\qquad
**All work must be shown when the directions indicate that you show work to receive the points for completing this packet as part of your exam grade.
***DO NOT LOSE THIS PACKET!!! If you do, you must print a new copy off the Internet.

Chapter 1:

2. An angle whose measure is greater than 0° and less than 90°
3. A segment, ray, line or plane that divides a segment into two congruent segments
4. A figure formed by two rays with a common endpoint
5. Points that lie on the same line
6. Points that lie on the same plane
7. Two angles in the same plane with a common vertex and a common side but no common interior points
8. The point that divides a segment into two congruent segments
9. An angle whose measure is greater than 90° and less than 180°
10. A ray that divides an angle into two congruent angles
11. An angle whose measure is 90°
12. Two angles whose measure have a sum of 180°
13. An angle whose measure is 180°
14. The common endpoint of the sides of an angle
15. Two angles whose measures have a sum of 90°
16. The part of a line consisting of two points and all the points between them
17. A pair of adjacent angles whose noncommon sides are opposite rays
18. Two rays with a common endpoint that form a line
19. The part of a line that starts at an endpoint and extends forever in one direction

20. The three undefined terms in Geometry are: \qquad , and \qquad
$\left.\begin{array}{l}\text { 21. the part } \mathrm{p} \text { of a conditional statement following the word if } \\ \text { 22. statement formed by negating the hypothesis and conclusion }[\sim \mathrm{p} \rightarrow \sim \mathrm{q}] \\ \text { 23. of statement } p \text { is "not } p \text {," written as } \sim p \text {; the negation of a true statement is false and } \\ \text { the negation of a false statement is true; we use these to write related conditional } \\ \text { statements }\end{array}\right]$ 24. a statement that can be written in the form "if p , then q "
21. a statement that describes a mathematical object and can be written as a true biconditional
22. 4-sided polygon
23. a 3-sided polygon
24. the process of using logic to draw conclusions from given facts, definitions \& properties
25. a statement that can be written in the form " p if and only if q " or "if p, then q " and "if q, then p."
26. related conditional statements that have the same truth value
27. a closed plane figure formed by 3 or more line segments such that each segment intersects exactly 2 other segments only at their endpoints and no 2 segments with a common endpoint are collinear
28. the process of reasoning that a rule or statement is true because specific cases are true
29. a statement you believe to be true based on inductive reasoning
30. uses boxes and arrows to show the structure of the proof
31. a style of proof in which the statements and reasons are presented in paragraph form
32. any statement you can prove
33. the process of using logic to draw conclusions from given facts, definitions \& properties
34. an argument that uses logic, definitions, properties, and previously proven statements to show that a conclusion is true
35. the process of reasoning that a rule or statement is true because specific cases are true
36. a style of proof in which the statements are written in the left-hand column and the reasons are written in the right-hand column

Chapter 3:
46. for two lines intersected by a transversal, a pair of angles that are on the same side of the transversal and between the two lines
47. for two lines intersected by a transversal, a pair of angles that are on the same side of the transversal and on the same sides of the other two lines
48. for two lines intersected by a transversal, a pair of angles that are on opposite sides of the transversal and between the other two lines
49. for two lines intersected by a transversal, a pair of angles that are on opposite sides of the transversal and outside the other two lines
50. a line that intersects two coplanar lines at two different points
51. two nonadjacent angles formed by two intersecting lines
52. Two angles whose measure have a sum of 180°
53. the difference in the x -values of two points on a line
54. the difference in the y-values of two points on a line
55. a measure of the steepness of a line
56. a line with slope m and y-intercept b can be written in the form $y=m x+b$
57. the length of the perpendicular segment from the point to the line
58. $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line
59. the value on the x-axis where $y=0$
60. the value on the y-axis where $x=0$
61. lines in the same plane that do not intersect
62. lines that intersect at 90° angles
63. planes that do not intersect
64. lines that are not coplanar
65. a line perpendicular to a segment at the segment's midpoint
\qquad 66. planes that meet at 90° angles
\qquad 67. a ray that divides an angle into two congruent angles

Chapter 4:
\qquad 68. triangle with three acute angles
\qquad 69. triangle with one right angle
\qquad 70. triangle with one obtuse angle
71. triangle with three congruent acute angles
72. triangle with three congruent sides
73. triangle with no congruent sides
74. triangle with at least two congruent sides

Chapter 5:

75. the same distance from two or more objects
76. a set of points that satisfies a given condition
77. three or more lines that intersect at one point
78. a point where 3 or more lines coincide \{all intersect $\}$

79. the point of concurrency of the 3 perp. bisectors of a triangle (aka: where the 3
perp. bisectors of a triangle intersect)

80. a segment whose endpoints are a vertex of the triangle and the midpoint of the
opposite side

81. the point of concurrency of the three medians of a triangle (also known as the
center of gravity)
82. a perpendicular segment from a vertex to the line containing the opposite side
83. the point of concurrency of the three altitudes of a triangle

Chapter 6:

\qquad 85. each segment that forms a polygon
86. the common endpoint of two sides
87. a segment that connects any two nonconsecutive vertices
\qquad 88. a polygon that is both equilateral and equiangular [all sides are the same length and all angles are the same measure]
89. a polygon in which a diagonal can be drawn such that part of the diagonal contains points in the exterior of the polygon
90. a polygon in which no diagonal contains points in the exterior of the polygon
91. a quadrilateral with two pairs of parallel sides
92. quadrilateral with four right angles
93. a quadrilateral with 4 congruent sides
94. a quadrilateral with four right angles and four congruent sides
95. a quadrilateral with exactly two pairs of congruent consecutive sides
96. a quadrilateral with exactly one pair of parallel sides
97. each of the parallel sides of a trapezoid
98. the nonparallel sides of a trapezoid
99. [of a trapezoid]: two consecutive angles whose common side is a base
100. a trapezoid where the legs are congruent
101. the segment whose endpoints are the midpoints of the legs

Chapter 1:
\# 102-105: Write out the given notation in words.
\qquad
106. The intersection of two planes is a \qquad .
107. The intersection of a plane and a line is a \qquad .
\# 108 \& 109: In the diagram, $\overrightarrow{\mathrm{XF}}$ bisects $\angle \mathrm{MRO}$.

111. Find $\mathrm{m} \angle \mathrm{XWZ}$ if $\mathrm{m} \angle \mathrm{YWZ}=44^{\circ}$ and $\mathrm{m} \angle \mathrm{YWX}=25^{\circ}$.

\# 112 \& 113: Use the number line.
\qquad 112. Find PR.
113. Find PS.

\qquad 114. Find the measure of the complement of $\angle \mathrm{A}$ where $\mathrm{m} \angle \mathrm{A}=43^{\circ}$.
\qquad 115. Find the measure of the supplement of $\angle \mathrm{T}$ where $\mathrm{m} \angle \mathrm{T}=52^{\circ}$.
\qquad 116. What is the perimeter of a square with sides that measure 9 cm ?
\qquad 117. Find the perimeter (P) and area (A) of the rectangle.
$\mathrm{A}=$ \qquad

118. What is the area of the triangle?

$C=$ \qquad 119. What is the circumference (C) and area (A) of a circle with radius 7 feet? Use the pi button on your calculator and round to the nearest tenth.
$\mathrm{A}=$ \qquad
120. What are the coordinates of the midpoint of $\overline{\mathrm{GH}}$ with endpoints $\mathrm{G}(-3,7)$ and $H(5,-1)$?
121. What is the distance from $X(-2,5)$ to $Y(6,-2)$?

Chapter 2:
\# 123-132: Choose the best answer. Please write in capital letters!
\qquad 123. The depth of a pond is measured at the same location and on the same day every year for a number of years. The table below shows the measurements. If the pattern continued, what was the depth of the pond in 2007?
A. 10 feet
B. 8 feet
C. 16 feet
D. 2 feet

Depth of Pond

Year	Depth (in feet)
2003	30
2004	22
2005	16
2006	12

\qquad 124. Find the next item in the pattern $4,6,8,9,10, \ldots$
A. 13
B. 12
C. 15
D. 17
125. Complete the conjecture. The sum of two even numbers is \qquad
A. even
C. sometimes odd, sometimes even
B. odd
D. even most of the time
126. The table shows the estimated population at BHS 14 years and over by age and sex according to Miss Beach's best estimate. Make a conjecture based on the data.

Population 18 Years and Over by Age and Sex			
	$\mathbf{1 4}$ to 15 years	$\mathbf{1 6}$ to 17 years	$\mathbf{1 8}$ years and over
Girls	1,357	1,216	503
Guys	1,234	1,183	515

A. Girls outnumbered guys in the 18 years and over population
B. Guys outnumbered girls in the 18 years and over population
C. There are more 18 years old and over in 2000 than in previous years.
D. There are fewer 18 years old and over in 2000 than in previous years.
\qquad 127. Show that the conjecture is false by finding a counterexample.
If $x>y$, then $x / y>0$.
A. $x=10, y=-4$
C. $x=4, y=10$
B. $x=10, y=4$
D. $x=-10, y=4$
\qquad 128. Identify the hypothesis and conclusion of the conditional statement.

If it is raining and sunny, then there is a rainbow.
A. Hypothesis: It is raining and sunny.
B. Hypothesis: There is a rainbow.
C. Hypothesis: Sun makes rainbows.
D. Hypothesis: Rain and sun happen together.

Conclusion: There is a rainbow.
Conclusion: It is raining and sunny.
Conclusion: Rain does not make clouds.
Conclusion: Rain and clouds do not happen together.
129. Write a conditional statement from the statement: A dog has 4 legs.
A. If it has 4 legs, then it is a dog.
B. Every dog has 4 legs.
C. If it is a dog, then it has 4 legs.
D. It has 4 legs and it is a dog.
\qquad 130. Draw a conclusion from the given information.

Given: If two lines never intersect, then they are parallel.
If two lines are parallel, then they have the same slope.
Two lines never intersect.
A. Conclusion: The lines are parallel.
B. Conclusion: The lines are parallel, never intersect, and have the same slope.
C. Conclusion: The lines never intersect.
D. Conclusion: The lines have the same slope.
___ 131. For the conditional statement, write the converse and biconditional statement.
If a figure is a rectangle with sides l and w, then $A=l w$.
A. Converse: If a figure is not a rectangle with sides l and w, then $A \neq l w$. Biconditional: A figure is a rectangle with sides l and w if and only if $A=l w$.
B. Converse: If $A=l w$, then the figure is a rectangle with sides l and w.

Biconditional: A figure is a rectangle with sides l and w if and only if $A=l w$.
C. Converse: If $A \neq l w$, then the figure is not a rectangle with sides l and w. Biconditional: A figure is not a rectangle with sides l and w if and only if $A \neq l w$.
D. Converse: If $A \neq l w$, then the figure is not a rectangle with sides l and w. Biconditional: A figure is a rectangle with sides l and w if and only if $A=l w$.
132. Look at the work and solution to the equation $5 x-5=40$. Choose the missing justifications.
$5 x-5=40 \quad$ Given
$+5+5$
$\underline{5 x}=\underline{45}$
$5 \quad 5$
$x=9$
_ ?
$?$

\qquad
A. Substitution Property of Equality Division Property of Equality
B. Addition Property of Equality Division Property of Equality
C. Division Property of Equality Subtraction Property of Equality
D. Addition Property of Equality Reflexive Property of Equality

Chapter 3:

\# 133-144: Identify the choice that best completes the statement or answers the question.
\qquad 133. Determine whether the pair of lines $6 x+y=3$ and $2 x+3 y=1$ are parallel, intersect, or coincide.
A.) parallel
B.) intersect
C.) coincide
\qquad 134. Identify the transversal and classify the angle pair $\angle 1$ and $\angle 3$.

A.) The transversal is line l. The angles are corresponding angles.
B.) The transversal is line l. The angles are alternate interior angles.
C.) The transversal is line m. The angles are alternate exterior angles.
D.) The transversal is line n . The angles are same-side interior angles.
135. Use the slope formula to determine the slope of the line containing points A $(-2,7)$ and $C(4,2)$.

A.) $-5 / 6$
C.) $6 / 5$
B.) $-6 / 5$
D.) 0
136. Find x and y in the diagram.

A.) $x=5, y=7$
C.) $x=-5, y=-7$
B.) $x=7, y=5$
D.) $x=2, y=10$
137. Write the equation of the line with slope $3 / 5$ through the point $(5,2)$ in point-slope form.
A.) $y=3 / 5(x-2)$
C.) $y-2=3 / 5(x-5)$
B.) $y=5 / 3(x+5)$
D.) $y-5=3 / 5(x-2)$
138. Give an example of corresponding angles.
+
A.) $\angle 1$ and $\angle 5$
B.) $\angle 1$ and $\angle 7$
C.) $\angle 3$ and $\angle 5$
D.) $\angle 3$ and $\angle 6$
\qquad 139. Both drive-thrus see the same number of people. How many drivers must both drive-thrus have before the total amount of money they have is equal?

	Taco Treats	Barry's Burgers
Starting money	$\$ 16$	$\$ 24$
Money per customer	$\$ 6$	$\$ 2$

A.) 1 customer
B.) 2 customers
C.) $\$ 28$
D.) 20 cents
140. In which figure is the measure of $\angle 1$ not equal to 60° ?
A.

B.

C.

D.

\qquad 141. The graph, as shown, represents the amount of money Sarah can earn at her part-time job.

Sarah's Pay

A. $y=4 x$
B. $y=6.5 x$
C. $y=4 x+10$
D. $y=6.5 x+10$

> Hours Worked

Which of the following equations best represents the relationship between Sarah's pay and the hours she works?
142. For every lawn that he mows, Chris charges $\$ 10$ per hour for every hour that he works.

For each lawn that she mows, Renee charges a fixed fee of $\$ 22$ and an additional $\$ 4$ for every hour that she works.

What is the fewest number of hours that both could work so that Chris's total pay for a lawn will be greater than Renee's?
A.) 1 hour
C.) 4 hours
B.) 100 hours
D.) 3 hours
\qquad 143. The table below shows values for x and y .

Which of these equations represents the relationship between x and y ?
A.) $y=-2 x+1$
B.) $y=3 x$
C.) $y=0$
D.) $y=2 x-1$

\mathbf{x}	\mathbf{y}
0	-1
1	1
2	3
3	5
4	7
5	9

\qquad 144. Which pair of equations represents lines that are parallel and perpendicular, respectively, to the graph of $y=-2 / 3 x+2$?
A.) $y=-2 / 3 x-1$ and $y=3 / 2 x+3$
B.) $y=2 / 3 x-1$ and $y=3 / 2 x+3$
C.) $y=-2 / 3 x-1$ and $y=-3 / 2 x+3$
D.) $y=3 / 2 x+1$ and $y=2 / 3 x+1$

Chapter 4:
\#145 \& 146: Classify the triangle by angle measures. \{Choices: acute, right, obtuse, equiangular\}
145. $\triangle \mathrm{EHG}$ \qquad

\#147 \& 148: Classify the triangle by side lengths. \{Choices: isosceles, scalene, equilateral\}
147. \qquad

148. \qquad

149. Using the measurements in the picture, find y and find all 3 side lengths of this equilateral triangle.

$$
y=
$$

$\mathrm{FG}=$ \qquad
GH = \qquad

FH $=$ \qquad
150. The three angle measures in a triangle add to \qquad ${ }^{\circ}$.
151. In a right triangle, the other two angles add to \qquad $\stackrel{\circ}{\circ}$
152. In an equiangular triangle, each angle is \qquad $\stackrel{\circ}{\circ}$
\#153 -156: Write the part labeled in the picture. \{Choices: exterior, interior, remote interior angles, exterior angle\}
153. _(A) \qquad
154. _(B) \qquad
155. _(1 \& 2) \qquad

156. _(4) \qquad
157. Fill-in-the-blanks:

158.

Fill-in-the-blanks:

$$
\begin{aligned}
& \text { If } \angle \mathrm{L} \cong \angle \ldots \text { and } \angle \mathrm{M} \cong \angle \ldots \\
& \text { then } \angle \ldots \cong \angle \ldots
\end{aligned}
$$

159. List all congruent corresponding sides.

List all congruent corresponding angles.
\ldots
\qquad
\qquad
\qquad
\cong

160. Given: \triangle DEF $\cong \triangle$ LMN. Find the value of x.

161. The letters in the triangle congruence theorems are abbreviating what words?

$$
\begin{aligned}
& \rightarrow \text { ASA: } \\
& \rightarrow \text { HL: }
\end{aligned}
$$

\#162-166: Write the reason that can be used to prove the two triangles congruent. If there is more than one way possible, list all possibilities. If congruence cannot be determined, write none. \{Choices: ASA, SAS, SSS, HL\}
162. \qquad

163. \qquad

164. \qquad

165. \qquad

166. \qquad

167. Solve for x . \qquad

168. If a triangle is \qquad then it is \qquad . hints \rightarrow (3 equal sides) \qquad
If a triangle is \qquad then it is \qquad .

Chapter 5:

\# 169-171 [5-1] Find the length or angle measure that is asked for.
169. $\mathrm{WY}=$ \qquad
170. $\mathrm{ML}=$ \qquad
171. $\mathrm{m} \angle \mathrm{ABD}$, given that $\mathrm{m} \angle \mathrm{ABC}=46^{\circ}$

$\mathrm{m} \angle \mathrm{ABD}=$ \qquad

\#172 \& 173: [5-2] Fill-in-the-blanks with the segment lengths that are equal to the one already given.
172. $\mathrm{PA}=$ \qquad $=$

173. $\mathrm{PX}=$ \qquad $=$

174. [5-4] Find each length or measure. Segments UV and UW are midsegments.
$\mathrm{RT}=$ \qquad
UW = \qquad
$\mathrm{m} \angle \mathrm{UVS}=$ \qquad

175. [5-5] Fill-in-the-blanks with the proper side of the triangle.
$A B+B C>$ \qquad
$B C+A C>$ \qquad
$A C+A B>$ \qquad

176. [5-5] Write the angles in order from smallest to largest.

177. [5-5] Write the sides in order from shortest to longest.

\qquad 178. [5-5] Tell whether a triangle can have sides with the given lengths (yes or no.) 6.2, 8.1, 14.2
\qquad 179. [5-5] Tell whether a triangle can have sides with the given lengths (yes or no.) 1, 5, 7
180. Two sides of a triangle have lengths 19 and 28. The third side must be greater than \qquad ? , and less than _?_-.
[5-5]
\qquad greater than
\qquad less than
\#181 \& 182 [5-7] Use the Pythagorean Theorem to find the length of the third side. Show work.
181. $\mathrm{x}=$ \qquad
182. $x=$ \qquad

\#183-185: [5-7] Classify each triangle with the given side lengths as acute, right, or obtuse. Show work.
183. 9, 12, 16
\qquad 184. 15, 36, 39
\qquad 185. 20, 37, 41
\#186-188: [5-8] Use the 45-45-90 triangle shown to fill in the chart. Show work below for \#188.

	186.	187.	188.
a	8		
b			
c		$3 \sqrt{2}$	10

\# 189 - 192: [5-8] Use the 30-60-90 triangle shown to fill in the chart.
Show work to the right for \#192.

	189.	190.	191.	192.
a			13	
b		$5 \sqrt{3}$		10
c	6			

Chapter 6:

\# 193 \& 194: Tell whether each figure is a polygon. If it is a polygon, name it by the number of its sides. $\{6-1$, Ex. 1$\}$
193. \qquad

194. \qquad

195. \qquad Find the sum of the interior angle measures of a convex nonagon. $\{6-1$, Ex. $3, \mathrm{~A}\}$
196. \qquad Find the measure of each exterior angle of a regular 15-gon. $\{6-1$, Ex. $4, \mathrm{~A}\}$
197. In EFGH, $\mathrm{EH}=28, \mathrm{HZ}=9$, and $\mathrm{m} \angle \mathrm{EHG}=145^{\circ}$. Find FH and $\mathrm{m} \angle \mathrm{FEH} .\{6-2$, Ex. 1$\}$
\qquad $=\mathrm{FH}$
\qquad

198. JKLM is a parallelogram. Find KL and $\mathrm{m} \angle \mathrm{L}$. $\{6-2$, Ex. 1$\}$
\qquad $=K L$
\qquad

199. Show that WXYZ is a parallelogram for $\mathrm{a}=4$ and $\mathrm{b}=3$. \{like 6-3, Ex. 1$\}$

200. Use the diagonals to determine whether a parallelogram with the given vertices is a rectangle, rhombus, or square. Give all the names that apply. Show work. $\{6-5$, Ex. 3$\}$
\qquad

$$
A(-5,7), C(3,6), E(7,-1), G(-1,0)
$$

201. \qquad Find HR. $\{6-6$, Ex. 5, B $\}$

Chapter 7:

\# 202 \& 203: Solve for x . Do not write your answers as decimals...leave in reduced fraction form. $\{7-1$, Ex. 3$\}$
工 202. $\frac{3}{8}=\frac{4}{x}$
203. $\frac{x-10}{x}=\frac{4}{9}$
\qquad 204. The ratio of the angle measures in a triangle is $4: 9: 11$. What is the measure of the largest angle? \{7-1, Ex. 2\}
205. Given that $3 \mathrm{x}=7 \mathrm{y}$, find the ratio of $\frac{x}{y}$ in simplest form. $\{7-1, \mathrm{Ex} .4\}$
206. Find the scale factor of each pair of similar triangles. (Always divide the first/top triangle by the second/bottom triangle.) Then find the values of x and $y .\{7-2\}$

Scale factor $=$ \qquad
\qquad
$\mathrm{x}=$
$\mathrm{y}=$

\# 207-209: Use the pictures above to write the reason why the triangles are similar. \{7-3\}
207. \qquad If $\mathrm{m}<\mathrm{B}=60, \mathrm{~m}<\mathrm{C}=40, \mathrm{~m}<\mathrm{E}=60$, and $\mathrm{m}<\mathrm{F}=40$, then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
208.
209. \qquad If $\frac{D E}{P Q}=\frac{E F}{Q R}$ and $<\mathrm{E}$ Q $<\mathrm{Q}$, then $\triangle \mathrm{DEF} \sim \Delta \mathrm{PQR}$.
\# 210 \& 211: Find the value of $x .\{7-4\}$
210.

211.

Chapter 8:
212. Write the sin, cos and tan of each angle as a fraction in simplest form.

$\tan \mathrm{A}=$	$\cos \mathrm{A}=$
$\tan \mathrm{B}=$	$\sin \mathrm{B}=$
$\sin \mathrm{A}=$	$\cos \mathrm{B}=$

$\sin \mathrm{A}=$
$\cos B=$
\#213-215: Find the trig value using a calculator or the trig chart. Round to 4 decimal places.
213. $\sin 32=$
214. $\cos 49=$
215. $\tan 35=$
\#216-218: Find the measure of each angle using a calculator or the trig chart. Round to the nearest whole degree.
216. $\sin \mathrm{A}=0.7245$
$\mathrm{A}=$
217. $\cos B=0.2493$
$B=$
\#219-221: Find the value of x. Show the equation (which will include sin, cos or \tan) used to find your answer. Then show your work to solve the equation. Round your answers to the nearest tenth for lengths or to the nearest degree for angles.

221.

Chapter 9:
\qquad 222. Find the area of the REGULAR HEXAGON.

223. If the ratio of the perimeters of two similar triangles is $\frac{3}{4}$, then what is the ratio of the areas?
\qquad 224. If the ratio of the areas of two similar rectangles is $\frac{100}{81}$, then what is the ratio of the perimeters?
225. Find the PERIMETER AND AREA of the composite figure. Remember to label your answers.
$P=$ \qquad

\qquad 226. Find the width of the rectangle.

$\mathrm{A}=$ \qquad 227. Find the area of the parallelogram

$\mathrm{A}=$ \qquad 228. Find the area of the triangle.
$\mathrm{h}=$ \qquad 229. Find the height of the parallelogram.

$A=$ \qquad 230. Find the area of the rhombus.

$\mathrm{h}=$ \qquad 231. Find the height of the triangle.

232. Find the lateral area (LA), surface area (SA) and volume (V) of the right rectangular prism. Consider the bases of the prism as the bottom and top of the "box." Show your work.
$\mathrm{LA}=$ \qquad

SA $=$ \qquad

$\mathrm{V}=$ \qquad
233. Find the lateral area (LA), surface area (SA) and volume (V) of the cylinder. Show your work.

$$
\mathrm{LA}=
$$

\qquad
$\mathrm{SA}=$ \qquad
$\mathrm{V}=$ \qquad

234. Find the lateral area (LA), surface area (SA) and volume (V) of the pyramid. Show your work.
$\mathrm{LA}=$ \qquad
SA = \qquad
$\mathrm{V}=$ \qquad

235. Identify each line or segment that intersects each circle. \{11-1\}
chord: \qquad
tangent: \qquad
secant: \qquad

\# 236 \& 237: Find each measure. $\{11-2\}$
236. $\overparen{\mathrm{GH}}=$ \qquad
237. $\mathrm{FEH}=$ \qquad

238. Find each length to the nearest tenth. Show work. $\{11-2\}$
$\mathrm{LN}=$ \qquad

239. Find the area of a sector with a radius of 5 mm and an arc measuring 72°. Give your answer in terms of π and rounded to the nearest hundredth. \{11-3\}
\qquad
\qquad 240. Find the arc length. Give your answer in terms of π and rounded to the nearest hundredth. $\{11-3\}$
\#241 \& 242: Find each measure. \{11-4\}
241.) $\mathrm{m}<\mathrm{LMP}=$ \qquad
242.) $\overparen{\mathrm{mMN}}=$ \qquad

243. $\mathrm{y}=$ \qquad

244. $\mathrm{z}=$ \qquad

245. Find the angle measures of the inscribed quadrilateral. Show work. $\{11-4\}$

$$
\begin{aligned}
& \mathrm{m}<\mathrm{K}= \\
& \mathrm{m}<\mathrm{L}= \\
& \mathrm{m}<\mathrm{M}= \\
& \mathrm{m}<\mathrm{N}=
\end{aligned}
$$

\# 246 \& 247: Find each measure. $\{11-5\}$

\qquad 248. Find the surface area of the sphere. \{Spheres\}

\qquad 249. Find the volume of the hemisphere. \{Spheres\}

