
Case Assignment #2

OPIM 311, Spring 2012

“Scripting for Business Analytics”

Steven O. Kimbrough

April 2, 2012

This case 2 assignment is due by 5 p.m. on Saturday 5 May 2012.

This due date is different from what’s on the syllabus (it’s later) and
what was stated (mistakenly, a typo) in the case 2 assignment

document (infeasible for handing in grades).

Contents

1 The Concept Vector Matching Process 2

1.1 Developing concept vectors . 3

1.2 Collect and process relevant documents . 4

1.3 Match the concept vectors to the documents . 6

2 Does It Work? 6

3 Tasks 7

3.1 Get a Concept Vector from a File . 7

3.2 Process a Single Pattern on a Collection . 10

3.3 Sort a List of Tuples . 12

3.4 Write a Simple Report to a CSV File . 13

3.5 Count the Hits and Show the Words . 16

3.6 Write a CSV File to Report the Hit Counts and the Words 18

3.7 Count and Sum the Pattern Hits . 21

3.8 Write the Full Report . 23

4 Generalizing All This a Bit 26

5 Assignment 29

1

1 The Concept Vector Matching Process

An influential paper by James March begins as follows.

A central concern of studies of adaptive processes is the relation between the explo-

ration of new possibilities and the exploitation of old certainties (Schumpeter 1934;

Holland 1975; Kuran 1988). Exploration includes things captured by terms such as

search, variation, risk taking, experimentation, play, flexibility, discovery, innova-

tion. Exploitation includes such things as refinement, choice, production, efficiency,

selection, implementation, execution. Adaptive systems that engage in exploration to

the exclusion of exploitation are likely to find that they suffer the costs of experi-

mentation without gaining many of its benefits. They exhibit too many undeveloped

new ideas and too little distinctive competence. Conversely, systems that engage in

exploitation to the exclusion of exploration are likely to find themselves trapped in

suboptimal stable equilibria. As a result, maintaining an appropriate balance between

exploration and exploitation is a primary factor in system survival and prosperity.

This paper considers some aspects of such problems in the context of organizations.

Both exploration and exploitation are essential for organizations, but they compete for

scarce resources. As a result, organizations make explicit and implicit choices between

the two. The explicit choices are found in calculated decisions about alternative invest-

ments and competitive strategies. The implicit choices are buried in many features of

organizational forms and customs, for example, in organizational procedures for ac-

cumulating and reducing slack, in search rules and practices, in the ways in which

targets are set and changed, and in incentive systems. Understanding the choices and

improving the balance between exploration and exploitation are complicated by the

fact that returns from the two options vary not only with respect to their expected val-

ues, but also with respect to their variability, their timing, and their distribution within

and beyond the organization. (March, 1991, Emphasis added)

In the remainder of the paper, March develops and explores two rather abstract, stylized models

of organizational learning. These models, or rather March’s discussion of them, shed light on the

exploration–exploitation tradeoffs that organizations must make. The paper promotes what has

subsequently been called the ambidexterity hypothesis, which holds that successful organizations

engage in both exploration and exploitation, in spite of the added burden of managing the two

rather different kinds of operation.

How might we recognize exploration and exploitation activities with objective measures ap-

plied to real organizations? We cannot expect much help here from stylized models, however

useful they are for other purposes. A fairly obvious and straightforward, not to say naı̈ve, idea

would be to develop lists of words having to do, in the present case, with exploitation and with

exploration. One might (1) simply start with March’s two lists, emphasized in the above quoted

passage from his paper. Then, (2) one might collect documents pertaining to the firms in question.

2

Finally, (3) one could score the documents with respect to the several lists of words developed in

step (1).

This assignment is about supporting this process with Python code, so let us be a bit more

general about the overall process.

1. Develop concept vectors.

2. Collect and process relevant documents.

3. Match the concept vectors to the documents and produce relevance scores.

And we need a name. We’ll call it the concept vector matching process. A word or two now on

each of the steps.

1.1 Developing concept vectors

Basically, a concept vector (aka: topic vector, vocabulary (Loewenstein et al., 2012), n-gram list)

is a list of words that we think all have some indicative power for the concept on which we wish

to score documents. The words might be weighted so that seemingly better indicators would count

more. Further, we do not need to be limited to single words. We call a one-word phrase a unigram,

a two word phrase a bi-gram, and in general an n word phrase an n-gram. So the elements in our

concept vector may be n-grams generally. We can also specify more complicated arrangements.

For example, that n-gram #1 should precede n-gram #2 and be within k words of n-gram #2. These

are all complications to be dealt with later. The short of it is that a concept vector is a, possibly

weighted, list of lexical patterns; in the simplest case it is just a list words. Of course, we want the

lexical patterns to indicate effectively the concept we have in mind.

Directly to the point, how do we develop a list of n-grams to constitute a concept vector? This

is an art, although it can be augmented with science. One begins with list developed intuitively or

from a credible source (such as the person or organization for whom the project is undertaken) and

then one modifies the list, adding to and deleting from it. I can recommend two specific tools for

doing this.

The first is WordNet: http://wordnet.princeton.edu/. Figure 1 shows the report

you get if you use WordNet online to search on the term “exploration.” It shows three distinct

synsets (S, synonym set, groupings of similar meanings) for “exploration.” You can then explore

and find synonyms, hypernyms (more general terms), and hyponyms (more specific terms). Which

are relevant? This requires judgment on the analyst’s part. Perhaps, for example, synonyms for

“exploration” in the sense of geographic expedition are relevant because the documents often use

metaphoric language.

Note that “probe” is a direct hypernym of “exploration” in the sense of “a careful systematic

search,” yet it is not in March’s list of exploration-related terms. Should it be?

Besides WordNet, other kinds of lexicons are often available. Particularly useful are industry-

specific or scientific lexicons and classification systems. They will very often be the best source

3

http://wordnet.princeton.edu/

Figure 1: WordNet report on “exploration”

of terminology for technical terms, those outside of common language. WordNet’s aspirations are

limited to ordinary English.

A second tool is also very helpful, although it requires specialized software and this is a con-

cordance or KWIC (keyword in context) index. Figure 2 presents an example. The concept vector

terms are highlighted in blue (if you have color) and for each occurrence in the document we see a

few words occurring before and after the term in question. By reading these lines, an analyst can

come to an informed judgment regarding whether the term in question is actually being used very

often in a way that indicates the concept we wish to match. In the example related to Figure 2, the

concept in play has to do with tungsten coatings. It appears that each of the highlighted words is

indeed being used in a relevant context. Concordance or KWIC index software is widely available.

See the PyTAbook for how to do it in Python.

1.2 Collect and process relevant documents

If we are going to match our concept vectors to documents and score them, then we had better

obtain the documents. I will do that for you (as described below). The general point is that useful

documents can come from many sources, including: SEC filings, newspaper stories, annual reports,

Web pages, and transcribed telephone calls (Larcker and Zakolyukina, 2012).

4

Figure 2: Example KWIC index on multiple words

5

1.3 Match the concept vectors to the documents

Recall that a concept vector is a list of lexical patterns and may be weighted. We match a concept

vector to a document or body of text by counting the number of times each lexical pattern in the

concept vector occurs in the text. We may then weight the counts and use the resulting numbers to

form an overall score. This may be done in several ways. We may simply add them up for a single

score. We may divide the individual scores by the length of the document and then add everything

up. And so on. In the tasks that follow, we will explore some options.

2 Does It Work?

Broadly speaking, yes. Uotila et al. (2009) used concept vectors very close to March’s and matched

them to newspaper stories on Factiva covering the years 1989–2004 for the 279 manufacturing

firms in the 1989 Standard & Poor’s 500 index. Here are the two concept vectors they actually

used (Uotila et al., 2009):

Appendix 1. Words and Word Roots in Content Analysis

The wildcard ‘*’ can represent any characters. [sic: any sequence of alphabetic char-

acters –sok]

Exploratory action: explor*, search*, variation*, risk*, experiment*, play*, flexib*,

discover*, innovat*

Exploitative action: exploit*, refine*, choice*, production*, efficien*, select*, imple-

ment*, execut*

They got results that are interesting and significant, pertaining to investment in exploration and

financial performance.

Larcker and Zakolyukina (2012), mentioned above, were able to detect lying or prevarication

by CEOs in conference calls with securities analysts using these methods.

Tetlock et al. (2008) uses “happy” and “sad” words from a standard lexicon as concept vectors

and demonstrated their predictive value for firm performance when matched to newspaper stories

about the firms.

Much earlier, the psychologist Gottschalk used these methods for The Measurement of Psy-

chological States Through the Content Analysis of Verbal Behavior (Gottschalk and Gleser, 1969;

Gottschalk et al., 1969; Gottschalk, 1995). From carefully developed word lists (treated as concept

vectors in our sense), Gottschalk and his co-workers achieved considerable success in automated

diagnosis of mental illnesses from transcribed interviews with patients. (Wouldn’t you like to know

what words are in the lists? Well, it’s public information.)

One could go on, but what’s here should suffice to make the point for the utility of the concept

vector matching process.

6

3 Tasks

3.1 Get a Concept Vector from a File

Write a function and associated code that conforms to the following template and documentation.

def getConceptVectorLabeled(daDir,daFile):

’’’

Assumes that daFile is in standard concept vector form:

<weight>$$$<pattern>$$$<pattern label>, where <pattern>

is an re string and <pattern label> is for display only.

Example: MarchExplorLabeled.txt:

1$$$\bexplor.*?\b$$$explor*
1$$$\bsearch.*?\b$$$search*
1$$$\bvariation.*?\b$$$variation*
1$$$\brisk.*?\b$$$risk*
1$$$\bexperiment.*?\b$$$experiment*
1$$$\bplay.*?\b$$$play*
1$$$\bflexib.*?\b$$$flexib*
1$$$\bdiscover.*?\b$$$discover*
1$$$\binnovat.*?\b$$$innovat*
Here the weights are all equal to 1. The $$$ is a separator.

Then there is a regular expression.Note that here we

are insisting on word boundaries, with \b.

The function returns a list in which the first item

is the concept name, taken as the file name minus the

".txt" extension. More precisely, it is the string in

the file name to the left of the first period.

The second item in the list is another list. This

is a list of 2-tuples

[No, it’s 3-tuples The third item is the

label on the regular expression which is the second item.]

in which the first item is the

<weight> value from a line and the second is the

<pattern> from the line, as a string. For example,

this is returned for MarchExplore.txt:

Run the script

def q1():

conceptVector = \

7

mytexan.getConceptVectorLabeled(\

pathToConceptVectors,MarchExplore)

print(conceptVector)

and you should get

[’MarchExploreLabeled’, [

(’1’, ’\\bexplor.*?\\b’, ’explor*’),

(’1’, ’\\bsearch.*?\\b’, ’search*’),

(’1’, ’\\bvariation.*?\\b’, ’variation*’),

(’1’, ’\\brisk.*?\\b’, ’risk*’),

(’1’, ’\\bexperiment.*?\\b’, ’experiment*’),

(’1’, ’\\bplay.*?\\b’, ’play*’),

(’1’, ’\\bflexib.*?\\b’, ’flexib*’),

(’1’, ’\\bdiscover.*?\\b’, ’discover*’),

(’1’, ’\\binnovat.*?\\b’, ’innovat*’)]]

Note that the backslashes have been escaped (this is

done automatically by Python when you read the file),

so you do not need to worry about using a raw string.

’’’

[Your code here.]

When you run it, say with

def q1():

’’’

A little script to exercise the code for question 1.

’’’

conceptVector = \

mytexan.getConceptVectorLabeled(\

pathToConceptVectors,MarchExplore)

print(conceptVector)

q1()

(where dirConceptVectors is the path to the directory holding the concept vectors files) it

should behave as indicated above in the function comments (edited for display). See myexercise-

texan.py for valid assignments of dirConceptVectors and MarchExplore.

Answer:

def getConceptVectorLabeled(daDir,daFile):

’’’

8

Assumes that daFile is in standard concept vector form:

<weight>$$$<pattern>$$$<pattern label>, where <pattern>

is an re string and <pattern label> is for display only.

Example: MarchExplorLabeled.txt:

1$$$\bexplor.*?\b$$$explor*
1$$$\bsearch.*?\b$$$search*

1$$$\bvariation.*?\b$$$variation*
1$$$\brisk.*?\b$$$risk*
1$$$\bexperiment.*?\b$$$experiment*
1$$$\bplay.*?\b$$$play*
1$$$\bflexib.*?\b$$$flexib*
1$$$\bdiscover.*?\b$$$discover*
1$$$\binnovat.*?\b$$$innovat*
Here the weights are all equal to 1. The $$$ is a separator.

Then there is a regular expression.Note that here we

are insisting on word boundaries, with \b.

The function returns a list in which the first item

is the concept name, taken as the file name minus the

".txt" extension. More precisely, it is the string in

the file name to the left of the first period.

The second item in the list is another list. This

is a list of 2-tuples in which the first item is the

<weight> value from a line and the second is the

<pattern> from the line, as a string. For example,

this is returned for MarchExplore.txt:

Run the script

def q1():

conceptVector = \

mytexan.getConceptVectorLabeled(\

pathToConceptVectors,MarchExplore)

print(conceptVector)

and you should get

[’MarchExploreLabeled’, [

(’1’, ’\\bexplor.*?\\b’, ’explor*’),

(’1’, ’\\bsearch.*?\\b’, ’search*’),

(’1’, ’\\bvariation.*?\\b’, ’variation*’),

(’1’, ’\\brisk.*?\\b’, ’risk*’),

(’1’, ’\\bexperiment.*?\\b’, ’experiment*’),

(’1’, ’\\bplay.*?\\b’, ’play*’),

(’1’, ’\\bflexib.*?\\b’, ’flexib*’),

9

(’1’, ’\\bdiscover.*?\\b’, ’discover*’),

(’1’, ’\\binnovat.*?\\b’, ’innovat*’)]]

Note that the backslashes have been escaped (this is

done automatically by Python when you read the file),

so you do not need to worry about using a raw string.

’’’

f = open(daDir + os.sep + daFile,’r’)

flines = f.readlines()

tupleList = []

for line in flines:

daSplit = line.strip(’\n’).split(’$$$’)

#print(daSplit[2])

if len(daSplit) > 2:

tupleList.append((daSplit[0], daSplit[1], daSplit[2]))

conceptName = daFile.split(’.’)[0]

return [conceptName, tupleList]

3.2 Process a Single Pattern on a Collection

Write a function and associated code that conforms to the following template and documentation.

def dirFilesCountWord(dirTxts,daWord):

’’’

Given a directory, dirTxts, holding a number text files,

and a search term, daWord, returns a list of 2-tuples in

which the first item is the file name and the second item

is the number of times the search term appears in the file.

This function DOES use the re module to accomplish this task.

It works fine, however, if daWord is just a simple string.

’’’

[Your code here.]

When you run it, say with

def q2():

’’’

A little script to exercise the code for question 2.

’’’

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

listDirFilesCounts = \

10

mytexan.dirFilesCountWord(theDirTexts,r’\bexpan.*?\b’)

print(theDirTexts)

print(listDirFilesCounts)

q2()

where DowIndTxts is defined as

DowIndTxts = ’DowJonesIndustrials2009’

then it should behave as follows (edited for display):

../collections/text/DowJonesIndustrials2009

[(’3M-2010.pdf.txt’, 8), (’Alcoa-2010.pdf.txt’, 46),

(’ATT-2010.pdf.txt’, 25), (’AXP-2010.pdf.txt’, 13),

(’Boeing-2010.pdf.txt’, 8), (’Caterpillar-2010.pdf.txt’, 16),

(’Chevron-2010.pdf.txt’, 10), (’Cisco-2011.pdf.txt’, 16),

(’Coca-Cola-2010.pdf.txt’, 5), (’Dupont-2010.pdf.txt’, 2),

(’Exxon-2010.pdf.txt’, 21), (’GE-2010.pdf.txt’, 20),

(’HomeDepot-2011.pdf.txt’, 10), (’HP-2011.pdf.txt’, 3),

(’IBM-2010.pdf.txt’, 37), (’Intel-2010.pdf.txt’, 1),

(’JPMC-2010.pdf.txt’, 45), (’Kraftfoods-2010.pdf.txt’, 8),

(’McDonalds-2010.pdf.txt’, 11), (’Merck-2010.pdf.txt’, 6),

(’Microsoft-2011.pdf.txt’, 5), (’Pfizer-2010.pdf.txt’, 7),

(’PG-2011.pdf.txt’, 42), (’Travelers-2010.pdf.txt’, 41),

(’United-Technologies-2010.pdf.txt’, 17),

(’Verizon-2010.pdf.txt’, 25), (’Wal-mart-2010.pdf.txt’, 35),

(’Walt-Disney-2010.pdf.txt’, 22)]

Answer:

def dirFilesCountWord(dirTxts,daWord):

’’’

Given a directory, dirTxts, holding a number text files,

and a search term, daWord, returns a list of 2-tuples in

which the first item is the file name and the second item

is the number of times the search term appears in the file.

This function DOES use the re module to accomplish this task.

It works fine, however, if daWord is just a simple string.

’’’

daFileNames = os.listdir(dirTxts)

toReturn = []

compiledPattern = re.compile(daWord,re.I)

for daFileName in daFileNames:

11

f = open(dirTxts + os.sep + daFileName,’r’).read()

daCount = len(compiledPattern.findall(f))

toReturn.append((daFileName, daCount))

return toReturn

3.3 Sort a List of Tuples

Write a function and associated code that conforms to the following template and documentation.

def sortListOfTuples(daList,daItem,descend=True):

’’’

Given a list of tuples, daList, sorts the tuples

on item daItem and returns the sorted list of

tuples. By default the list is in descending order,

but if descend is False, then in ascending order.

’’’

[Your code here.]

When you run it, it should behave as follows. This script

def q3():

’’’

A little script to exercise the code for question 3.

’’’

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

listDirFilesCounts = \

mytexan.dirFilesCountWord(theDirTexts,r’\bexpan.*?\b’)

sortedList = mytexan.sortListOfTuples(\

listDirFilesCounts,1)

print(sortedList)

q3()

produces

[(’Alcoa-2010.pdf.txt’, 46), (’JPMC-2010.pdf.txt’, 45),

(’PG-2011.pdf.txt’, 42), (’Travelers-2010.pdf.txt’, 41),

(’IBM-2010.pdf.txt’, 37),

(’Wal-mart-2010.pdf.txt’, 35), (’ATT-2010.pdf.txt’, 25),

(’Verizon-2010.pdf.txt’, 25), (’Walt-Disney-2010.pdf.txt’, 22),

(’Exxon-2010.pdf.txt’, 21), (’GE-2010.pdf.txt’, 20),

(’United-Technologies-2010.pdf.txt’, 17),

(’Caterpillar-2010.pdf.txt’, 16), (’Cisco-2011.pdf.txt’, 16),

12

(’AXP-2010.pdf.txt’, 13), (’McDonalds-2010.pdf.txt’, 11),

(’Chevron-2010.pdf.txt’, 10), (’HomeDepot-2011.pdf.txt’, 10),

(’3M-2010.pdf.txt’, 8), (’Boeing-2010.pdf.txt’, 8),

(’Kraftfoods-2010.pdf.txt’, 8), (’Pfizer-2010.pdf.txt’, 7),

(’Merck-2010.pdf.txt’, 6), (’Coca-Cola-2010.pdf.txt’, 5),

(’Microsoft-2011.pdf.txt’, 5), (’HP-2011.pdf.txt’, 3),

(’Dupont-2010.pdf.txt’, 2), (’Intel-2010.pdf.txt’, 1)]

(edited for display).

Answer:

def sortListOfTuples(daList,daItem,descend=True):

’’’

Given a list of tuples, daList, sorts the tuples

on item daItem and returns the sorted list of

tuples. By default the list is in descending order,

but if descend is False, then in ascending order.

’’’

return sorted(daList, cmp=lambda x,y: \

cmp(x[daItem], y[daItem]), \

reverse=descend)

3.4 Write a Simple Report to a CSV File

Write a function and associated code that conforms to the following template and documentation.

def writeCSVFileCount2Tuples(da2Tuples,daFile,conceptName):

’’’

Given a list of 2-tuples, assumed to have the form

(<file name>,<concept score>), writes to the file daFile

the conceptName in the first line as

"Concept: " + conceptName.

The second line has "Source File,Score".

Following that writes each

tuple to a line, with a comma as the separater. The

tuples are written in the order given in da2Tuples.The

function returns a message string when it has completed:

"Done writing file " + daFile

’’’

[Your code here.]

When you run it, it should behave as follows. Running the following script (after importing

texan.py)

13

def q4():

’’’

A little script to exercise the code for question 4.

’’’

conceptVector = \

mytexan.getConceptVectorLabeled(pathToConceptVectors,MarchExplore)

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

listDirFilesCounts = \

mytexan.dirFilesCountWord(theDirTexts,conceptVector[1][0][1])

print(mytexan.sortListOfTuples(listDirFilesCounts,1))

print(mytexan.sortListOfTuples(listDirFilesCounts,1,False))

print(’\n\n’)

daSortedTuples = mytexan.sortListOfTuples(listDirFilesCounts,1)

print(mytexan.writeCSVFileCount2Tuples(\

daSortedTuples,\

’..’ + os.sep + ’outputs’ + os.sep + ’tuplesScores.txt’,\

conceptVector[1][0][2]))

q4()

produces the message Done writing file ../outputs/tuplesScores.txt. when

it completes. (It also produces output that illustrates ascending and descending sorting on

listDirFilesCounts.) If you then launch Excel and import the file tuplesScores.txt, what

you see will be (something very like) Figure 3. Note well: The output file tuplesScores.txt is

written to reside in the outputs folder. This is required.

Answer:

def writeCSVFileCount2Tuples(da2Tuples,daFile,conceptName):

’’’

Given a list of 2-tuples, assumed to have the form

(<Given a list of 2-tuples, assumed to have the form

(<file name>,<concept score>), writes to the file daFile

the conceptName in the first line as

"Concept: " + conceptName.

The second line has "Source File,Score:".

Following that writes each

tuple to a line, with a comma as the separater. The

tuples are written in the order given in da2Tuples.The

function returns a message string when it has completed:

"Done writing file " + daFile

’’’

14

Figure 3: Imported file produced by texan.sortListOfTuples()

15

f = open(daFile,’w’)

f.write(’Concept: ’ + conceptName + ’\n’)

f.write(’Source File,Score\n’)

#daSortedTuples = sortListOfTuples(da2Tuples,1)

for aTuple in da2Tuples:

f.write(aTuple[0] + ’,’ + str(aTuple[1]) + ’\n’)

f.close()

return "Done writing file " + daFile + "."

3.5 Count the Hits and Show the Words

Write a function and associated code that conforms to the following template and documentation.

def dirFilesCountWordHits(dirTxts,daWord):

’’’

Similar to but adds to dirFilesCountWord. Instead of

returning a list of 2-tuples, it returns a list of 3-tuples.

Given a directory, dirTxts, holding a number text files,

and a search term, daWord, returns a list of 3-tuples in

which the first item is the file name, the second item

is the number of times the search term appears in the file, and the

third item is a list of the terms in the document matching

the input patter, daWord. This list is in alphabetical order.

This function DOES use the re module to accomplish this task.

It works fine, however, if daWord is just a simple string.

The function processes its input file after converting it to

lower case, so in the hit list we do not have duplications due

to capitalization.

’’’

[Your code here.]

When you run it, it should behave as follows. Running the following script (after importing

texan.py)

def q5():

’’’

A little script to exercise the code for question 5.

’’’

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

countsAndHits = \

mytexan.dirFilesCountWordHits(theDirTexts,r’\bexpan.*?\b’)

16

print(countsAndHits)

q5()

produces the output (in part):

[(’3M-2010.pdf.txt’, 8, [’expanded’, ’expanding’, ’expansions’]),

(’Alcoa-2010.pdf.txt’, 46, [’expand’, ’expanded’, ’expanding’,

’expands’, ’expansion’, ’expansions’]), (’ATT-2010.pdf.txt’, 25,

[’expand’, ’expanded’, ’expanding’, ’expands’, ’expansion’]),

(’AXP-2010.pdf.txt’, 13, [’expand’, ’expanded’, ’expands’,

’expansion’]), (’Boeing-2010.pdf.txt’, 8, [’expand’,

’expandboeing’, ’expanded’, ’expanding’]),

(’Caterpillar-2010.pdf.txt’, 16, [’expand’, ’expanded’,

’expanding’, ’expansion’]), (’Chevron-2010.pdf.txt’, 10,

[’expanded’, ’expands’, ’expansion’]),

(’Cisco-2011.pdf.txt’, 16, [’expand’, ’expanded’, ’expanding’, ’expansion’]),

(’Coca-Cola-2010.pdf.txt’, 5, [’expand’, ’expanded’, ’expansion’]),

(’Dupont-2010.pdf.txt’, 2, [’expanded’, ’expanding’]),

(’Exxon-2010.pdf.txt’, 21,

[’expand’, ’expanded’, ’expanding’, ’expands’, ’expansion’]),

(Notice the typo discovered in the Boeing report. Or is it a slogan?)

Answer:

def dirFilesCountWordHits(dirTxts,daWord):

’’’

Similar to but adds to dirFilesCountWord. Instead of

returning a list of 2-tuples, it returns a list of 3-tuples.

Given a directory, dirTxts, holding a number text files,

and a search term, daWord, returns a list of 3-tuples in

which the first item is the file name, the second item

is the number of times the search term appears in the file, and the

third item is a list of the terms in the document matching

the input patter, daWord. This list is in alphabetical order.

This function DOES use the re module to accomplish this task.

It works fine, however, if daWord is just a simple string.

The function processes its input file after converting it to

lower case, so in the hit list we do not have duplications due

to capitalization.

’’’

daFileNames = os.listdir(dirTxts)

17

toReturn = []

compiledPattern = re.compile(daWord,re.I)

for daFileName in daFileNames:

f = open(dirTxts + os.sep + daFileName,’r’)

ftext = f.read().lower()

f.close()

#print(daFileName + " " + str(len(ftext)) + ’\n’)

daFindings = compiledPattern.findall(ftext)

#print(daFindings)

daCount = len(daFindings)

daHits = sorted(set(daFindings))

toReturn.append((daFileName, daCount,list(daHits)))

return toReturn

3.6 Write a CSV File to Report the Hit Counts and the Words

Write a function and associated code that conforms to the following template and documentation.

def writeCSVFileCountHits3Tuples(da3Tuples,daFile,conceptName):

’’’

Similar to writeCSVFileCount2Tuples, but adds hits list.

Given a list of 3-tuples, assumed to have the form

(<file name>,<concept score>, <hits list>), writes to the file

daFilethe conceptName in the first line.

The second line has "Source File,Score,Hits:".

Following that writes each 3-tuple to a line, with a comma

as the separater. The third item, a litst, is "flattened" and

each item in the list is written out with comma separations.

The tuples are written in the order given in da2Tuples.The

function returns a message string when it has completed:

"Done writing file " + daFile

’’’

f = open(daFile,’w’)

f.write(’Concept: ’ + conceptName + ’\n’)

f.write(’Source File,Score,Hits:\n’)

#daSortedTuples = sortListOfTuples(da2Tuples,1)

for aTuple in da3Tuples:

f.write(aTuple[0] + ’,’ + str(aTuple[1]))

for aWord in aTuple[2]:

f.write(’,’+aWord)

18

f.write(’\n’)

f.close()

return "Done writing file " + daFile + "."

When you run it, it should behave as follows. Running the following script (after importing

texan.py)

def q6():

’’’

A little script to exercise the code for question 6.

’’’

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

countsAndHits = \

mytexan.dirFilesCountWordHits(theDirTexts,r’\bexpan.*?\b’)

sorted3tuples = mytexan.sortListOfTuples(countsAndHits,1)

result = mytexan.writeCSVFileCountHits3Tuples(sorted3tuples, \

’..’ + os.sep + ’outputs’ + os.sep +’tuples3.txt’, \

’expan*’)

print(result)

q6()

produces the message

Done writing file ../outputs/tuples3.txt.

when it completes. If you then launch Excel and import the file tuples3.txt, what you see will be

(something very like) Figure 4.

Answer:

def writeCSVFileCountHits3Tuples(da3Tuples,daFile,conceptName):

’’’

Similar to writeCSVFileCount2Tuples, but adds hits list.

Given a list of 3-tuples, assumed to have the form

(<file name>,<concept score>, <hits list>), writes to the file

daFilethe conceptName in the first line.

The second line has "Source File,Score,Hits:".

Following that writes each 3-tuple to a line, with a comma

as the separater. The third item, a litst, is "flattened" and

each item in the list is written out with comma separations.

The tuples are written in the order given in da2Tuples.The

19

Figure 4: Imported file produced by texan.writeCSVFileCountHits3Tuples()

function returns a message string when it has completed:

"Done writing file " + daFile

’’’

f = open(daFile,’w’)

f.write(’Concept: ’ + conceptName + ’\n’)

f.write(’Source File,Score,Hits:\n’)

#daSortedTuples = sortListOfTuples(da2Tuples,1)

for aTuple in da3Tuples:

f.write(aTuple[0] + ’,’ + str(aTuple[1]))

for aWord in aTuple[2]:

f.write(’,’+aWord)

f.write(’\n’)

f.close()

return "Done writing file " + daFile + "."

20

3.7 Count and Sum the Pattern Hits

Write a function and associated code that conforms to the following template and documentation.

def dirFilesCountWordVectorHits(dirTxts,daConceptVector):

’’’

Similar to but adds to dirFilesCountWord.

And similar to dirFilesCountWordHits, but adds to it.

Modifies the second input parameter, daConceptVector, which

now it is assumed has the form as returned by

getConceptVector(). That is, a list whose first element

is the concept name and whose second element is a list

of tuples. Instead of a single search pattern, as before,

we have a concept vector.

The function returns a list of 3-tuples.

Given a directory, dirTxts, holding a number text files,

and a concept vector, daConceptVector, returns a list of 3-tuples

in which the first item is the file name, the second item is the

total number of times the search term in the search vector

appear in the file. The

third item is a list of the counts of patterns in the document matching

the input patterns in the concept vector. This list is in the order

in which the search patterns appear in the concept vector.

This function DOES use the re module to accomplish this task.

The function processes its input file after converting it to

lower case, so in the hit list we do not have duplications due

to capitalization.

’’’

[Your code here.]

When you run it, it should behave as follows. Running the following script (after importing

texan.py) produces the following output.

def q7():

’’’

A little script to exercise the code for question 7.

’’’

conceptVector = \

mytexan.getConceptVectorLabeled(pathToConceptVectors,MarchExplore)

#print(conceptVector)

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

countWordHits = \

21

mytexan.dirFilesCountWordVectorHits(theDirTexts,conceptVector)

print(countWordHits)

q7()

When you examine the output, this is what you see:

>>>

[’MarchExploreLabeled’, [(’3M-2010.pdf.txt’, 101.0,

[0.0, 0.0, 1.0, 74.0, 0.0, 1.0, 5.0, 2.0, 18.0]),

(’Alcoa-2010.pdf.txt’, 86.0,

[4.0, 0.0, 0.0, 55.0, 0.0, 1.0, 7.0, 9.0, 10.0]),

(’ATT-2010.pdf.txt’, 82.0,

[1.0, 4.0, 2.0, 49.0, 1.0, 1.0, 2.0, 0.0, 22.0]),

(’AXP-2010.pdf.txt’, 270.0,

[0.0, 1.0, 1.0, 254.0, 0.0, 1.0, 7.0, 2.0, 4.0]),

(’Boeing-2010.pdf.txt’, 138.0,

[4.0, 0.0, 2.0, 96.0, 4.0, 0.0, 7.0, 9.0, 16.0]),

(’Caterpillar-2010.pdf.txt’, 9.0,

[0.0, 0.0, 0.0, 5.0, 0.0, 1.0, 0.0, 0.0, 3.0]),

(and so on).

Answer:

def dirFilesCountWordVectorHits(dirTxts,daConceptVector):

’’’

Similar to but adds to dirFilesCountWord.

And similar to dirFilesCountWordHits, but adds to it.

Modifies the second input parameter, daConceptVector, which

now it is assumed has the form as returned by

getConceptVector(). That is, a list whose first element

is the concept name and whose second element is a list

of tuples. Instead of a single search pattern, as before,

we have a concept vector.

The function returns a list of 3-tuples.

Given a directory, dirTxts, holding a number text files,

and a concept vector, daConceptVector, returns a list of 3-tuples

in which the first item is the file name, the second item is the

total number of times the search term in the search vector

appear in the file. The

third item is a list of the counts of patterns in the document matching

22

the input patterns in the concept vector. This list is in the order

in which the search patterns appear in the concept vector.

This function DOES use the re module to accomplish this task.

The function processes its input file after converting it to

lower case, so in the hit list we do not have duplications due

to capitalization.

’’’

daFileNames = os.listdir(dirTxts)

toReturnData = []

First element is the name of the concept:

#toReturn.append(daConceptVector[0])

Get the list of tuples for the concept:

conceptList = daConceptVector[1]

#compiledPattern = re.compile(daWord,re.I)

for daFileName in daFileNames:

f = open(dirTxts + os.sep + daFileName,’r’)

ftext = f.read().lower()

f.close()

findingsCounts = []

for (weight,term) in conceptList:

wt = float(weight)

compiledPattern = re.compile(term,re.I)

daFindings = compiledPattern.findall(ftext)

#print(daFindings)

daCount = len(daFindings)

daScore = daCount * wt

findingsCounts.append(daScore)

#daHits = sorted(set(daFindings))

toReturnData.append((daFileName, sum(findingsCounts), findingsCounts))

return [daConceptVector[0], toReturnData]

3.8 Write the Full Report

Write a function and associated code that conforms to the following template and documentation.

def writeCSVFileSumScoresShowScores(daData,daFile,conceptVector):

’’’

Similar to writeCSVFileCount2Tuples, but adds hits list.

Given daData, assumed to have the form of the return value

23

from dirFilesCountWordVectorHits(, writes to the file

daFile the conceptName in the first line.

The second line has "Source File,Score," followed by the

labels from the conceptVector.

Following that it writes each tuple to a line, with a comma

as the separater. The third item, a listt, is "flattened" and

each item (a hit count) in the list is written out with

comma separations.

The tuples are written in the order given in da2Tuples.The

function returns a message string when it has completed:

"Done writing file " + daFile

’’’

[Your code here.]

Here’s a script for running the function:

def q8():

’’’

A little script to exercise the code for question 8.

’’’

aConVec = mytexan.getConceptVectorLabeled(pathToConceptVectors, \

’MarchExploreLabeled.txt’)

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

someData = mytexan.dirFilesCountWordVectorHits(theDirTexts, aConVec)

coreData = mytexan.sortListOfTuples(someData[1],1)

theData = [someData[0], coreData]

daFile = ’..’ + os.sep + ’outputs’ + os.sep + ’SumShowScores.txt’

aResult = mytexan.writeCSVFileSumScoresShowScores(theData, \

daFile, aConVec)

print("Done. " + daFile + ".")

q8()

When you run it, it should behave as follows:

Done. ../outputs/SumShowScores.txt.

If you then launch Excel and import the file SumShowScores.txt, what you see will be (something

very like) Figure 5.

Answer:

def writeCSVFileSumScoresShowScores(daData,daFile,conceptVector):

’’’

24

Figure 5: Imported file produced by texan.writeCSVFileSumScoresShowScores()

25

Similar to writeCSVFileCount2Tuples, but adds hits list.

Given daData, assumed to have the form of the return value

from dirFilesCountWordVectorHits(, writes to the file

daFile the conceptName in the first line.

The second line has "Source File,Score," followed by the

labels from the conceptVector.

Following that it writes each tuple to a line, with a comma

as the separater. The third item, a listt, is "flattened" and

each item (a hit count) in the list is written out with

comma separations.

The tuples are written in the order given in da2Tuples.The

function returns a message string when it has completed:

"Done writing file " + daFile

’’’

conceptName = daData[0]

f = open(daFile,’w’)

f.write(’Concept: ’ + conceptName + ’\n’)

f.write(’Source File,Score’)

conceptTuples = conceptVector[1]

for (a, b, label) in conceptTuples:

f.write(’,’ + label)

f.write(’\n’)

da3Tuples = daData[1]

#daSortedTuples = sortListOfTuples(da2Tuples,1)

for aTuple in da3Tuples:

f.write(aTuple[0] + ’,’ + str(aTuple[1]))

for aCount in aTuple[2]:

f.write(’,’+ str(aCount))

f.write(’\n’)

f.close()

return "Done writing file " + daFile + "."

4 Generalizing All This a Bit

We have developed some useful functions in the context of exploring concept matching between

a concept vector based on March’s exploration vocabulary and a corpus (document collection)

composed of annual reports from the Dow Jones Industrials. In general, there will be a many-to-

many relationship between concept vectors and corpora (plural of “corpus”). We should like our

26

software to accommodate exploring such many-to-many relationships.

To begin, we have a concept vector for March’s exploitation vocabulary:

1$$$\bexploit.*?\b$$$exploit*
1$$$\brefine.*?\b$$$refine*
1$$$\bchoice.*?\b$$$choice*
1$$$\bproduction.*?\b$$$production*
1$$$\befficien.*?\b$$$efficien*
1$$$\bselect.*?\b$$$select*
1$$$\bimplement.*?\b$$$implement*
1$$$\bexecut.*?\b$$$execut*

It resides in the MarchExploitLabeled.txt file in the concepts directory, whose contents are listed

by running this script:

def listConceptVectorFiles():

’’’

Prints a list of the file names of the available

concept vector files.

’’’

print(’pathToConceptVectors = ’ + pathToConceptVectors)

daList = os.listdir(pathToConceptVectors)

print(daList)

listConceptVectorFiles()

When you run it you will see

pathToConceptVectors = ../concepts

[’MarchExploitLabeled.txt’, ’MarchExploreLabeled.txt’]

We can generalize the procedure of question 8 to accommodate arbitrary concept vectors and

arbitrary corpora as follows:

def reportCorpusConcept(corpus, conceptFile):

’’’

A little script to exercise the code for question 8.

’’’

print(’pathToConceptVectors = ’ + pathToConceptVectors)

print(’pathToTextCollections = ’ + pathToTextCollections)

aConVec = mytexan.getConceptVectorLabeled(pathToConceptVectors, \

conceptFile)

theDirTexts = pathToTextCollections + os.sep + corpus

someData = mytexan.dirFilesCountWordVectorHits(theDirTexts, aConVec)

coreData = mytexan.sortListOfTuples(someData[1],1)

27

theData = [someData[0], coreData]

daFile = ’..’ + os.sep + ’outputs’ + os.sep + ’Results’ + conceptFile

aResult = mytexan.writeCSVFileSumScoresShowScores(theData, \

daFile, aConVec)

print("Done. " + daFile + ".")

if you add

reportCorpusConcept(’DowJonesIndustrials2009’,’MarchExploitLabeled.txt’)

to the module and execute it, a CSV file called ResultsMarchExploitLabeled.txt will be written to

the outputs directory. If you then import this file into Excel, you get what you see in Figure 6.

Compare it with Figure 5, found on page 25.

Figure 6: Imported file produced by texan.writeCSVFileSumScoresShowScores() with MarchEx-

ploitLabeled.txt concept vector

So that’s for the concept vector side. On the corpora side, if we add additional corpora we can

use them as well. And we have. If you run this script:

28

def listTextCorpora():

’’’

Prints a list of the directory names of the available

corpora (document collections) in text format.

’’’

print(’pathToTextCollections = ’ + pathToTextCollections)

daList = os.listdir(pathToTextCollections)

print(daList)

#

listTextCorpora()

you will see on output

pathToTextCollections = ../collections/text

[’Consumer Goods’, ’DowJonesIndustrials2009’, ’Healthcare’,

’IndustrialGoods’]

Running

reportCorpusConcept(’Healthcare’,’MarchExploitLabeled.txt’)

leads to the report in Figure 7.

Running

reportCorpusConcept(’Healthcare’,’MarchExploreLabeled.txt’)

leads to the report in Figure 8.

So, by these means we are able to general a great deal of interesting and useful data.

5 Assignment

On WebCafé you will find a file named rtr.zip. You should download it to a place of convenience

for you and unzip it. This will produce a directory called rtr (“Root of the Text Repository”),

with the following subdirectories (folders):

rtr/

code/

collections/

text/

concepts/

outputs/

29

Figure 7: From running reportCorpusConcept(’Healthcare’,’MarchExploitLabeled.txt’)

30

Figure 8: From running reportCorpusConcept(’Healthcare’,’MarchExploreLabeled.txt’)

31

You are to develop your code in the context of this directory system. In the code directory you

will find a Python module called myexercisetexan.py. It contains useful material, discussed

above, for testing your code and helping you to develop your code.

Your assignment is to complete each of the tasks in §3 (all 8 of them). Put all of your code in a

single Python module called mytexan.py (“MY TEXt ANalytics” module). Put your module in

the code directory and be sure it works when called and tested by the myexercisetexan.py

module. Once you have completed this assignment, create a folder on WebCafé called case2 and

put just your mytexan.py module in it.

This case 2 assignment is due by 5 p.m. on Saturday 5 May 2012.

This due date is different from what’s on the syllabus (it’s later) and
what was stated (mistakenly, a typo) in the case 2 assignment

document (infeasible for handing in grades).

References

Gottschalk, L. A. (1995). Content Analysis of Verbal Behavior: New Findings and Clinical Appli-

cations. Lawrence Erlbaum Associates, Hillsdale, NJ.

Gottschalk, L. A. and Gleser, G. C. (1969). The Measurement of Psychological States Through the

Content Analysis of Verbal Behavior. University of California Press, Berkeley and Los Angeles,

CA.

Gottschalk, L. A., Winget, C. N., and Gleser, G. C. (1969). Manual of Instructions for Using the

Gottschalk-Gleser Content Analysis Scales: Anxiety, Hostility, and Social Alienation–Personal

Disorganization. University of California Press, Berkeley and Los Angeles, CA.

Larcker, D. F. and Zakolyukina, A. A. (2012). Detecting deceptive discussions in conference

calls. Journal of Accounting Research, pages no–no. http://dx.doi.org/10.1111/j.

1475-679X.2012.00450.x.

Loewenstein, J., Ocasio, W., and Jones, C. (2012). Vocabularies and vocabulary structure: A

new approach linking categories, practices, and institutions. The Academy of Management

Annals. Available online 13 March 2012. http://dx.doi.org/10.1080/19416520.

2012.660763.

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science,

2:71–87.

Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S. (2008). More than words: Quantifying

language to measure firms’ fundamentals. The Journal of Finance, LXIII(3):1437–1467.

32

http://dx.doi.org/10.1111/j.1475-679X.2012.00450.x
http://dx.doi.org/10.1111/j.1475-679X.2012.00450.x
http://dx.doi.org/10.1080/19416520.2012.660763
http://dx.doi.org/10.1080/19416520.2012.660763

Uotila, J., Maula, M., Keil, T., and Zahra, S. A. (2009). Exploration, exploitation, and financial

performance: Analysis of S&P 500 corporations. Strategic Management Journal, 30:221–231.

$Id: case-assignment-2-r1.tex 3002 2012-05-09 22:19:39Z sok $

33

