahblah/">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 </eb:DeliveryReceipt>

7.15 Combining ebXML SOAP extension elements

This section describes how the various ebXML SOAP extension elements may be used in

combination.

7.15.1 Manifest element

The Manifest element MUST be present if there is any data associated with the message that is

not present in the Header Container. This applies specifically to data in the Payload Container

or elsewhere, e.g. on the web.

7.15.2 MessageHeader element

The MessageHeader element MUST be present in every message.

7.15.3 TraceHeaderList element

The TraceHeaderList element MAY be present in any message. It MUST be present if the

message is being sent reliably (see section 9) or over multiple hops (see section 7.5.4).

7.15.4 StatusRequest element

A StatusRequest element MUST NOT be present with the following elements:

• a Manifest element

• an ErrorList element

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 57 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7.15.5 StatusResponse element

This element MUST NOT be present with the following elements:

• a Manifest element

• a StatusRequest element

• an ErrorList element with a highestSeverity attribute set to Error

7.15.6 ErrorList element

If the highestSeverity attribute on the ErrorList is set to Warning, then this element MAY be

present with any other element.

If the highestSeverity attribute on the ErrorList is set to Error, then this element MUST NOT

be present with the following:

• a Manifest element

• a StatusResponse element

7.15.7 Acknowledgment element

An Acknowledgment element MAY be present on any message.

7.15.8 Delivery receipt element

A DeliveryReceipt element may be present on any message.

7.15.9 Signature element

One or more ds:Signature elements MAY be present on any message.

7.15.10 Via element

One-and-only-one Via element MAY be present in any message.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 58 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8 Message Service Handler Services

The Message Service Handler MAY support two services that are designed to help provide

smooth operation of a Message Handling Service implementation:

• Message Status Request

• Message Service Handler Ping

If a Receiving MSH does not support the service requested, it SHOULD return a SOAP fault with

a faultCode of MustUnderstand. Each service is described below.

8.1 Message status request service

The Message Status Request Service consists of the following:

• A Message Status Request message containing details regarding a message previously sent is

sent to a Message Service Handler (MSH)

• The Message Service Handler receiving the request responds with a Message Status

Response message.

A Message Service Handler SHOULD respond to Message Status Requests for messages that

have been sent reliably (see section 9) and the MessageId in the RefToMessageId is present in

persistent storage (see section 9.1.1).

A Message Service Handler MAY respond to Message Status Requests for messages that have

not been sent reliably.

A Message Service SHOULD NOT use the Message Status Request Service to implement

Reliable Messaging.

8.1.1 Message status request message

A Message Status Request message consists of an ebXML Message containing no ebXML

Payload and the following elements in the SOAP Header:

• a MessageHeader element

• a TraceHeaderList element

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 59 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• a StatusRequest element

• a ds:Signature element

The TraceHeaderList and the ds:Signature elements MAY be omitted (see sections 7.5 and

7.15.8).

The MessageHeader element MUST contain the following:

• a From element that identifies the Party that created the message status request message

• a To element identifying a Party who should receive the message. If a TraceHeader was

present on the message whose status is being checked, this MUST be set using the Receiver

of the message. All PartyId elements present in the Receiver element SHOULD be included

in this To element.

• a Service element that contains: uri:www.ebxml.org/messageService/

• an Action element that contains StatusRequest

The message is then sent to the To Party.

The RefToMessageId element in StatusRequest element in the SOAP Body contains the

MessageId of the message whose status is being queried.

8.1.2 Message status response message

Once the To Party receives the Message Status Request message, they SHOULD generate a

Message Status Response message consisting of no ebXML Payload and the following elements

in the SOAP Header and Body.

• a MessageHeader element

• a TraceHeaderList element

• an Acknowledgment element

• a StatusResponse element (see section 7.13)

• a ds:Signature element

The TraceHeaderList, Acknowledgment and ds:Signature elements MAY be omitted (see

sections 7.5, 7.15.7 and 7.15.8).

The MessageHeader element MUST contain the following:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 60 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• a From element that identifies the sender of the Message Status Response message

• a To element that is set to the value of the From element in the Message Status Request

message

• a Service element that contains the value: uri:www.ebxml.org/messageService/

• an Action element that contains StatusResponse

• a RefToMessageId that identifies the Message Status Request message.

The message is then sent to the To Party.

8.1.3 Security considerations

Parties who receive a Message Status Request message SHOULD always respond to the

message. However, they MAY ignore the message instead of responding with messageStatus set

to UnAuthorized if they consider that the sender of the message is unauthorized. The decision

process that results in this course of action is implementation dependent.

8.2 Message service handler ping service

The Message Service Handler Ping Service enables one MSH to determine if another MSH is

operating. It consists of:

• sending a Message Service Handler Ping message to a MSH, and

• the MSH that receives the Ping responding with a Message Service Handler Pong message.

8.2.1 Message service handler ping message

A Message Service Handler Ping (MSH Ping) message consists of an ebXML Message

containing no ebXML Payload and the following elements in the SOAP Header:

• a MessageHeader element

• a TraceHeaderList element

• a ds:Signature element

The TraceHeaderList and the ds:Signature elements MAY be omitted (see sections 7.5 and

7.15.8).

The MessageHeader element MUST contain the following:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 61 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• a From element that identifies the Party creating the MSH Ping message

• a To element that identifies the Party that is being sent the MSH Ping message

• a CPAId element

• a ConversationId element

• a Service element that contains: uri:www.ebxml.org/messageService/

• an Action element that contains Ping

The message is then sent to the To Party.

8.2.2 Message service handler pong message

Once the To Party receives the MSH Ping message, they MAY generate a Message Service

Handler Pong (MSH Pong) message consisting of an ebXML Message containing no ebXML

Payload and the following elements in the SOAP Header:

• a MessageHeader element

• a TraceHeaderList element

• an Acknowledgment element

• an OPTIONAL ds:Signature element

The TraceHeaderList, Acknowledgment and ds:Signature elements MAY be omitted (see

sections 7.5, 7.15.7 and 7.15.8).

The MessageHeader element MUST contain the following:

• a From element that identifies the creator of the MSH Pong message

• a To element that identifies a Party that generated the MSH Ping message

• a CPAId element

• a ConversationId element

• a Service element that contains the value: uri:www.ebxml.org/messageService/

• an Action element that contains the value Pong

• a RefToMessageId that identifies the MSH Ping message.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 62 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The message is then sent to the To Party.

8.2.3 Security considerations

Parties who receive a MSH Ping message SHOULD always respond to the message. However,

there is a risk that some parties might use the MSH Ping message to determine the existence of a

Message Service Handler as part of a security attack on that MSH. Therefore, recipients of a

MSH Ping MAY ignore the message if they consider that the sender of the message received is

unauthorized or part of some attack. The decision process that results in this course of action is

implementation dependent.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 63 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9 Reliable Messaging

Reliable Messaging defines an interoperable protocol such that the two Message Service

Handlers (MSH) can “reliably” exchange messages that are sent using “reliable messaging”

semantics, resulting in the To Party receiving the message once and only once.

Reliability is achieved by a Receiving MSH responding to a message with an Acknowledgment

Message.

9.1.1 Persistent storage and system failure

A MSH that supports Reliable Messaging MUST keep messages that are sent or received reliably

in persistent storage. In this context persistent storage is a method of storing data that does not

lose information after a system failure or interruption.

This specification recognizes that different degrees of resilience may be realized depending on

the technology that is used to persist the data. However, as a minimum, persistent storage that

has the resilience characteristics of a hard disk (or equivalent) SHOULD be used. It is strongly

RECOMMENDED though that implementers of this specification use technology that is resilient

to the failure of any single hardware or software component.

After a system interruption or failure, a MSH MUST ensure that messages in persistent storage

are processed in the same way as if the system failure or interruption had not occurred. How this

is done is an implementation decision.

In order to support the filtering of duplicate messages, a Receiving MSH SHOULD save the

MessageId in persistent storage. It is also RECOMMENDED that the following be kept in

Persistent Storage:

• the complete message, at least until the information in the message has been passed to the

application or other process that needs to process it

• the time the message was received, so that the information can be used to generate the

response to a Message Status Request (see section 8.1)

• complete response message

9.1.2 Methods of implementing reliable messaging

Support for Reliable Messaging MAY be implemented in one of the following two ways:

• using the ebXML Reliable Messaging protocol, or

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 64 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• using ebXML SOAP structures together with commercial software products that are designed

to provide reliable delivery of messages using alternative protocols.

9.2 Reliable messaging parameters

This section describes the parameters required to control reliable messaging. This parameter

information can be specified in the CPA or in the MessageHeader (section 7.4.2).

9.2.1 Delivery semantics

The deliverySemantics value MUST be used by the From Party MSH to indicate whether the

Message MUST be sent reliably. Valid values are:

• OnceAndOnlyOnce - The message must be sent using a reliableMessagingMethod that

will result in the application or other process at the To Party receiving the message once and

only once

• BestEffort - The reliable delivery semantics are not used. In this case, the value of

reliableMessagingMethod is ignored.

The value for deliverySemantics is specified in the CPA or in MessageHeader (section 7.4.2).

The default value for deliverySemantics is BestEffort.

If deliverySemantics is set to OnceAndOnlyOnce, the From Party MSH and the To Party

MSH must adopt a reliable messaging behavior that describes how messages are resent in the

case of failure. The deliverySemantic value of OnceAndOnlyOnce will cause duplicate

messages to be ignored.

If deliverySemantics is set to BestEffort, a MSH that received a message that it is unable to

deliver MUST NOT take any action to recover or otherwise notify anyone of the problem. The

MSH that sent the message MUST NOT attempt to recover from any failure. This means that

duplicate messages might be delivered to an application and persistent storage of messages is not

required.

If the To Party is unable to support the type of delivery semantics requested, the To Party

SHOULD report the error to the From Party using an ErrorCode of NotSupported and a

Severity of Error.

9.2.2 mshTimeAccuracy

The mshTimeAccuracy parameter indicates the minimum accuracy a Receiving MSH keeps the

clocks it uses when checking, for example, TimeToLive. Its value is in the format “mm:ss”

which indicates the accuracy in minutes and seconds.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 65 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9.2.3 TimeToLive

The TimeToLive value indicates the time by which a message should be delivered to and

processed by the To Party. It must conform to an XML Schema timeInstant.

In this context, the TimeToLive has expired if the time of the internal clock of the Receiving

MSH is greater than the value of TimeToLive for the message.

When setting a value for TimeToLive it is RECOMMENDED that the From Party’s MSH takes

into account the accuracy of its own internal clocks as well as the mshTimeAccuracy parameter

for the Receiving MSH indicating the accuracy to which a MSH will keep its internal clocks.

How a MSH ensures that its internal clocks are kept sufficiently accurate is an implementation

decision.

If the To Party’s MSH receives a message where TimeToLive has expired, it SHALL send a

message to the From Party MSH, reporting that the TimeToLive of the message has expired.

This message SHALL be comprised of an ErrorList containing an error that has the errorCode

attribute set to TimeToLiveExpired, and the severity attribute set to Error.

9.2.4 reliableMessagingMethod

The reliableMessagingMethod attribute SHALL have one of the following values:

• ebXML

• Transport

The default implied value for this attribute is ebXML and is case sensitive. Refer to section

7.7.4 for discussion of the use of this attribute.

9.2.5 ackRequested

The ackRequested value is used by the Sending MSH to request that the Receiving MSH returns

an acknowledgment message with an Acknowledgment element.

Valid values for ackRequested are:

• Unsigned - requests that an unsigned Acknowledgement is requested

• Signed - requests that a signed Acknowledgement is requested, or

• None - indicates that no Acknowledgement is requested.

The default value is None.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 66 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9.2.6 retries

The retries value is an integer value that specifies the maximum number of times a Sending

MSH SHOULD attempt to redeliver an unacknowledged message using the same

Communications Protocol.

9.2.7 retryInterval

The retryInterval value is a time value, expressed as a duration in accordance with the

[XMLSchema] timeDuration data type. This value specifies the minimum time the Sending MSH

MUST wait between retries, if an Acknowledgment Message is not received.

9.2.8 persistDuration

The persistDuration value is the minimum length of time, expressed as a [XMLSchema]

timeDuration, that data from a reliably sent Message, is kept in Persistent Storage by a Receiving

MSH.

If the persistDuration has passed since the message was first sent, a Sending MSH SHOULD

NOT resend a message with the same MessageId.

If a message cannot be sent successfully before persistDuration has passed, then the Sending

MSH should report a delivery failure (see section 9.4).

9.3 ebXML reliable messaging protocol

The ebXML Reliable Messaging Protocol described in this section MUST be followed if the

deliverySemantics parameter/element is set to OnceAndOnlyOnce and the

reliableMessagingMethod parameter/element is set to ebXML (the default).

The ebXML Reliable Messaging Protocol is illustrated by the figure below.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 67 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 9-1 Indicating that a message has been received

The receipt of the Acknowledgment Message indicates that the message being acknowledged has

been successfully received and either processed or persisted by the Receiving MSH.

An Acknowledgment Message MUST contain a MessageData element with a RefToMessageId

that contains the same value as the MessageId element in the message being acknowledged.

9.3.1 Sending message behavior

If a MSH is given data by an application that needs to be sent reliably (i.e. the

deliverySemantics is set to OnceAndOnlyOnce), then the MSH MUST do the following:

1. Create a message from components received from the application that includes a

TraceHeader element identifying the sender and the receiver as described in Section 7.5.2

TraceHeader element.

2. Save the message in persistent storage (see section 9.1.1)

3. Send the message to the Receiver MSH

4. Wait for the Receiver MSH to return an Acknowledgment Message and, if it does not or a

transient error is returned, then take the appropriate action as described in section 9.3.4

9.3.2 Receiving message behavior

If the deliverySemantics for the received message is set to OnceAndOnlyOnce then do the

following:

1. If the message is just an acknowledgement (i.e. the Service element is set to

http://www.ebxml.org/namespaces/messageService/MessageAcknowledgment and Action is

set to Acknowledgment), then:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 68 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

a.) Look for a message in persistent storage that has a MessageId that is the same as the

value of RefToMessageId on the received Message

b.) If a message is found in persistent storage then mark the persisted message as delivered

2. Otherwise, if the message is not just an acknowledgement, then check to see if the message is

a duplicate (e.g. there is a MessageId held in persistent storage that was received earlier that

contains the same value for the MessageId)

a.) If the message is not a duplicate then do the following:

i) Save the MessageId of the received message in persistent storage. As an

implementation decision, the whole message MAY be stored if there are other

reasons for doing so.

ii) If the received message contains a RefToMessageId element then do the following:

(1) Look for a message in persistent storage that has a MessageId that is the same as

the value of RefToMessageId on the received Message

(2) If a message is found in persistent storage then mark the persisted message as

delivered

iii) Generate an Acknowledgement Message in response (see section 9.3.3).

b.) If the message is a duplicate, then do the following:

i) Look in persistent storage for the first response to the received message and resend it

(i.e. it contains a RefToMessageId that matches the MessageId of the received

message)

ii) If a message was found in persistent storage then resend the persisted message back

to the MSH that sent the received message,

iii) If no message was found in persistent storage, then:

(1) if syncReply is set to True and if the CPA indicates an application response is

included, ignore the received message (i.e. no message was generated in response

to the message, or the processing of the earlier message is not yet complete)

(2) if syncReply is set to False then generate an Acknowledgement Message (see

section 9.3.3).

9.3.3 Generating an acknowledgement message

An Acknowledgement Message MUST be generated whenever a message is received with:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 69 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• deliverySemantics set to OnceAndOnlyOnce and

• reliableMessagingMethod set to ebXML (the default).

As a minimum, it MUST contain a MessageData element with a RefToMessageId that contains

the same value as the MessageId element in the message being acknowledged.

If ackRequested in the Via of the received message is set to Signed or Unsigned then the

acknowledgement message MUST also contain an Acknowledgement element.

Depending on the value of the syncReply parameter, the Acknowledgement Message can also be

sent at the same time as the response to the received message. In this case, the values for the

MessageHeader elements of the Acknowledgement Message are set by the designer of the

Service.

If an Acknowledgment element is being sent on its own, then the value of the MessageHeader

elements MUST be set as follows:

• The Service element MUST be set to: uri:www.ebxml.org/messageService/

• The Action element MUST be set to Acknowledgment.

• The From element MAY be populated with the To element extracted from the message

received, or it MAY be set using the Receiver from the last TraceHeader in the message that

has just been received. In either case, all PartyId elements from the message received

SHOULD be included in this From element.

• The To element MAY be populated with the From element extracted from the message

received, or it MAY be set using the Sender from the last TraceHeader in the message that

has just been received. In either case, all PartyId elements from the message received

SHOULD be included in this To element.

• The RefToMessageId element MUST be set to the MessageId of the message that has just

been received

9.3.4 Resending lost messages and duplicate filtering

This section describes the behavior that is required by the sender and receiver of a message in

order to handle when messages are lost. A message is "lost" when a Sending MSH does not

receive a response to a message. For example, it is possible that a message was lost, for example:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 70 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Figure 9-2 Undelivered Message

It is also possible that the Acknowledgment Message was lost, for example:

Figure 9-3 Lost Acknowledgment Message

The rules that apply are as follows:

1. The Sending MSH MUST resend the original message if an Acknowledgment Message has

not been received from the Receiving MSH and the following are both true:

a.) At least the time specified in the retryInterval has passed since the message was last

sent, and

b.) The message has been resent less than the number of times specified in the retries

Parameter

2. If the Sending MSH does not receive an Acknowledgment Message after the maximum

number of retries, the Sending MSH SHOULD notify the application and/or system

administrator function of the failure to receive an acknowledgement.

3. If the Sending MSH detects an unrecoverable communications protocol error at the transport

protocol level, the Sending MSH SHOULD resend the message.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 71 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9.3.5 Duplicate message handling

In the context of this specification, a duplicate message is:

• an “identical message” is a message that contains, apart from an additional TraceHeader

element, the same ebXML SOAP Header, Body and ebXML Payload as the earlier message

that was sent.

• a “duplicate message” is a message that contains the same MessageId as an earlier message

that was received.

• the “first message” is the message with the earliest Timestamp in the MessageData element

that has the same RefToMessageId as the duplicate message.

Figure 9-4 Resending Unacknowledged Messages

The diagram above shows the behavior that MUST be followed by the sending and Receiving

MSH that are sent with deliverySemantics of OnceAndOnlyOnce. Specifically:

1. The sender of the message (e.g. Party A) MUST resend the “identical message” if no

Acknowledgment Message is received.

2. When the recipient (Party B) of the message receives a “duplicate message”, it MUST resend

to the sender (Party A) a message identical to the first message that was sent to the sender

Party A).

3. The recipient of the message (Party B) MUST NOT forward the message a second time to

the application/process.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 72 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

9.4 Failed message delivery

If a message sent with deliverySemantics set to OnceAndOnlyOnce cannot be delivered, the

MSH or process SHOULD send a delivery failure notification to the From Party. The delivery

failure notification message contains:

• a From element that identifies the Party who detected the problem

• a To element that identifies the From Party that created the message that could not be

delivered

• a Service element and Action element set as described in 10.5

• an Error element with a severity of:

• Error if the party who detected the problem could not transmit the message (e.g. the

communications transport was not available)

• Warning if the message was transmitted, but an acknowledgment message was not

received. This means the message probably was not delivered although there is a small

probability it was.

• an ErrorCode of DeliveryFailure

It is possible that an error message with an Error element with an ErrorCode set to

DeliveryFailure cannot be delivered successfully for some reason. If this occurs, then the From

Party that is the ultimate destination for the error message SHOULD be informed of the problem

by other means. How this is done is outside the scope of this specification.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 73 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

10 Error Reporting and Handling

This section describes how one ebXML Message Service Handler (MSH) reports errors it detects

in an ebXML Message to another MSH. The ebXML Message Service error reporting and

handling is to be considered as a layer of processing above the SOAP processor layer. This

means the ebXML MSH is essentially an application-level handler of a SOAP Message from the

perspective of the SOAP Processor. The SOAP processor MAY generate SOAP Fault messages

if it is unable to process the message. A Sending MSH MUST be prepared to accept and process

these SOAP Faults.

It is possible for the ebXML MSH software to cause a SOAP fault to be generated and returned

to the sender of a SOAP Message. In this event, the returned message MUST conform to the

[SOAP] specification processing guidelines for SOAP Faults.

An ebXML SOAP Message that reports an error that has a highestSeverity of Warning SHALL

NOT be reported or returned as a SOAP Fault.

10.1 Definitions

For clarity, two phrases are defined that are used in this section:

• “message in error” - A message that contains or causes an error of some kind

• “message reporting the error” - A message that contains an ebXML ErrorList element that

describes the error(s) found in a message in error.

10.2 Types of errors

One MSH needs to report to another MSH errors in a message in error. For example, errors

associated with:

• ebXML namespace qualified content of the SOAP Message document (see section 7)

• reliable messaging failures (see section 9)

• security (see section 11)

Unless specified to the contrary, all references to "an error" in the remainder of this specification

imply any or all of the types of errors listed above.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 74 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Errors associated with Data Communication protocols are detected and reported using the

standard mechanisms supported by that data communication protocol and do not use the error

reporting mechanism described here.

10.3 When to generate error messages

When a MSH detects an error in a message it is strongly RECOMMENDED that the error is

reported to the MSH that sent the message that had an error if:

• the Error Reporting Location (see section 10.4) to which the message reporting the error

should be sent can be determined, and

• the message in error does not have an ErrorList element with highestSeverity set to Error.

If the Error Reporting Location cannot be found or the message in error has an ErrorList

element with highestSeverity set to Error, it is RECOMMENDED that:

• the error is logged, and

• the problem is resolved by other means, and

• no further action is taken.

10.3.1 Security considerations

Parties that receive a Message containing an error in the header SHOULD always respond to the

message. However, they MAY ignore the message and not respond if they consider that the

message received is unauthorized or is part of some security attack. The decision process

resulting in this course of action is implementation dependent.

10.4 Identifying the error reporting location

The Error Reporting Location is a URI that is specified by the sender of the message in error that

indicates where to send a message reporting the error.

The ErrorURI implied by the CPA, identified by the CPAId on the message, SHOULD be

used. If no ErrorURI is implied by the CPA and a TraceHeaderList is present in the message

in error, the value of the Location element in the Sender of the topmost TraceHeader MUST be

used. Otherwise, the recipient MAY resolve an ErrorURI using the From element of the

message in error. If this is not possible, no error will be reported to the sending Party.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 75 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Even if the message in error cannot be successfully analyzed or parsed, MSH implementers

SHOULD try to determine the Error Reporting Location by other means. How this is done is an

implementation decision.

10.5 Service and action element values

An ErrorList element can be included in a SOAP Header that is part of a message being sent as

a result of processing of an earlier message. In this case, the values for the Service and Action

elements are set by the designer of the Service.

An ErrorList element can also be included in an SOAP Header that is not being sent as a result

of the processing of an earlier message. In this case, if the highestSeverity is set to Error, the

values of the Service and Action elements MUST be set as follows:

• The Service element MUST be set to: uri:www.ebxml.org/messageService/

• The Action element MUST be set to MessageError.

If the highestSeverity is set to Warning, the Service and Action elements MUST NOT be used.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 76 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11 Security

The ebXML Message Service, by its very nature, presents certain security risks. A Message

Service may be at risk by means of:

• Unauthorized access

• Data integrity and/or confidentiality attacks (e.g. through man-in-the-middle attacks)

• Denial-of-Service and spoofing

Each security risk is described in detail in the ebXML Technical Architecture Security

Specification [ebTASEC].

Each of these security risks MAY be addressed in whole, or in part, by the application of one, or

a combination, of the countermeasures described in this section. This specification describes a

set of profiles, or combinations of selected countermeasures, selected to address key risks based

upon commonly available technologies. Each of the specified profiles includes a description of

the risks that are not addressed.

Application of countermeasures SHOULD be balanced against an assessment of the inherent

risks and the value of the asset(s) that might be placed at risk.

11.1 Security and management

No technology, regardless of how advanced it might be, is an adequate substitute to the effective

application of security management policies and practices.

It is strongly RECOMMENDED that the site manager of an ebXML Message Service apply due

diligence to the support and maintenance of its; security mechanism, site (or physical) security

procedures, cryptographic protocols, update implementations and apply fixes as appropriate.

(See http://www.cert.org/ and http://ciac.llnl.gov/)

11.2 Collaboration protocol agreement

The configuration of Security for MSHs may be specified in the CPA. Three areas of the CPA

have security definitions as follows:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 77 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• The Document Exchange section addresses security to be applied to the payload of the

message. The MSH is not responsible for any security specified at this level but may offer

these services to the message sender.

• The Message section addresses security applied to the entire ebXML Document, which

includes the header and the payload.

11.3 Countermeasure technologies

11.3.1 Persistent digital signature

If signatures are being used to digitally sign an ebXML Message then XML Signature [DSIG]

MUST be used to bind the ebXML SOAP Header and Body to the ebXML Payload or data

elsewhere on the web that relates to the message. It is also strongly RECOMMENDED that

XML Signature be used to digitally sign the Payload on its own.

The only available technology that can be applied to the purpose of digitally signing an ebXML

Message (the ebXML SOAP Header and Body and its associated payload objects) is provided

by technology that conforms to the W3C/IETF joint XML Signature specification [XMLDSIG].

An XML Signature conforming to this specification can selectively sign portions of an XML

document(s), permitting the documents to be augmented (new element content added) while

preserving the validity of the signature(s).

An ebXML Message requiring a digital signature SHALL be signed following the process

defined in this section of the specification and SHALL be in full compliance with [XMLDSIG].

11.3.1.1 Signature generation

1. Create a ds:SignedInfo element with ds:SignatureMethod, ds:CanonicalizationMethod,

and ds:Reference elements for the SOAP Header and any required payload objects, as

prescribed by [XMLDSIG].

2. Canonicalize and then calculate the ds:SignatureValue over ds:SignedInfo based on

algorithms specified in ds:SignedInfo as specified in [XMLDSIG].

3. Construct the ds:Signature element that includes the ds:SignedInfo, ds:KeyInfo

(RECOMMENDED), and ds:SignatureValue elements as specified in [XMLDSIG].

4. Include the namespace qualified ds:Signature element in the SOAP Header just signed,

following the TraceHeaderList element.

The ds:SignedInfo element SHALL be composed of zero or one ds:CanonicalizationMethod

element, the ds:SignatureMethod and one or more ds:Reference elements.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 78 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

The ds:CanonicalizationMethod element is defined as OPTIONAL in [XMLDSIG], meaning

that the element need not appear in an instance of a ds:SignedInfo element. The default

canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of

a ds:Canonicalization element that specifies otherwise. This default SHALL also serve as the

default canonicalization method for the ebXML Message Service.

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute.

The RECOMMENDED value for the Algorithm attribute is:

http://www.w3.org/2000/09/xmldsig#dsa-sha1

This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service

software implementations.

The ds:Reference element for the SOAP Header document SHALL have a URI attribute value

of "" to provide for the signature to be applied to the document that contains the ds:Signature

element (the SOAP Header).

The ds:Reference element for the SOAP Header MAY include a Type attribute that has a value

"http://www.w3.org/2000/09/xmldsig#Object" in accordance with [XMLDSIG]. This attribute is

purely informative. It MAY be omitted. Implementations of the ebXML MSH SHALL be

prepared to handle either case. The ds:Reference element MAY include the optional id attribute.

The ds:Reference element for the SOAP Header SHALL include a child ds:Transforms

element. The ds:Transforms element SHALL include two ds:Transform child elements. The

first ds:Transform element SHALL have a ds:Algorithm attribute that has a value of:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

The second ds:Transform element SHALL have a child ds:XPath element that has a value of:

not(ancestor-or-self::eb:TraceHeaderList or

 ancestor-or-self::eb:Via)

The result of the first [XPath] statement excludes the ds:Signature element within which it is

contained, and all its descendants, and the second [XPath] statement excludes the

TraceHeaderList and Via elements and all their descendants, as these elements are subject to

change.

Each payload object that requires signing SHALL be represented by a ds:Reference element that

SHALL have a URI attribute that resolves to that payload object. This MAY be either the

Content-Id URI of the MIME body part of the payload object, or a URI that matches the

Content-Location of the MIME body part of the payload object, or a URI that resolves to an

external payload object external to the Message Package. It is strongly RECOMMENDED that

the URI attribute value match the xlink:href URI value of the corresponding

Manifest/Reference element for that payload object. However, this is NOT REQUIRED.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 79 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Example of digitally signed ebXML SOAP Message:

<?xml version="1.0" encoding="utf-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:eb="http://www.ebxml.org/namespaces/messageHeader"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <SOAP-ENV:Header>
 <eb:MessageHeader eb:id="…" eb:version="1.0">
 ...
 </eb:MessageHeader>
 <eb:TraceHeaderList eb:id="…" eb:version="1.0">
 <eb:TraceHeader>
 ...
 </eb:TraceHeader>
 </eb:TraceHeaderList>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <XPath xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 not(ancestor-or-self::eb:TraceHeaderList or
 ancestor-or-self::eb:Via)
 </XPath>
 </Transform>
 </Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="cid://blahblahblah/">
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>...</ds:SignatureValue>
 <ds:KeyInfo>...</ds:KeyInfo>
 </ds:Signature>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <eb:Manifest eb:id="Mani01" eb:version="1.0">
 <eb:Reference xlink:href="cid://blahblahblah"
 xlink:role="http://ebxml.org/gci/invoice">
 <eb:Schema eb:version="1.0" eb:location="http://ebxml.org/gci/busdocs/invoice.dtd"/>
 </eb:Reference>
 </eb:Manifest>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

11.3.2 Persistent signed receipt

An ebXML Message that has been digitally signed MAY be acknowledged with a

DeliveryReceipt acknowledgment message that itself is digitally signed in the manner described

in the previous section. The acknowledgment message MUST contain a ds:Reference element

contained in the ds:Signature element of the original message within the Acknowledgment

element.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 80 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

11.3.3 Non-persistent authentication

Non-persistent authentication is provided by the communications channel used to transport the

ebXML Message. This authentication MAY be either in one direction, from the session initiator

to the receiver, or bi-directional. The specific method will be determined by the communications

protocol used. For instance, the use of a secure network protocol, such as [RFC2246] or

[IPSEC] provides the sender of an ebXML Message with a way to authenticate the destination for

the TCP/IP environment.

11.3.4 Non-persistent Integrity

Use of a secure network protocol such as [RFC2246] or [IPSEC] MAY be configured to provide

for integrity check CRCs of the packets transmitted via the network connection.

11.3.5 Persistent confidentiality

XML Encryption is a W3C/IETF joint activity that is actively engaged in the drafting of a

specification for the selective encryption of an XML document(s). It is anticipated that this

specification will be completed within the next year. The ebXML Transport, Routing and

Packaging team has identified this technology as the only viable means of providing persistent,

selective confidentiality of elements within an ebXML Message including the SOAP Header.

Confidentiality for ebXML Payloads MAY be provided by functionality possessed by a MSH.

However, this specification states that it is not the responsibility of the MSH to provide security

for the ebXML ````Payloads. Payload confidentiality MAY be provided by using XML

Encryption (when available) or some other cryptographic process (such as [S/MIME],

[S/MIMEV3], or [PGP/MIME]) bilaterally agreed upon by the parties involved. Since XML

Encryption is not currently available, it is RECOMMENDED that [S/MIME] encryption

methods be used for ebXML Payloads. The XML Encryption standard SHALL be the default

encryption method when XML Encryption has achieved W3C Recommendation status.

11.3.6 Non-persistent confidentiality

Use of a secure network protocol such as [RFC2246] or [IPSEC] provides transient

confidentiality of a message as it is transferred between two ebXML MSH nodes.

11.3.7 Persistent authorization

The OASIS Security Services Technical Committee (TC) is actively engaged in the definition of

a specification that provides for the exchange of security credentials, including NameAssertion

and Entitlements that is based on [SAML]. Use of technology that is based on this anticipated

specification MAY be used to provide persistent authorization for an ebXML Message once it

becomes available. ebXML has a formal liaison to this TC. There are also many ebXML

member organizations and contributors that are active members of the OASIS Security Services

TC such as Sun, IBM, CommerceOne, Cisco and others that are endeavoring to ensure that the

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 81 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

specification meets the requirements of providing persistent authorization capabilities for the

ebXML Message Service.

11.3.8 Non-persistent authorization

Use of a secure network protocol such as [RFC2246] or [IPSEC] MAY be configured to provide

for bilateral authentication of certificates prior to establishing a session. This provides for the

ability for an ebXML MSH to authenticate the source of a connection that can be used to

recognize the source as an authorized source of ebXML Messages.

11.3.9 Trusted timestamp

At the time of this specification, services that offer trusted timestamp capabilities are becoming

available. Once these become more widely available, and a standard has been defined for their

use and expression, these standards, technologies and services will be evaluated and considered

for use to provide this capability.

11.3.10 Supported security services

The general architecture of the ebXML Message Service Specification is intended to support all

the security services required for electronic business. The following table combines the security

services of the Message Service Handler into a set of security profiles. These profiles, or

combinations of these profiles, support the specific security policy of the ebXML user

community. Due to the immature state of XML security specifications, this version of the

specification requires support for profiles 0 and 1 only. This does not preclude users from

employing additional security features to protect ebXML exchanges; however, interoperability

between parties using any profiles other than 0 and 1 cannot be guaranteed.

P
re

se
n

t
in

 b
a

se
li

n
e

M
S

H

P
e
r
si

st
e
n

t
d

ig
it

a
l

si
g

n
a

tu
r
e

N
o

n
-p

e
r
si

st
e
n

t
a

u
th

e
n

ti
c
a

ti
o

n

P
er

si
st

en
t

si
g

n
e
d

 r
ec

ei
p

t

N
o

n
-p

er
si

st
en

t
in

te
g

ri
ty

P
er

si
st

en
t

co
n

fi
d

en
ti

a
li

ty

N
o

n
-p

er
si

st
en

t
co

n
fi

d
e
n

ti
a

li
ty

P
e
r
si

st
e
n

t
a

u
th

o
r
iz

a
ti

o
n

N
o

n
-p

er
si

st
en

t
a

u
th

o
ri

za
ti

o
n

T
ru

st
ed

 t
im

es
ta

m
p

D
es

cr
ip

ti
o

n
 o

f
P

ro
fi

le

! Profile 0 no security services are applied to data

!
Profile 1 !

Sending MSH applies XML/DSIG structures to

message

 Profile 2 ! !

Sending MSH authenticates and Receiving MSH

authorizes sender based on communication channel

credentials.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 82 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

P
re

se
n

t
in

 b
a

se
li

n
e

M
S

H

P
e
r
si

st
e
n

t
d

ig
it

a
l

si
g

n
a

tu
r
e

N
o

n
-p

e
r
si

st
e
n

t
a

u
th

e
n

ti
c
a

ti
o

n

P
er

si
st

en
t

si
g

n
e
d

 r
ec

ei
p

t

N
o

n
-p

er
si

st
en

t
in

te
g

ri
ty

P
er

si
st

en
t

co
n

fi
d

en
ti

a
li

ty

N
o

n
-p

er
si

st
en

t
co

n
fi

d
e
n

ti
a

li
ty

P
e
r
si

st
e
n

t
a

u
th

o
r
iz

a
ti

o
n

N
o

n
-p

er
si

st
en

t
a

u
th

o
ri

za
ti

o
n

T
ru

st
ed

 t
im

es
ta

m
p

D
es

cr
ip

ti
o

n
 o

f
P

ro
fi

le

 Profile 3 ! !
Sending MSH authenticates and both MSHs

negotiate a secure channel to transmit data

 Profile 4 ! !

Sending MSH authenticates, the Receiving MSH

performs integrity checks using communications

protocol

 Profile 5 !
Sending MSH authenticates the communication

channel only (e.g., SSL 3.0 over TCP/IP)

 Profile 6 ! !

Sending MSH applies XML/DSIG structures to

message and passes in secure communications

channel

 Profile 7 ! !

Sending MSH applies XML/DSIG structures to

message and Receiving MSH returns a signed

receipt

 Profile 8 ! ! ! combination of profile 6 and 7

 Profile 9 ! ! Profile 5 with a trusted timestamp applied

 Profile 10 ! ! !
Profile 9 with Receiving MSH returning a signed

receipt

 Profile 11 ! ! !
Profile 6 with the Receiving MSH applying a trusted

timestamp

 Profile 12 ! ! ! !
Profile 8 with the Receiving MSH applying a trusted

timestamp

 Profile 13 ! !

Sending MSH applies XML/DSIG structures to

message and applies confidentiality structures

(XML-Encryption)

 Profile 14 ! ! ! Profile 13 with a signed receipt

 Profile 15 ! ! !

Sending MSH applies XML/DSIG structures to

message, a trusted timestamp is added to message,

Receiving MSH returns a signed receipt

 Profile 16 ! ! ! Profile 13 with a trusted timestamp applied

 Profile 17 ! ! ! ! Profile 14 with a trusted timestamp applied

 Profile 18 ! !

Sending MSH applies XML/DSIG structures to

message and forwards authorization credentials

[SAML]

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 83 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

P
re

se
n

t
in

 b
a

se
li

n
e

M
S

H

P
e
r
si

st
e
n

t
d

ig
it

a
l

si
g

n
a

tu
r
e

N
o

n
-p

e
r
si

st
e
n

t
a

u
th

e
n

ti
c
a

ti
o

n

P
er

si
st

en
t

si
g

n
e
d

 r
ec

ei
p

t

N
o

n
-p

er
si

st
en

t
in

te
g

ri
ty

P
er

si
st

en
t

co
n

fi
d

en
ti

a
li

ty

N
o

n
-p

er
si

st
en

t
co

n
fi

d
e
n

ti
a

li
ty

P
e
r
si

st
e
n

t
a

u
th

o
r
iz

a
ti

o
n

N
o

n
-p

er
si

st
en

t
a

u
th

o
ri

za
ti

o
n

T
ru

st
ed

 t
im

es
ta

m
p

D
es

cr
ip

ti
o

n
 o

f
P

ro
fi

le

 Profile 19 ! ! !
Profile 18 with Receiving MSH returning a signed

receipt

 Profile 20 ! ! ! !
Profile 19 with the a trusted timestamp being

applied to the Sending MSH message

 Profile 21 ! ! ! ! !
Profile 19 with the Sending MSH applying

confidentiality structures (XML-Encryption)

 Profile 22 !
Sending MSH encapsulates the message within

confidentiality structures (XML-Encryption)

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 84 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

12 References

12.1 Normative references

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering

Task Force RFC 2119, March 1997

[HTTP] IETF RFC 2068 - Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J.

Mogul, H. Frystyk, T. Berners-Lee, January 1997

[RFC822] Standard for the Format of ARPA Internet text messages. D. Crocker. August 1982.

[RFC2045] IETF RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies, N Freed & N Borenstein, Published November 1996

[RFC2046] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed,

N. Borenstein. November 1996.

[RFC2246] RFC 2246 - Dierks, T. and C. Allen, "The TLS Protocol", January 1999.

[RFC2387] The MIME Multipart/Related Content-type. E. Levinson. August 1998.

[RFC2392] IETF RFC 2392. Content-ID and Message-ID Uniform Resource Locators. E.

Levinson, Published August 1998

[RFC2396] IETF RFC 2396. Uniform Resource Identifiers (URI): Generic Syntax. T Berners-

Lee, Published August 1998

[RFC2487] SMTP Service Extension for Secure SMTP over TLS. P. Hoffman. January 1999.

[RFC2554] SMTP Service Extension for Authentication. J. Myers. March 1999.

[RFC2616] RFC 2616 - Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.

and T. Berners-Lee, "Hypertext Transfer Protocol, HTTP/1.1", , June 1999.

[RFC2617] RFC2617 - Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,

Luotonen, A., Sink, E. and L. Stewart, "HTTP Authentication: Basic and Digest Access

Authentication", June 1999.

[RFC2817] RFC 2817 - Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1",

May 2000.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 85 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

[RFC2818] RFC 2818 - Rescorla, E., "HTTP Over TLS", May 2000 [SOAP] Simple Object

Access Protocol

[SMTP] IETF RFC 822, Simple Mail Transfer Protocol, D Crocker, August 1982

[SOAP] W3C-Draft-Simple Object Access Protocol (SOAP) v1.1, Don Box, DevelopMentor;

David Ehnebuske, IBM; Gopal Kakivaya, Andrew Layman, Henrik Frystyk Nielsen, Satish

Thatte, Microsoft; Noah Mendelsohn, Lotus Development Corp.; Dave Winer, UserLand

Software, Inc.; W3C Note 08 May 2000, http://www.w3.org/TR/SOAP

[SOAPATTACH] SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs;

Satish Thatte and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 2000

http://www.w3.org/TR/SOAP-attachments

[SSL3] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape Communications

Corp., Nov 18, 1996.

[UTF-8] UTF-8 is an encoding that conforms to ISO/IEC 10646. See [XML] for usage

conventions.

[XLINK] W3C XML Linking Candidate Recommendation, http://www.w3.org/TR/xlink/

[XML] W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edition),

October 2000, http://www.w3.org/TR/2000/REC-xml-20001006

[XML Namespace] W3C Recommendation for Namespaces in XML, World Wide Web

Consortium, 14 January 1999, http://www.w3.org/TR/REC-xml-names

[XMLDSIG] Joint W3C/IETF XML-Signature Syntax and Processing specification,

http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/

[XMLMedia] IETF RFC 3023, XML Media Types. M. Murata, S. St.Laurent, January 2001

12.2 Non-normative references

[ebCPP] ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0,

published 11 May, 2001

[ebBPSS] ebXML Business Process Specification Schema, version 1.0, published 11 May 2001.

[ebTA] ebXML Technical Architecture, version 1.04 published 16 February, 2001

[secRISK] ebXML Technical Architecture Risk Assessment Technical Report, version 1.0

published 11 May 2001

[ebRS] ebXML Registry Services Specification, version 1.0

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 86 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

[ebMSREQ] ebXML Transport, Routing and Packaging: Overview and Requirements, Version

0.96, Published 25 May 2000

[ebGLOSS] ebXML Glossary, http://www.ebxml.org, published 11 May, 2001.

[IPSEC] IETF RFC2402 IP Authentication Header. S. Kent, R. Atkinson. November 1998.

RFC2406 IP Encapsulating Security Payload (ESP). S. Kent, R. Atkinson. November 1998.

[PGP/MIME] IETF RFC2015, "MIME Security with Pretty Good Privacy (PGP)", M. Elkins.

October 1996.

[SAML] Security Assertion Markup Language,

http://www.oasis-open.org/committees/security/docs/draft-sstc-use-strawman-03.html

[S/MIME] IETF RFC2311, “S/MIME Version 2 Message Specification”, S. Dusse, P. Hoffman,

B. Ramsdell, L. Lundblade, L. Repka. March 1998.

[S/MIMECH] IETF RFC 2312, “S/MIME Version 2 Certificate Handling”, S. Dusse, P.

Hoffman, B. Ramsdell, J. Weinstein. March 1998.

[S/MIMEV3] IETF RFC 2633 S/MIME Version 3 Message Specification. B. Ramsdell, Ed..

June 1999.

[TLS] RFC2246, T. Dierks, C. Allen. January 1999.

[XMLSchema] W3C XML Schema Candidate Recommendation,

http://www.w3.org/TR/xmlschema-0/

http://www.w3.org/TR/xmlschema-1/

http://www.w3.org/TR/xmlschema-2/

[XMTP] XMTP - Extensible Mail Transport Protocol

http://www.openhealth.org/documents/xmtp.htm

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 87 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

13 Contact Information

Team Leader

Name Rik Drummond

Company Drummond Group, Inc.

Street 5008 Bentwood Ct.

City, State, Postal Code Fort Worth, Texas 76132

Country USA

Phone +1 (817) 294-7339

EMail: rik@drummondgroup.com

Vice Team Leader

Name Christopher Ferris

Company Sun Microsystems

Street One Network Drive

City, State, Postal Code Burlington, MA 01803-0903

Country USA

Phone: +1 (781) 442-3063

EMail: chris.ferris@sun.com

Team Editor

Name David Burdett

Company Commerce One

Street 4400 Rosewood Drive

City, State, Postal Code Pleasanton, CA 94588

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 88 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Country USA

Phone: +1 (925) 520-4422

EMail: david.burdett@commerceone.com

Authors

Name Dick Brooks

Company Group 8760

Street 110 12th Street North, Suite F103

City, State, Postal Code Birmingham, Alabama 35203

Phone: +1 (205) 250-8053

Email: dick@8760.com

Name David Burdett

Company Commerce One

Street 4400 Rosewood Drive

City, State, Postal Code Pleasanton, CA 94588

Country USA

Phone: +1 (925) 520-4422

EMail: david.burdett@commerceone.com

Name Christopher Ferris

Company Sun Microsystems

Street One Network Drive

City, State, Postal Code Burlington, MA 01803-0903

Country USA

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 89 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Phone: +1 (781) 442-3063

EMail: chris.ferris@east.sun.com

Name John Ibbotson

Company IBM UK Ltd

Street Hursley Park

City, State, Postal Code Winchester SO21 2JN

Country United Kingdom

Phone: +44 (1962) 815188

Email: john_ibbotson@uk.ibm.com

Name Masayoshi Shimamura

Company Fujitsu Limited

Street Shinyokohama Nikko Bldg., 15-16, Shinyokohama 2-chome

City, State, Postal Code Kohoku-ku, Yokohama 222-0033, Japan

Phone: +81-45-476-4590

EMail: shima@rp.open.cs.fujitsu.co.jp

Document Editing Team

Name Ralph Berwanger

Company bTrade.com

Street 2324 Gateway Drive

City, State, Postal Code Irving, TX 75063

Country USA

Phone: +1 (972) 580-3970

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 90 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

EMail: rberwanger@btrade.com

Name Colleen Evans

Company Progress/Sonic Software

Street 14 Oak Park

City,State,Postal Code Bedford, MA 01730

Country USA

Phone +1 (720) 480-3919

Email cevans@progress.com

Name Ian Jones

Company British Telecommunications

Street Enterprise House, 84-85 Adam Street

City, State, Postal Code Cardiff, CF24 2XF

Country United Kingdom

Phone: +44 29 2072 4063

EMail: ian.c.jones@bt.com

Name Martha Warfelt

Company DaimlerChrysler Corporation

Street 800 Chrysler Drive

City, State, Postal Code Auburn Hills, MI

Country USA

Phone: +1 (248) 944-5481

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 91 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

EMail: maw2@daimlerchrysler.com

Name David Fischer

Company Drummond Group, Inc

Street 5008 Bentwood Ct

City, State, Postal Code Fort Worth, TX 76132

Phone +1 (817-294-7339

EMail david@drummondgroup.com

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 92 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

14 Disclaimer

The views and specification expressed in this document are those of the authors and are not

necessarily those of their employers. The authors and their employers specifically disclaim

responsibility for any problems arising from correct or incorrect implementation or use of this

design.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 93 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix A ebXML SOAP Extension Elements
Schema

The ebXML SOAP extension elements schema has been specified using the Candidate

Recommendation draft of the XML Schema specification[XMLSchema]. Because ebXML has

adopted SOAP 1.1 for the message format, and because the SOAP 1.1 schema resolved by the

SOAP 1.1 namespace URI was written to an earlier draft of the XML Schema specification, the

ebXML TRP team has created a version of the SOAP 1.1 envelope schema that is specified using

the schema vocabulary that conforms to the W3C XML Schema Candidate Recommendation

specification[XMLSchema].

In addition, it was necessary to craft a schema for the [XLINK] attribute vocabulary and for the

XML xml:lang attribute.

Finally, because certain authoring tools do not correctly resolve local entities when importing

schema, a version of the W3C XML Signature Core schema has also been provided and

referenced by the ebXML SOAP extension elements schema defined in this Appendix.

These alternative schema SHALL be available from the following URL’s:

XML Signature Core – http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd

Xlink - http://ebxml.org/project_teams/transport/xlink.xsd

xml:lang - http://ebxml.org/project_teams/transport/xml_lang.xsd

SOAP1.1 - http://ebxml.org/project_teams/transport/envelope.xsd

Note If inconsistencies exist between the specification and this schema, the specification

supersedes this example schema.

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.ebxml.org/namespaces/messageHeader"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:tns="http://www.ebxml.org/namespaces/messageHeader" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="http://www.w3.org/2000/10/XMLSchema" version="1.0">
 <import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"/>
 <import namespace="http://www.w3.org/1999/xlink"
schemaLocation="http://www.ebxml.org/project_teams/transport/xlink.xsd"/>
 <import namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemaLocation="http://www.ebxml.org/project_teams/transport/envelope.xsd"/>
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.ebxml.org/project_teams/transport/xml_lang.xsd"/>
 <!-- MANIFEST -->
 <element name="Manifest">
 <complexType>
 <sequence>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 94 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <element ref="tns:Reference" maxOccurs="unbounded"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <element name="Reference">
 <complexType>
 <sequence>
 <element ref="tns:Schema" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="tns:Description" minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="xlink:type" use="fixed" value="simple"/>
 <attribute ref="xlink:href" use="required"/>
 <attribute ref="xlink:role"/>
 </complexType>
 </element>
 <element name="Schema">
 <complexType>
 <attribute name="location" type="uriReference" use="required"/>
 <attribute name="version" type="tns:non-empty-string"/>
 </complexType>
 </element>
 <!-- MESSAGEHEADER -->
 <element name="MessageHeader">
 <complexType>
 <sequence>
 <element ref="tns:From"/>
 <element ref="tns:To"/>
 <element ref="tns:CPAId"/>
 <element ref="tns:ConversationId"/>
 <element ref="tns:Service"/>
 <element ref="tns:Action"/>
 <element ref="tns:MessageData"/>
 <element ref="tns:QualityOfServiceInfo" minOccurs="0"/>
 <element ref="tns:Description" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="tns:SequenceNumber" minOccurs="0"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <attribute ref="soap:mustUnderstand"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <element name="CPAId" type="tns:non-empty-string"/>
 <element name="ConversationId" type="tns:non-empty-string"/>
 <element name="Service">
 <complexType>
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute name="type" type="tns:non-empty-string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="Action" type="tns:non-empty-string"/>
 <element name="MessageData">
 <complexType>
 <sequence>
 <element ref="tns:MessageId"/>
 <element ref="tns:Timestamp"/>
 <element ref="tns:RefToMessageId" minOccurs="0"/>
 <element ref="tns:TimeToLive" minOccurs="0"/>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 95 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 </sequence>
 </complexType>
 </element>
 <element name="MessageId" type="tns:non-empty-string"/>
 <element name="TimeToLive" type="timeInstant"/>
 <element name="QualityOfServiceInfo">
 <complexType>
 <attribute name="deliverySemantics" type="tns:deliverySemantics.type" use="default"
 value="BestEffort"/>
 <attribute name="messageOrderSemantics" type="tns:messageOrderSemantics.type"
 use="default" value="NotGuaranteed"/>
 <attribute name="deliveryReceiptRequested" type="tns:signedUnsigned.type"
 use="default" value="None"/>
 </complexType>
 </element>
 <!-- TRACE HEADER LIST -->
 <element name="TraceHeaderList">
 <complexType>
 <sequence>
 <element ref="tns:TraceHeader" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <attribute ref="soap:mustUnderstand" use="required"/>
 <attribute ref="soap:actor" use="required"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <element name="TraceHeader">
 <complexType>
 <sequence>
 <element ref="tns:Sender"/>
 <element ref="tns:Receiver"/>
 <element ref="tns:Timestamp"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 </complexType>
 </element>
 <element name="Sender" type="tns:senderReceiver.type"/>
 <element name="Receiver" type="tns:senderReceiver.type"/>
 <element name="SequenceNumber" type="positiveInteger"/>
 <!-- DELIVERY RECEIPT -->
 <element name="DeliveryReceipt">
 <complexType>
 <sequence>
 <element ref="tns:Timestamp"/>
 <element ref="ds:Reference" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 <!-- <attribute name="signed" type="boolean"/> -->
 </complexType>
 </element>
 <!-- ACKNOWLEDGEMENT -->
 <element name="Acknowledgment">
 <complexType>
 <sequence>
 <element ref="tns:Timestamp"/>
 <element ref="tns:From" minOccurs="0"/>
 <element ref="ds:Reference" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <attribute ref="soap:mustUnderstand" use="required"/>
 <attribute ref="soap:actor" use="required"/>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 96 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <!-- ERROR LIST -->
 <element name="ErrorList">
 <complexType>
 <sequence>
 <element ref="tns:Error" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <attribute ref="soap:mustUnderstand" use="required"/>
 <attribute name="highestSeverity" type="tns:severity.type"
 use="default" value="Warning"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <element name="Error">
 <complexType>
 <attribute ref="tns:id"/>
 <attribute name="codeContext" type="uriReference" use="required"/>
 <attribute name="errorCode" type="tns:non-empty-string" use="required"/>
 <attribute name="severity" type="tns:severity.type" use="default" value="Warning"/>
 <attribute name="location" type="tns:non-empty-string"/>
 <attribute ref="xml:lang"/>
 </complexType>
 </element>
 <!-- STATUS RESPONSE -->
 <element name="StatusResponse">
 <complexType>
 <sequence>
 <element ref="tns:RefToMessageId"/>
 <element ref="tns:Timestamp" minOccurs="0"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <attribute name="messageStatus" type="tns:messageStatus.type"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <!-- STATUS REQUEST -->
 <element name="StatusRequest">
 <complexType>
 <sequence>
 <element ref="tns:RefToMessageId"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <!-- VIA -->
 <element name="Via">
 <complexType>
 <sequence>
 <element ref="tns:CPAId" minOccurs="0"/>
 <element ref="tns:Service" minOccurs="0"/>
 <element ref="tns:Action" minOccurs="0"/>
 </sequence>
 <attribute ref="tns:id"/>
 <attribute ref="tns:version"/>
 <attribute ref="soap:mustUnderstand" use="required"/>
 <attribute ref="soap:actor" use="required"/>
 <attribute name="syncReply" type="boolean"/>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 97 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <attribute name="deliveryReceiptRequested" type="tns:signedUnsigned.type"
 use="default" value="None"/>
 <attribute name="reliableMessagingMethod" type="tns:rmm.type"/>
 <attribute name="ackRequested" type="boolean"/>
 <anyAttribute namespace="http://www.w3.org/2000/10/XMLSchema-instance"
 processContents="lax"/>
 </complexType>
 </element>
 <!-- COMMON TYPES -->
 <complexType name="senderReceiver.type">
 <sequence>
 <element ref="tns:PartyId" maxOccurs="unbounded"/>
 <element name="Location" type="uriReference"/>
 </sequence>
 </complexType>
 <simpleType name="messageStatus.type">
 <restriction base="NMTOKEN">
 <enumeration value="UnAuthorized"/>
 <enumeration value="NotRecognized"/>
 <enumeration value="Received"/>
 <enumeration value="Processed"/>
 <enumeration value="Forwarded"/>
 </restriction>
 </simpleType>
 <simpleType name="type.type">
 <restriction base="NMTOKEN">
 <enumeration value="DeliveryReceipt"/>
 <enumeration value="IntermediateAck"/>
 </restriction>
 </simpleType>
 <simpleType name="messageOrderSemantics.type">
 <restriction base="NMTOKEN">
 <enumeration value="Guaranteed"/>
 <enumeration value="NotGuaranteed"/>
 </restriction>
 </simpleType>
 <simpleType name="deliverySemantics.type">
 <restriction base="NMTOKEN">
 <enumeration value="OnceAndOnlyOnce"/>
 <enumeration value="BestEffort"/>
 </restriction>
 </simpleType>
 <simpleType name="non-empty-string">
 <restriction base="string">
 <minLength value="1"/>
 </restriction>
 </simpleType>
 <simpleType name="rmm.type">
 <restriction base="NMTOKEN">
 <enumeration value="ebXML"/>
 <enumeration value="Transport"/>
 </restriction>
 </simpleType>
 <simpleType name="signedUnsigned.type">
 <restriction base="NMTOKEN">
 <enumeration value="Signed"/>
 <enumeration value="Unsigned"/>
 <enumeration value="None"/>
 </restriction>
 </simpleType>
 <simpleType name="severity.type">
 <restriction base="NMTOKEN">
 <enumeration value="Warning"/>
 <enumeration value="Error"/>
 </restriction>
 </simpleType>
 <!-- COMMON ATTRIBUTES and ELEMENTS -->
 <attribute name="id" type="ID" form="unqualified"/>
 <attribute name="version" type="tns:non-empty-string" use="fixed" value="1.0"/>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 98 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 <element name="PartyId">
 <complexType>
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute name="type" type="tns:non-empty-string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="To">
 <complexType>
 <sequence>
 <element ref="tns:PartyId" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="From">
 <complexType>
 <sequence>
 <element ref="tns:PartyId" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="Description">
 <complexType>
 <simpleContent>
 <extension base="tns:non-empty-string">
 <attribute ref="xml:lang"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="RefToMessageId" type="tns:non-empty-string"/>
 <element name="Timestamp" type="timeInstant"/>
</schema>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 99 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Appendix B Communication Protocol Bindings

Introduction

One of the goals of ebXML's Transport, Routing and Packaging team is to design a message

handling service usable over a variety of network and application level communication

protocols. These protocols serve as the "carrier" of ebXML Messages and provide the

underlying services necessary to carry out a complete ebXML Message exchange between two

parties. HTTP, FTP, Java Message Service (JMS) and SMTP are examples of application level

communication protocols. TCP and SNA/LU6.2 are examples of network transport protocols.

Communication protocols vary in their support for data content, processing behavior and error

handling and reporting. For example, it is customary to send binary data in raw form over

HTTP. However, in the case of SMTP it is customary to "encode" binary data into a 7-bit

representation. HTTP is equally capable of carrying out synchronous or asynchronous message

exchanges whereas it is likely that message exchanges occurring over SMTP will be

asynchronous. This section describes the technical details needed to implement this abstract

ebXML Message Handling Service over particular communication protocols.

This section specifies communication protocol bindings and technical details for carrying ebXML

Message Service messages for the following communication protocols:

• Hypertext Transfer Protocol [HTTP], in both asynchronous and synchronous forms of

transfer.

• Simple Mail Transfer Protocol [SMTP], in asynchronous form of transfer only.

HTTP

Minimum level of HTTP protocol

Hypertext Transfer Protocol Version 1.1 [HTTP] (http://www.ietf.org/rfc2616.txt) is the

minimum level of protocol that MUST be used.

Sending ebXML service messages over HTTP

Even though several HTTP request methods are available, this specification only defines the use

of HTTP POST requests for sending ebXML Message Service messages over HTTP. The identity

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 100 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

of the ebXML MSH (e.g. ebxmlhandler) may be part of the HTTP POST request:

 POST /ebxmlhandler HTTP/1.1

Prior to sending over HTTP, an ebXML Message MUST be formatted according to ebXML

Message Service Specification sections 6 and 7. Additionally, the messages MUST conform to

the HTTP specific MIME canonical form constraints specified in section 19.4 of RFC 2616

[HTTP] specification (see: http://www.ietf.org/rfc2616.txt).

HTTP protocol natively supports 8-bit and Binary data. Hence, transfer encoding is OPTIONAL

for such parts in an ebXML Service Message prior to sending over HTTP. However, content-

transfer-encoding of such parts (e.g. using base64 encoding scheme) is not precluded by this

specification.

The rules for forming an HTTP message containing an ebXML Service Message are as follows:

• The Content-Type: Multipart/Related MIME header with the associated parameters, from

the ebXML Service Message Envelope MUST appear as an HTTP header.

• All other MIME headers that constitute the ebXML Message Envelope MUST also become

part of the HTTP header.

• The mandatory SOAPAction HTTP header field must also be included in the HTTP header

and MAY have a value of “ebXML”

SOAPAction: ”ebXML”

• Other headers with semantics defined by MIME specifications, such as Content-Transfer-

Encoding, SHALL NOT appear as HTTP headers. Specifically, the "MIME-Version: 1.0"

header MUST NOT appear as an HTTP header. However, HTTP-specific MIME-like

headers defined by HTTP 1.1 MAY be used with the semantic defined in the HTTP

specification.

• All ebXML Service Message parts that follow the ebXML Message Envelope, including the

MIME boundary string, constitute the HTTP entity body. This encompasses the SOAP

Envelope and the constituent ebXML parts and attachments including the trailing MIME

boundary strings.

The example below shows an example instance of an HTTP POST’ed ebXML Service Message:

POST /servlet/ebXMLhandler HTTP/1.1
Host: www.example2.com
SOAPAction: "ebXML"
Content-type: multipart/related; boundary="BoundarY"; type="text/xml";
 start=" <ebxhmheader111@example.com>"

--BoundarY
Content-ID: <ebxhmheader111@example.com>
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 101 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:eb='http://www.ebxml.org/namespaces/messageHeader'>
<SOAP-ENV:Header>
 <eb:MessageHeader SOAP-ENV:mustUnderstand="1" eb:version="1.0">
 <eb:From>
 <eb:PartyId>urn:duns:123456789</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>urn:duns:912345678</eb:PartyId>
 </eb:To>
 <eb:CPAId>20001209-133003-28572</eb:CPAId>
 <eb:ConversationId>20001209-133003-28572</eb:ConversationId>
 <eb:Service>urn:services:SupplierOrderProcessing</eb:Service>
 <eb:Action>NewOrder</eb:Action>
 <eb:MessageData>
 <eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>
 <eb:Timestamp>2001-02-15T11:12:12Z</Timestamp>
 </eb:MessageData>
 <eb:QualityOfServiceInfo eb:deliverySemantics="BestEffort"/>
 </eb:MessageHeader>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <eb:Manifest SOAP-ENV:mustUnderstand="1" eb:version="1.0">
 <eb:Reference xlink:href="cid:ebxmlpayload111@example.com"
 xlink:role="XLinkRole"
 xlink:type="simple">
 <eb:Description xml:lang="en-us">Purchase Order 1</eb:Description>
 </eb:Reference>
 </eb:Manifest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--BoundarY
Content-ID: <ebxmlpayload111@example.com>
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<purchase_order>
 <po_number>1</po_number>
 <part_number>123</part_number>
 <price currency="USD">500.00</price>
</purchase_order>

--BoundarY--

HTTP response codes

In general, semantics of communicating over HTTP as specified in the [RFC2616] MUST be

followed, for returning the HTTP level response codes. A 2xx code MUST be returned when the

HTTP Posted message is successfully received by the receiving HTTP entity. However, see

exception for SOAP error conditions below. Similarly, other HTTP codes in the 3xx, 4xx, 5xx

range MAY be returned for conditions corresponding to them. However, error conditions

encountered while processing an ebXML Service Message MUST be reported using the error

mechanism defined by the ebXML Message Service Specification (see section 10).

SOAP error conditions and synchronous exchanges

The SOAP 1.1 specification states:

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 102 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

“In case of a SOAP error while processing the request, the SOAP

HTTP server MUST issue an HTTP 500 "Internal Server Error"

response and include a SOAP message in the response containing

a SOAP Fault element indicating the SOAP processing error. “

However, the scope of the SOAP 1.1 specification is limited to synchronous mode of message

exchange over HTTP, whereas the ebXML Message Service Specification specifies both

synchronous and asynchronous modes of message exchange over HTTP. Hence, the SOAP 1.1

specification MUST be followed for synchronous mode of message exchange, where the SOAP

Message containing a SOAP Fault element indicating the SOAP processing error MUST be

returned in the HTTP response with a response code of “HTTP 500 Internal Server Error”.

When asynchronous mode of message exchange is being used, a HTTP response code in the

range 2xx MUST be returned when the message is received successfully and any error conditions

(including SOAP errors) must be returned via a separate HTTP Post.

Synchronous vs. asynchronous

When the syncReply parameter in the Via element is set to “true”, the response message(s)

MUST be returned on the same HTTP connection as the inbound request, with an appropriate

HTTP response code, as described above. When the syncReply parameter is set to “false”, the

response messages are not returned on the same HTTP connection as the inbound request, but

using an independent HTTP Post request. An HTTP response with a response code as defined in

“HTTP response codes,” above, and with an empty HTTP body MUST be returned in response

to the HTTP Post.

Access control

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access

through the use of an access control mechanism. The HTTP access authentication process

described in "HTTP Authentication: Basic and Digest Access Authentication" [RFC2617]

defines the access control mechanisms allowed to protect an ebXML Message Service Handler

from unauthorized access.

Implementers MAY support all of the access control schemes defined in [RFC2617] however

they MUST support the Basic Authentication mechanism, as described in section 2, when Access

Control is used.

Implementers that use basic authentication for access control SHOULD also use communication

protocol level security, as specified in the section titled "Confidentiality and Communication

Protocol Level Security" in this document.

Confidentiality and communication protocol level security

An ebXML Message Service Handler MAY use transport layer encryption to protect the

confidentiality of ebXML Messages and HTTP transport headers. The IETF Transport Layer

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 103 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Security specification [RFC2246] provides the specific technical details and list of allowable

options, which may be used by ebXML Message Service Handlers. ebXML Message Service

Handlers MUST be capable of operating in backwards compatibility mode with SSL [SSL3], as

defined in Appendix E of [RFC2246].

ebXML Message Service Handlers MAY use any of the allowable encryption algorithms and

key sizes specified within [RFC2246]. At a minimum ebXML Message Service Handlers MUST

support the key sizes and algorithms necessary for backward compatibility with [SSL3].

The use of 40-bit encryption keys/algorithms is permitted, however it is RECOMMENDED that

stronger encryption keys/algorithms SHOULD be used.

Both [RFC2246] and [SSL3] require the use of server side digital certificates. In addition client

side certificate based authentication is also permitted. ebXML Message Service handlers MUST

support hierarchical and peer-to-peer trust models.

SMTP

The Simple Mail Transfer Protocol [SMTP] and its companion documents [RFC822] and

[ESMTP] makeup the suite of specifications commonly referred to as Internet Electronic Mail.

These specifications have been augmented over the years by other specifications, which define

additional functionality "layered on top" of these baseline specifications. These include:

• Multipurpose Internet Mail Extensions (MIME) [RFC2045], [RFC2046], [RFC2387]

• SMTP Service Extension for Authentication [RFC2554]

• SMTP Service Extension for Secure SMTP over TLS [RFC2487]

Typically, Internet Electronic Mail Implementations consist of two "agent" types:

• Message Transfer Agent (MTA): Programs that send and receive mail messages with other

MTA's on behalf of MUA's. Microsoft Exchange Server is an example of a MTA

• Mail User Agent (MUA): Electronic Mail programs are used to construct electronic mail

messages and communicate with an MTA to send/retrieve mail messages. Microsoft Outlook

is an example of a MUA.

MTA's often serve as "mail hubs" and can typically service hundreds or more MUA's.

MUA's are responsible for constructing electronic mail messages in accordance with the Internet

Electronic Mail Specifications identified above. This section describes the "binding" of an

ebXML compliant message for transport via eMail from the perspective of a MUA. No attempt

is made to define the binding of an ebXML Message exchange over SMTP from the standpoint

of a MTA.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 104 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Minimum level of supported protocols

• Simple Mail Transfer Protocol [RFC821] and [RFC822]

• MIME [RFC2045] and [RFC2046]

• Multipart/Related MIME [RFC2387]

 Sending ebXML messages over SMTP

Prior to sending messages over SMTP an ebXML Message MUST be formatted according to

ebXML Message Service Specification sections 6 and 7. Additionally the messages must also

conform to the syntax, format and encoding rules specified by MIME [RFC2045], [RFC2046]

and [RFC2387].

Many types of data that a party might desire to transport via email are represented as 8bit

characters or binary data. Such data cannot be transmitted over SMTP[SMTP], which restricts

mail messages to 7bit US-ASCII data with lines no longer than 1000 characters including any

trailing CRLF line separator. If a sending Message Service Handler knows that a receiving MTA,

or ANY intermediary MTA's, are restricted to handling 7-bit data then any document part that

uses 8 bit (or binary) representation must be "transformed" according to the encoding rules

specified in section 6 of [RFC2045]. In cases where a Message Service Handler knows that a

receiving MTA and ALL intermediary MTA's are capable of handling 8-bit data then no

transformation is needed on any part of the ebXML Message.

The rules for forming an ebXML Message for transport via SMTP are as follows:

• If using [RFC821] restricted transport paths, apply transfer encoding to all 8-bit data that will

be transported in an ebXML message, according to the encoding rules defined in section 6 of

[RFC2045]. The Content-Transfer-Encoding MIME header MUST be included in the MIME

envelope portion of any body part that has been transformed (encoded).

• The Content-Type: Multipart/Related MIME header with the associated parameters,

from the ebXML Message Envelope MUST appear as an eMail MIME header.

• All other MIME headers that constitute the ebXML Message Envelope MUST also become

part of the eMail MIME header.

• The SOAPAction MIME header field must also be included in the eMail MIME header and

MAY have the value of ebXML:

SOAPAction: ”ebXML”

Where Service and Action are values of the corresponding elements from the ebXML

MessageHeader.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 105 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

• The "MIME-Version: 1.0" header must appear as an eMail MIME header.

• The eMail header "To:" MUST contain the [RFC822] compliant eMail address of the

ebXML Message Service Handler.

• The eMail header "From:" MUST contain the [RFC822] compliant eMail address of the

senders ebXML Message Service Handler.

• Construct a "Date:" eMail header in accordance with [RFC822]

• Other headers MAY occur within the eMail message header in accordance with [RFC822]

and [RFC2045], however ebXML Message Service Handlers MAY choose to ignore them.

The example below shows a minimal example of an eMail message containing an ebXML

Message:

From: ebXMLhandler@example.com
To: ebXMLhandler@example2.com
Date: Thu, 08 Feb 2001 19:32:11 CST
MIME-Version: 1.0
SOAPAction: "ebXML"
Content-type: multipart/related; boundary="BoundarY"; type="text/xml";
 start="<ebxhmheader111@example.com>"

--BoundarY
Content-ID: <ebxhmheader111@example.com>
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:eb='http://www.ebxml.org/namespaces/messageHeader'>
<SOAP-ENV:Header>
 <eb:MessageHeader SOAP-ENV:mustUnderstand="1" eb:version="1.0">
 <eb:From>
 <eb:PartyId>urn:duns:123456789</eb:PartyId>
 </eb:From>
 <eb:To>
 <eb:PartyId>urn:duns:912345678</eb:PartyId>
 </eb:To>
 <eb:CPAId>20001209-133003-28572</eb:CPAId>
 <eb:ConversationId>20001209-133003-28572</eb:ConversationId>
 <eb:Service>urn:services:SupplierOrderProcessing</eb:Service>
 <eb:Action>NewOrder</eb:Action>
 <eb:MessageData>
 <eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>
 <eb:Timestamp>2001-02-15T11:12:12Z</Timestamp>
 </eb:MessageData>
 <eb:QualityOfServiceInfo eb:deliverySemantics="BestEffort"/>
 </eb:MessageHeader>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <eb:Manifest SOAP-ENV:mustUnderstand="1" eb:version="1.0">
 <eb:Reference xlink:href="cid:ebxmlpayload111@example.com"
 xlink:role="XLinkRole"
 xlink:type="simple">
 <eb:Description xml:lang="en-us">Purchase Order 1</eb:Description>
 </eb:Reference>
 </eb:Manifest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--BoundarY

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 106 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Content-ID: <ebxhmheader111@example.com>
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<purchase_order>
 <po_number>1</po_number>
 <part_number>123</part_number>
 <price currency="USD">500.00</price>
</purchase_order>

--BoundarY--

Response messages

All ebXML response messages, including errors and acknowledgements, are delivered

asynchronously between ebXML Message Service Handlers. Each response message MUST be

constructed in accordance with the rules specified in the section titled "Sending ebXML

messages over SMTP" elsewhere in this document.

ebXML Message Service Handlers MUST be capable of receiving a delivery failure notification

message sent by an MTA. A MSH that receives a delivery failure notification message

SHOULD examine the message to determine which ebXML message, sent by the MSH, resulted

in a message delivery failure. The MSH SHOULD attempt to identify the application responsible

for sending the offending message causing the failure. The MSH SHOULD attempt to notify the

application that a message delivery failure has occurred. If the MSH is unable to determine the

source of the offending message the MSH administrator should be notified.

MSH's which cannot identify a received message as a valid ebXML message or a message

delivery failure SHOULD retain the unidentified message in a "dead letter" folder.

A MSH SHOULD place an entry in an audit log indicating the disposition of each received

message.

Access control

Implementers MAY protect their ebXML Message Service Handlers from unauthorized access

through the use of an access control mechanism. The SMTP access authentication process

described in "SMTP Service Extension for Authentication" [RFC2554] defines the ebXML

recommended access control mechanism to protect a SMTP based ebXML Message Service

Handler from unauthorized access.

Confidentiality and communication protocol level security

An ebXML Message Service Handler MAY use transport layer encryption to protect the

confidentiality of ebXML messages. The IETF "SMTP Service Extension for Secure SMTP

over TLS" specification [RFC2487] provides the specific technical details and list of allowable

options, which may be used.

Transport, Routing & Packaging Team May 2001

Message Service Specification Page 107 of 107

 Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

SMTP model

All ebXML Message Service messages carried as mail in a [SMTP] Mail Transaction as shown in

the figure below.

Receiver

MSH

SMTP Handler

Sender

MSH

SMTP Handler

ebXML Message

Mail Transaction

Sender

Party

Payload Data

Receiver

Party

Payload Data

Payload Data Payload Data

ebXML Message

Mail Transaction

Communication errors during reliable messaging

When the Sender or the Receiver detects a transport protocol level error (such as an HTTP,

SMTP or FTP error) and Reliable Messaging is being used then the appropriate transport

recovery handler will execute a recovery sequence. Only if the error is unrecoverable, does

Reliable Messaging recovery take place (see section 9).

