Case Assignment #2
OPIM 311, Spring 2012
“Scripting for Business Analytics”

Steven O. Kimbrough
April 2, 2012

This case 2 assignment is due by 5 p.m. on Saturday 5 May 2012.

This due date is different from what’s on the syllabus (it’s later) and
what was stated (mistakenly, a typo) in the case 2 assignment

document (infeasible for handing in grades).

Contents

L

The Concept Vector Matching Process

L1

Developing conCept VECtOrS v v v v e e e e e e e e e e e e e e e

IL.2Collect and process relevant documenty Lo L

IL.5 Match the concept vectors to the documenty

2 Does TE Work?

B—Taskd

p.l

GefaConcept Vector ITrom a F1Ig« v v v v v v e e e e e e e e e e

p.2 _Process a dingle Pattern on a Collectiony oL

pb.5 Sortaliastof lupleg. L s

p.4 Write a dSiumple Reporttoa CSV Filg o000 oo

B Counf the Hits and Show the Words

.o Writethe Full Keport) oo e

A Generalizing All This a Bif

A

10
12
13
16
18
21
23

26

29

1 The Concept Vector Matching Process

An influential paper by James March begins as follows.

A central concern of studies of adaptive processes is the relation between the explo-
ration of new possibilities and the exploitation of old certainties (Schumpeter 1934;
Holland 1975; Kuran 1988). Exploration includes things captured by terms such as
search, variation, risk taking, experimentation, play, flexibility, discovery, innova-
tion. Exploitation includes such things as refinement, choice, production, efficiency,
selection, implementation, execution. Adaptive systems that engage in exploration to
the exclusion of exploitation are likely to find that they suffer the costs of experi-
mentation without gaining many of its benefits. They exhibit too many undeveloped
new ideas and too little distinctive competence. Conversely, systems that engage in
exploitation to the exclusion of exploration are likely to find themselves trapped in
suboptimal stable equilibria. As a result, maintaining an appropriate balance between
exploration and exploitation is a primary factor in system survival and prosperity.

This paper considers some aspects of such problems in the context of organizations.
Both exploration and exploitation are essential for organizations, but they compete for
scarce resources. As a result, organizations make explicit and implicit choices between
the two. The explicit choices are found in calculated decisions about alternative invest-
ments and competitive strategies. The implicit choices are buried in many features of
organizational forms and customs, for example, in organizational procedures for ac-
cumulating and reducing slack, in search rules and practices, in the ways in which
targets are set and changed, and in incentive systems. Understanding the choices and
improving the balance between exploration and exploitation are complicated by the
fact that returns from the two options vary not only with respect to their expected val-
ues, but also with respect to their variability, their timing, and their distribution within
and beyond the organization. (March, 1991, Emphasis added)

In the remainder of the paper, March develops and explores two rather abstract, stylized models
of organizational learning. These models, or rather March’s discussion of them, shed light on the
exploration—exploitation tradeoffs that organizations must make. The paper promotes what has
subsequently been called the ambidexterity hypothesis, which holds that successful organizations
engage in both exploration and exploitation, in spite of the added burden of managing the two
rather different kinds of operation.

How might we recognize exploration and exploitation activities with objective measures ap-
plied to real organizations? We cannot expect much help here from stylized models, however
useful they are for other purposes. A fairly obvious and straightforward, not to say naive, idea
would be to develop lists of words having to do, in the present case, with exploitation and with
exploration. One might (1) simply start with March’s two lists, emphasized in the above quoted
passage from his paper. Then, (2) one might collect documents pertaining to the firms in question.

Finally, (3) one could score the documents with respect to the several lists of words developed in
step (1).

This assignment is about supporting this process with Python code, so let us be a bit more
general about the overall process.

1. Develop concept vectors.
2. Collect and process relevant documents.
3. Match the concept vectors to the documents and produce relevance scores.

And we need a name. We’ll call it the concept vector matching process. A word or two now on
each of the steps.

1.1 Developing concept vectors

Basically, a concept vector (aka: topic vector, vocabulary (Coewensfein ef all, D0T7), n-gram list)
is a list of words that we think all have some indicative power for the concept on which we wish
to score documents. The words might be weighted so that seemingly better indicators would count
more. Further, we do not need to be limited to single words. We call a one-word phrase a unigram,
a two word phrase a bi-gram, and in general an n word phrase an n-gram. So the elements in our
concept vector may be n-grams generally. We can also specify more complicated arrangements.
For example, that n-gram #1 should precede n-gram #2 and be within k£ words of n-gram #2. These
are all complications to be dealt with later. The short of it is that a concept vector is a, possibly
weighted, list of lexical patterns; in the simplest case it is just a list words. Of course, we want the
lexical patterns to indicate effectively the concept we have in mind.

Directly to the point, how do we develop a list of n-grams to constitute a concept vector? This
is an art, although it can be augmented with science. One begins with list developed intuitively or
from a credible source (such as the person or organization for whom the project is undertaken) and
then one modifies the list, adding to and deleting from it. I can recommend two specific tools for
doing this.

The first is WordNet: http://wordnet .princeton.edu/. Figure I shows the report
you get if you use WordNet online to search on the term “exploration.” It shows three distinct
synsets (S, synonym set, groupings of similar meanings) for “exploration.” You can then explore
and find synonyms, hypernyms (more general terms), and hyponyms (more specific terms). Which
are relevant? This requires judgment on the analyst’s part. Perhaps, for example, synonyms for
“exploration” in the sense of geographic expedition are relevant because the documents often use
metaphoric language.

Note that “probe” is a direct hypernym of “exploration” in the sense of “a careful systematic
search,” yet it is not in March’s list of exploration-related terms. Should it be?

Besides WordNet, other kinds of lexicons are often available. Particularly useful are industry-
specific or scientific lexicons and classification systems. They will very often be the best source

http://wordnet.princeton.edu/

WordNet Search - 3.1

Word to search for: exploration | Search WordNet |

Display Options: | (select option to change) * | | Change |

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

* S: (n) exploration, geographic expedition (to travel for the purpose of
discovery)

e S: (n) exploration (a careful systematic search)

e S: (n) exploration (a systematic consideration) "he called for a careful
exploration of the consequences"

Figure 1: WordNet report on “exploration”

of terminology for technical terms, those outside of common language. WordNet’s aspirations are
limited to ordinary English.

A second tool is also very helpful, although it requires specialized software and this is a con-
cordance or KWIC (keyword in context) index. Figure D presents an example. The concept vector
terms are highlighted in blue (if you have color) and for each occurrence in the document we see a
few words occurring before and after the term in question. By reading these lines, an analyst can
come to an informed judgment regarding whether the term in question is actually being used very
often in a way that indicates the concept we wish to match. In the example related to Figure D, the
concept in play has to do with tungsten coatings. It appears that each of the highlighted words is
indeed being used in a relevant context. Concordance or KWIC index software is widely available.
See the PyTAbook for how to do it in Python.

1.2 Collect and process relevant documents

If we are going to match our concept vectors to documents and score them, then we had better
obtain the documents. I will do that for you (as described below). The general point is that useful
documents can come from many sources, including: SEC filings, newspaper stories, annual reports,
Web pages, and transcribed telephone calls (Larcker and Zakolyukind, 2017).

KWIC Index - Sizatola Engine v1.0

o ™ac

3 Document Score => 3.1444458961487
 Document Link => 9172 hvof tech data.pdf

X TECHNI(‘AL DATA Available Powder Cuts SHS9172HV1 atomized powder
: Available Powder Cuts SHS9172HV1 atomized powder 15
E erosion and corrosion protection of heat exchange tubes in coal fired
+ sprayed or fully devitrified heat treated after spraying state
+ to withstand high impact and resist extreme abrasion and corrosion makes
5 SUPER HARD STEEL TECHNICAL DATA SHS
+ SUPER HARD STEEL TECHNICAL DATA SHS 9172
STEEL TECHNICAL DATA SHS 9172 HVOF Coating Description

Dovummr Score => 3.0193889141083
. | Document Link => 7170 hvof tech data.pdf

: nanosteelco com Available Powder Cuts SHS717 HV1 atomized powder
: Powder Cuts SHS717 HV1 atomized powder 15
: m SHS717 HV2 atomized powder 1
+ practices and without a bond coat SHS 717 HVOF
+ temperature erosion corrosion protection of heat exchange tubes in coal fired
5 SUPER HARD STEEL TECHNICAL DATA SHS
+ SUPER HARD STEEL TECHNICAL DATA SHS 717
STEEL TECHNICAL DATA SHS 717 HVOF Coating

Figure 2: Example KWIC index on multiple words

1.3 Match the concept vectors to the documents

Recall that a concept vector is a list of lexical patterns and may be weighted. We match a concept
vector to a document or body of text by counting the number of times each lexical pattern in the
concept vector occurs in the text. We may then weight the counts and use the resulting numbers to
form an overall score. This may be done in several ways. We may simply add them up for a single
score. We may divide the individual scores by the length of the document and then add everything
up. And so on. In the tasks that follow, we will explore some options.

2 Does It Work?

Broadly speaking, yes. Uafilaefall (200Y) used concept vectors very close to March’s and matched
them to newspaper stories on Factiva covering the years 1989-2004 for the 279 manufacturing
firms in the 1989 Standard & Poor’s 500 index. Here are the two concept vectors they actually
used (Uofila"ef-all, P00Y):

Appendix 1. Words and Word Roots in Content Analysis

The wildcard “*’ can represent any characters. [sic: any sequence of alphabetic char-
acters —sok]

Exploratory action: explor*, search*, variation*, risk*, experiment*, play*, flexib*,
discover®, innovat*

Exploitative action: exploit*, refine*, choice*, production*, efficien*, select*, imple-
ment*, execut*

They got results that are interesting and significant, pertaining to investment in exploration and
financial performance.

Larcker and Zakolyukina (20017), mentioned above, were able to detect lying or prevarication
by CEOs in conference calls with securities analysts using these methods.

leflock ef all (2008) uses “happy” and “sad” words from a standard lexicon as concept vectors
and demonstrated their predictive value for firm performance when matched to newspaper stories
about the firms.

Much earlier, the psychologist Gottschalk used these methods for The Measurement of Psy-
chological States Through the Content Analysis of Verbal Behavior (Goftschalk_and Gleser, T969;
Goffschalk ef all, T969; Goffschalk, 1995). From carefully developed word lists (treated as concept
vectors in our sense), Gottschalk and his co-workers achieved considerable success in automated
diagnosis of mental illnesses from transcribed interviews with patients. (Wouldn’t you like to know
what words are in the lists? Well, it’s public information.)

One could go on, but what’s here should suffice to make the point for the utility of the concept
vector matching process.

3 Tasks

3.1 Get a Concept Vector from a File
Write a function and associated code that conforms to the following template and documentation.

def getConceptVectorLabeled(daDir,daFile):

Assumes that daFile is in standard concept vector form:
<weight>$$$<pattern>SSS<pattern label>, where <pattern>
is an re string and <pattern label> is for display only.
Example: MarchExplorLabeled.txt:
1$$S\bexplor.+2\bSS$Sexplor«

1$$S$\bsearch.*?\b$$Ssearchx
1$$$\bvariation.*?\b$$Svariation«
15535\brisk.*«?\bS$SSrisk~

1$$S\bexperiment .+x?\bSSexperiment »
1$$$\bplay.*?\bSsSplay*

1$$S\bflexib.*?2\bSSSflexib«
1$$S\bdiscover.*x2?2\b$$Sdiscover«
1$$$\binnovat.*?\bS$$Sinnovat

Here the weights are all equal to 1. The $$$ is a separator.
Then there is a regular expression.Note that here we
are insisting on word boundaries, with \b.

The function returns a list in which the first item

is the concept name, taken as the file name minus the
".txt" extension. More precisely, it is the string in
the file name to the left of the first period.

The second item in the list is another list. This

is a list of 2-tuples

[No, it’s 3-tuples The third item is the
label on the regular expression which is the second item.]

in which the first item is the
<weight> value from a line and the second is the
<pattern> from the line, as a string. For example,
this is returned for MarchExplore.txt:
Run the script
def gl():
conceptVector = \

mytexan.getConceptVectorLabeled (\
pathToConceptVectors,MarchExplore)
print (conceptVector)
and you should get

[’MarchExploreLabeled’ [

(r "\\bexplor.*?\\b’, ’'explor=*’),

(’1’, "\\bsearch.*?\\b’, ’'search*’),

(’1 "\\bvariation.x?\\b’, ’variationx’),

(f "\\brisk.*?\\b’, ’riskx’),

(’1’, "\\bexperiment.*?\\b’, ’experimentx*’),

("1, "\\bplay.x*?\\b’, ’'playx’),

('1' "\\bflexib.*?\\b’, ’'flexibx*'),

("1, "\\bdiscover.*?\\b’, ’discoverx*'),

(r "\\binnovat.*?\\b’, ’innovatx’)]]

Note that the backslashes have been escaped (this is
done automatically by Python when you read the file),
so you do not need to worry about using a raw string.

rrzrs

[Your code here.]

When you run it, say with

def gl{():

rrzrs

A little script to exercise the code for question 1.
rrr
conceptVector = \
mytexan.getConceptVectorLabeled (\
pathToConceptVectors,MarchExplore)
print (conceptVector)

al ()

(where dirConceptVectors is the path to the directory holding the concept vectors files) it
should behave as indicated above in the function comments (edited for display). See myexercise-
texan.py for valid assignments of dirConceptVectors and MarchExplore

Answer:

def getConceptVectorLabeled(daDir,daFile) :

rrs

Assumes that daFile is in standard concept vector form:
<weight>$$S<pattern>$$$S<pattern label>, where <pattern>
is an re string and <pattern label> is for display only.
Example: MarchExplorLabeled.txt:
1$$S\bexplor.«2?2\bS$SSexplorx
1$$S\bsearch.*?\bSSsearch~
1s$S\bvariation.*?\bS$S$Svariation»
1$$S\brisk.«?\bS$SSriskx*
1$$S\bexperiment . *?\b$$Sexperiment »
1$$s\bplay.*?\bS$SSplay*
15$S\bflexib.*x?\bS$SSflexibx
1$$3$\bdiscover.+x?\b$S$Sdiscoverx
1$$$\binnovat.+?\b$$Sinnovatx
Here the weights are all equal to 1. The $$$ is a separator.
Then there is a regular expression.Note that here we
are insisting on word boundaries, with \b.
The function returns a list in which the first item
is the concept name, taken as the file name minus the
".txt" extension. More precisely, it is the string in
the file name to the left of the first period.
The second item in the list is another 1list. This
is a list of 2-tuples in which the first item is the
<weight> value from a line and the second is the
<pattern> from the line, as a string. For example,
this is returned for MarchExplore.txt:
Run the script
def gl{():

conceptVector = \

mytexan.getConceptVectorLabeled (\
pathToConceptVectors,MarchExplore)

print (conceptVector)

and you should get

"MarchExploreLabeled’, [

717, '"\\bexplor.*?\\b’, ’explor*'),

1", ’"\\bsearch.*«?\\b’, ’search*’),

1", '"\\bvariation.*?\\b’, ’variationx’),
17, "\\brisk.*?\\b’, ’'riskx"),

17, "\\bexperiment.x*?\\b’, ’experimentx’),
17, "\\bplay.*?\\b’, ’'playx’),

717, "\\bflexib.*x?\\b’, "flexibx*'),

(17, "\\bdiscover.*?\\b’, ’discover=*’),
("1', "\\binnovat.*?\\b’, ’innovat=*’)]]

Note that the backslashes have been escaped (this is
done automatically by Python when you read the file),
so you do not need to worry about using a raw string.
f = open(daDir + os.sep + daFile,’r’)
flines = f.readlines{()
tuplelList = []
for line in flines:
daSplit = line.strip(’\n’).split(’$$s’)
#print (daSplit[2])
if len(daSplit) > 2:
tuplelist.append((daSplit[0], daSplit[l], daSplit[2]))

conceptName = daFile.split (’.’) [0]
return [conceptName, tuplelList]

3.2 Process a Single Pattern on a Collection
Write a function and associated code that conforms to the following template and documentation.

def dirFilesCountWord (dirTxts, daWord) :

rrs
Given a directory, dirTxts, holding a number text files,
and a search term, daWord, returns a list of 2-tuples in
which the first item is the file name and the second item
is the number of times the search term appears in the file.
This function DOES use the re module to accomplish this task.
It works fine, however, if daWord is just a simple string.

rrzrs

[Your code here.]
When you run it, say with

def g2 () :

rrzs

A little script to exercise the code for question 2.

rrzrs

theDirTexts = pathToTextCollections + os.sep + DowIndTxts
listDirFilesCounts = \

10

mytexan.dirFilesCountWord (theDirTexts, r’ \bexpan.*?\b’)
print (theDirTexts)
print (listDirFilesCounts)
az ()

where DowIndTxts is defined as
DowIndTxts = ’'DowJonesIndustrials2009’
then it should behave as follows (edited for display):

../collections/text/DowJonesIndustrials2009

[("3M-2010.pdf.txt’, 8), ('Alcoa-2010.pdf.txt’, 46),
("ATT-2010.pdf.txt’, 25), ('AXP-2010.pdf.txt’, 13),
("Boeing—-2010.pdf.txt’, 8), ('Caterpillar-2010.pdf.txt’, 16),
("Chevron-2010.pdf.txt’, 10), ('Cisco-201l.pdf.txt’, 16),
("Coca-Cola-2010.pdf.txt’, 5), ('Dupont-2010.pdf.txt’, 2),
("Exxon-2010.pdf.txt’, 21), ('GE-2010.pdf.txt’, 20),

(" HomeDepot—-2011l.pdf.txt’, 10), ('HP-201l.pdf.txt’, 3),

(" IBM-2010.pdf.txt’, 37), ('Intel-2010.pdf.txt’, 1),

(" JPMC-2010.pdf.txt’, 45), ('Kraftfoods-2010.pdf.txt’, 8),
("McDonalds-2010.pdf.txt’, 11), ('Merck-2010.pdf.txt’, 6),
("Microsoft-2011.pdf.txt’, 5), ('Pfizer-2010.pdf.txt’, 7),
("PG-2011.pdf.txt", 42), ('Travelers—-2010.pdf.txt’, 41),
("United-Technologies-2010.pdf.txt’, 17),
("Verizon-2010.pdf.txt’, 25), ('Wal-mart-2010.pdf.txt’, 35),
("Walt-Disney-2010.pdf.txt’, 22)]

Answer:

def dirFilesCountWord (dirTxts,daWord) :

rrs
Given a directory, dirTxts, holding a number text files,
and a search term, daWord, returns a list of 2-tuples in
which the first item is the file name and the second item
is the number of times the search term appears in the file.
This function DOES use the re module to accomplish this task.

It works fine, however, if daWord is just a simple string.
rrr

daFileNames = os.listdir (dirTxts)
toReturn = []
compiledPattern = re.compile (daWord, re.I)

for daFileName in daFileNames:

11

f = open(dirTxts + os.sep + daFileName,’r’).read()
daCount = len(compiledPattern.findall (f))
toReturn.append((daFileName, daCount))

return toReturn

3.3 Sort a List of Tuples
Write a function and associated code that conforms to the following template and documentation.

def sortListOfTuples(dalist,daltem,descend=True) :
rrr

Given a list of tuples, dalist, sorts the tuples

on item daltem and returns the sorted list of

tuples. By default the list is in descending order,

but if descend is False, then in ascending order.

rrs

[Your code here.]
When you run it, it should behave as follows. This script

def g3():

rrzrs

A little script to exercise the code for question 3.
rr
theDirTexts = pathToTextCollections + os.sep + DowIndTxts
listDirFilesCounts = \
mytexan.dirFilesCountWord (theDirTexts, r’ \bexpan.*?\b’)
sortedList = mytexan.sortListOfTuples (\
listDirFilesCounts, 1)
print (sortedList)
a3 ()

produces

[("Alcoa—-2010.pdf.txt’, 46), ("JPMC-2010.pdf.txt’, 45),
("PG-2011.pdf.txt’, 42), ('Travelers-2010.pdf.txt’, 41),

(" IBM-2010.pdf.txt’, 37),

("Wal-mart-2010.pdf.txt’, 35), ("ATT-2010.pdf.txt’, 25),
("Verizon-2010.pdf.txt’, 25), ('Walt-Disney-2010.pdf.txt’, 22),
("Exxon-2010.pdf.txt’, 21), ('GE-2010.pdf.txt’, 20),
("United-Technologies-2010.pdf.txt’, 17),
("Caterpillar-2010.pdf.txt’, 16), ('Cisco-2011l.pdf.txt’, 16),

12

("AXP-2010.pdf.txt’, 13), ('McDonalds-2010.pdf.txt’, 11),

(" Chevron-2010.pdf.txt’, 10), (’'HomeDepot-201l.pdf.txt’, 10),
("3M-2010.pdf.txt’, 8), ('Boeing-2010.pdf.txt’, 8),
("Kraftfoods—-2010.pdf.txt’, 8), ('Pfizer-2010.pdf.txt’, 7),
("Merck-2010.pdf.txt’, 6), ('Coca-Cola-2010.pdf.txt’, 5),
("Microsoft-2011.pdf.txt’, 5), ('HP-2011l.pdf.txt’, 3),
("Dupont-2010.pdf.txt’, 2), ('Intel-2010.pdf.txt’, 1)]

(edited for display).

Answer:

def sortListOfTuples (dalList,daltem,descend=True) :
rrr
Given a list of tuples, dalList, sorts the tuples
on item daltem and returns the sorted list of
tuples. By default the list is in descending order,
but if descend is False, then in ascending order.
rrr
return sorted(dalList, cmp=lambda x,y: \
cmp (x[daltem], y[daItem]), \
reverse=descend)

3.4 Write a Simple Report to a CSV File

Write a function and associated code that conforms to the following template and documentation.

def writeCSVFileCount2Tuples (da2Tuples,daFile, conceptName) :
vy

Given a list of 2-tuples, assumed to have the form

(<file name>, <concept score>), writes to the file daFile

the conceptName in the first line as

"Concept: " + conceptName.

The second line has "Source File, Score".

Following that writes each

tuple to a line, with a comma as the separater. The

tuples are written in the order given in daZ2Tuples.The

function returns a message string when it has completed:

"Done writing file " + daFile

rrzr

[Your code here.]

When you run it, it should behave as follows. Running the following script (after importing
texan.py)

13

def g4 () :

rrzs

A little script to exercise the code for question 4.

rrzrs

conceptVector = \

mytexan.getConceptVectorLabeled (pathToConceptVectors,MarchExplore)

theDirTexts = pathToTextCollections + os.sep + DowIndTxts
listDirFilesCounts = \

mytexan.dirFilesCountWord (theDirTexts, conceptVector[1][0][1])

print (mytexan.sortListOfTuples (listDirFilesCounts, 1))

print (mytexan.sortListOfTuples (listDirFilesCounts,1l,False))
print ("\n\n’)

daSortedTuples = mytexan.sortListOfTuples (listDirFilesCounts, 1)
print (mytexan.writeCSVFileCount2Tuples (\

a4 ()

daSortedTuples, \
".." 4+ os.sep + ’outputs’ + os.sep + ’'tuplesScores.txt’,\
conceptVector[1][0][2]))

produces the message Done writing file ../outputs/tuplesScores.txt. when
it completes. (It also produces output that illustrates ascending and descending sorting on
listDirFilesCounts.) If you then launch Excel and import the file tuplesScores.txt, what
you see will be (something very like) Figure B. Note well: The output file tuplesScores.txt is
written to reside in the outputs folder. This is required.

Answer:

def writeCSVFileCount2Tuples (da2Tuples,daFile, conceptName) :

rrzrs

Given a list of 2-tuples, assumed to have the form
(<Given a list of 2-tuples, assumed to have the form
(<file name>, <concept score>), writes to the file daFile
the conceptName in the first line as

"Concept: " + conceptName.

The second line has "Source File, Score:".

Following that writes each

tuple to a line, with a comma as the separater. The
tuples are written in the order given in da2Tuples.The
function returns a message string when it has completed:
"Done writing file " + daFile

rrs

14

A [B |
Concept: explor*®
Source File Score
Chevron-2010.pdf.txt 113
'Exxon-2010.pdf.txt
Kraftfoods-2010.pdf.txt
Alcoa-2010.pdf.txt
Boeing-2010.pdf.txt
Travelers-2010.pof.txt
Microsoft-2011.pdf.txt
Pfizer-2010.pdf.txt
'ATT-2010.pdf.txt
HP-2011.pdf.txt
1BM-2010.pdf.txt
United-Technologies-2010.pdf.txt
Verizon-2010.pdf.txt
3M-2010.pdf.txt
AXP-2010.pdf.txt
Caterpillar-2010.pdf.txt
Cisco-2011.pdf.txt
Coca-Cola-2010.pdf.txt
Dupont-2010.pdf.txt
GE-2010.pdf.txt
HomeDepot-2011.pdf.txt
Intel-2010.pdf.txt
JPMC-2010.pdf.txt
McDonalds-2010.pdf.txt
Merck-2010.pdf.txt
28 |PG-2011.pdf.txt
29 |Wal-mart-2010.pdf.txt
30 |Walt-Disney-2010.pdf.txt

-
ry

NN N LI N | bt | el | | ot | ok | o | | o | ot | o
‘Nlm\m'“‘wt'\"“lo’wlm’\"m}m‘“)w‘NIH‘olw‘miulalm‘h‘wINIHL

OO0 0000000000000 KHKEKEENNWDBLBW

Figure 3: Imported file produced by texan.sortListOfTuples()

15

f = open(daFile,’'w’)
f.write (' Concept: ’ + conceptName + "\n’)
f.write (' Source File, Score\n’)
#daSortedTuples = sortListOfTuples (da2Tuples, 1)
for aTuple in da2Tuples:
f.write(aTuple[0] + ’,’ + str(aTuple[l]) + ’"\n’)

f.close ()
return "Done writing file " + daFile + "."

3.5 Count the Hits and Show the Words
Write a function and associated code that conforms to the following template and documentation.

def dirFilesCountWordHits (dirTxts,daWord) :

rrs
Similar to but adds to dirFilesCountWord. Instead of
returning a list of 2-tuples, it returns a list of 3-tuples.
Given a directory, dirTxts, holding a number text files,
and a search term, daWord, returns a list of 3-tuples in
which the first item is the file name, the second item
is the number of times the search term appears in the file, and the
third item is a list of the terms in the document matching
the input patter, daWord. This list is in alphabetical order.
This function DOES use the re module to accomplish this task.
It works fine, however, if daWord is just a simple string.
The function processes its input file after converting it to
lower case, so in the hit list we do not have duplications due
to capitalization.

rrzrs

[Your code here.]

When you run it, it should behave as follows. Running the following script (after importing
texan.py)

def g5():

rrs

A little script to exercise the code for question 5.
rrs

theDirTexts = pathToTextCollections + os.sep + DowIndTxts
countsAndHits = \
mytexan.dirFilesCountWordHits (theDirTexts, r’ \bexpan.*?2\b’)

16

print (countsAndHits)

as ()
produces the output (in part):

[("3M-2010.pdf.txt’, 8, [’"expanded’, ’'expanding’, ’'expansions’]),
("Alcoa-2010.pdf.txt’, 46, [’'expand’, ’'expanded’, ’'expanding’,
"expands’, ’'expansion’, ’'expansions’]), ('ATT-2010.pdf.txt’, 25,
["expand’, ’expanded’, ’'expanding’, ’expands’, ’expansion’]),
("AXP-2010.pdf.txt’", 13, [’"expand’, ’'expanded’, ’'expands’,
"expansion’]), ('Boeing-2010.pdf.txt’, 8, [’expand’,
"expandboeing’, ’expanded’, ’'expanding’]),
("Caterpillar-2010.pdf.txt’, 16, [’expand’, ’expanded’,
"expanding’, ’expansion’]), (/Chevron-2010.pdf.txt’, 10,
"expanded’, ’expands’, ’expansion’]),

"Coca-Cola-2010.pdf.txt’, 5, [’'expand’, ’'expanded’, ’'expansion’]),
"Dupont-2010.pdf.txt’, 2, [’expanded’, ’'expanding’]),
"Exxon-2010.pdf.txt’, 21,

"expand’, ’'expanded’, ’‘expanding’, ’'expands’, ’'expansion’]),

(
(
(
(
(
(

(Notice the typo discovered in the Boeing report. Or is it a slogan?)

Answer:

def dirFilesCountWordHits (dirTxts,daWord) :

1y
Similar to but adds to dirFilesCountWord. Instead of
returning a list of 2-tuples, it returns a list of 3-tuples.
Given a directory, dirTxts, holding a number text files,
and a search term, daWord, returns a list of 3-tuples in
which the first item is the file name, the second item
is the number of times the search term appears in the file, and the
third item is a list of the terms in the document matching
the input patter, daWord. This list is in alphabetical order.
This function DOES use the re module to accomplish this task.
It works fine, however, i1if daWord is just a simple string.
The function processes its input file after converting it to
lower case, so in the hit list we do not have duplications due
to capitalization.

rrzrs

daFileNames = os.listdir (dirTxts)

17

"Cisco-2011.pdf.txt’, 16, [’expand’, ’'expanded’, ’'expanding’, ’expansion’]),

toReturn = []
compiledPattern = re.compile (daWord, re.I)
for daFileName in daFileNames:
f = open(dirTxts + os.sep + daFileName,’r’)

ftext = f.read() .lower ()
f.close()
#print (daFileName + " " + str(len(ftext)) + ’"\n’)

daFindings = compiledPattern.findall (ftext)

#print (daFindings)

daCount = len (daFindings)

daHits = sorted(set (daFindings))

toReturn.append((daFileName, daCount,list (daHits)))

return toReturn

3.6 Write a CSV File to Report the Hit Counts and the Words

Write a function and associated code that conforms to the following template and documentation.

def writeCSVFileCountHits3Tuples (da3Tuples,daFile, conceptName) :

rrs
Similar to writeCSVFileCount2Tuples, but adds hits list.
Given a list of 3-tuples, assumed to have the form
(<file name>, <concept score>, <hits list>), writes to the file
daFilethe conceptName in the first line.
The second line has "Source File, Score,Hits:".
Following that writes each 3-tuple to a line, with a comma
as the separater. The third item, a litst, is "flattened" and
each item in the list is written out with comma separations.
The tuples are written in the order given in da2Tuples.The
function returns a message string when it has completed:
"Done writing file " + daFile

vy

f = open(daFile,’'w’)

f.write (' Concept: ’ + conceptName + "\n’)

f.write (' Source File,Score,Hits:\n’)

#daSortedTuples = sortListOfTuples (da2Tuples, 1)

for aTuple in da3Tuples:

f.write(aTuple[0] + ’,’ + str(aTuple[l]))
for aWord in aTuplel[2]:
f.write(’,’ +aWord)

18

f.write('\n’)

f.close()
return "Done writing file " + daFile + "."

When you run it, it should behave as follows. Running the following script (after importing
texan.py)

def g6():

rrzs

A little script to exercise the code for question 6.

rrs

theDirTexts = pathToTextCollections + os.sep + DowIndTxts

countsAndHits = \
mytexan.dirFilesCountWordHits (theDirTexts, r’ \bexpan.*2\b’)

sorted3tuples = mytexan.sortListOfTuples (countsAndHits, 1)

result = mytexan.writeCSVFileCountHits3Tuples (sorted3tuples, \
..’ + os.sep + ’'outputs’ + os.sep +’'tuples3.txt’, \
"expanx*’)

print (result)

a6 ()
produces the message
Done writing file ../outputs/tuples3.txt.

when it completes. If you then launch Excel and import the file tuples3.txt, what you see will be
(something very like) Figure 8.

Answer:

def writeCSVFileCountHits3Tuples (da3Tuples,daFile, conceptName) :
rrs

Similar to writeCSVFileCount2Tuples, but adds hits list.

Given a list of 3-tuples, assumed to have the form

(<file name>, <concept score>, <hits list>), writes to the file

daFilethe conceptName in the first line.

The second line has "Source File, Score,Hits:".

Following that writes each 3-tuple to a line, with a comma

as the separater. The third item, a litst, is "flattened" and

each item in the list is written out with comma separations.

The tuples are written in the order given in da2Tuples.The

19

i A [B[] €] D I E F G [H] 1 [
_ 1 |Concept: expan*
_ 2 |Source File Score Hits:
_ 3 |Alcea-2010.pdf.txt 46 expand expanded expanding expands expansion expansions
_4 |JPMC-2010.pof.txt 45 expand expanded expandedinternationally expanding expandingoutour expansion expansions
_5 |PG-2011.pdf.txt 42 expand expanded expanding expansion expansions
_ 6 |Travelers-2010.pdf.txt 41 expand expanded expanding expands expansion
_ 7 |IBM-2010.pdf.txt 37 expand expanded expanding expands expansion
_ 8 |Wal-mart-2010.pdf.txt 35 expand expanded expanding expansion expansions
9 |ATT-2010.pdf.txt 25 expand expanded expanding expands expansion
10 |Verizon-2010.pdf.txt 25 expand expanded expanding expansion expansive
11 |Walt-Disney-2010.pdf.txt 22 expanded expanding expansion
12 |EBxxon-2010.paf.txt 21 expand expanded expanding expands expansion
13 |GE-2010.pdf.txt 20 expand expanded expanding expands expansion expansive
14 |United-Technologies-2010.pdf.txt 17 expan expand expanded expanding expands expansion expansionary expansive
15 |Caterpillar-2010.pdf.txt 16 expand expanded expanding expansion
16 |Cisco-2011.pdf.txt 16 expand expanded expanding expansion
17 |AXP-2010.pdf.txt 13 expand expanded expands expansion
18 |McDonalds-2010.pdf.txt 11 expanded expanding expands expansion
19 |Chevron-2010.pdf.txt 10 expanded expands expansion
20 |HomeDepot-2011.pdf.txt 10 expand expanded expansion
21 |3M-2010.pdf.txt 8 ded expanding pansions
22 |Boeing-2010.pdf.txt 8 expand expandboeing expanded expanding
23 |Kraftfoods-2010.pdf.txt 8 expand expanded expanding
24 | Pfizer-2010.pdf.txt 7 expand expanded expanding
25 |Merck-2010.pdf.txt 6 expanded expanding expansion
26 | Coca-Cola-2010.pdf.txt 5 expand expanded expansion
27 |Microsoft-2011.pdf.txt 5 expand expanded expands
28 |HP-2011.paf.txt 3 expand expanding expansion
29 |Dupont-2010.pdf.txt 2 expanded expanding
30 |Intel-2010.pdf.txt 1 expand
31

Figure 4: Imported file produced by texan.writeCSVFileCountHits3Tuples()

function returns a message string when it has completed:
"Done writing file " +

rrs

f =

f.write (' Concept:

#daSortedTuples
for aTuple in da3Tuples:

daFile

open (daFile, 'w’)

’ + conceptName + ’"\n’)
f.write (' Source File,Score,Hits:\n")
sortListOfTuples (da2Tuples, 1)

f.write (aTuple[0] +
for aWord in aTuple[2]:
f.write(’,’ +aWord)

f.write('\n’)

f.close ()

’ ’

,’ 4+ str(aTuple[l]))

return "Done writing file " + daFile + "."

20

3.7 Count and Sum the Pattern Hits

Write a function and associated code that conforms to the following template and documentation.

def dirFilesCountWordVectorHits (dirTxts, daConceptVector) :
P

Similar to but adds to dirFilesCountWord.

And similar to dirFilesCountWordHits, but adds to it.

Modifies the second input parameter, daConceptVector, which

now it is assumed has the form as returned by

getConceptVector (). That is, a list whose first element

is the concept name and whose second element is a list

of tuples. Instead of a single search pattern, as before,

we have a concept vector.

The function returns a list of 3-tuples.

Given a directory, dirTxts, holding a number text files,

and a concept vector, daConceptVector, returns a list of 3-tuples
in which the first item is the file name, the second item is the
total number of times the search term in the search vector

appear in the file. The

third item is a list of the counts of patterns in the document matching
the input patterns in the concept vector. This list is in the order
in which the search patterns appear in the concept wvector.

This function DOES use the re module to accomplish this task.

The function processes its input file after converting it to

lower case, so in the hit list we do not have duplications due

to capitalization.

rrir

[Your code here.]

When you run it, it should behave as follows. Running the following script (after importing
texan.py) produces the following output.

def g7():

rrs

A little script to exercise the code for question 7.
P
conceptVector = \
mytexan.getConceptVectorLabeled (pathToConceptVectors,MarchExplore)
#print (conceptVector)
theDirTexts = pathToTextCollections + os.sep + DowIndTxts
countWordHits = \

21

nmytexan.dirFilesCountWordVectorHits (theDirTexts, conceptVector)
print (countWordHits)

a7 ()
When you examine the output, this is what you see:

>>>
"MarchExplorelabeled’, [

0.0, 0.0, 1.0, 74.0, 0.0

"Alcoa-2010.pdf.txt’, 86.0,

4.0, 0.0, 0.0, 55.0, 0.0, 1.0, 7.0, 9.0, 10.01),
"ATT-2010.pdf.txt’, 82.0

1.0

7

[("3M-2010.pdf.txt’, 101.0,
[

(

(

(

(1.0, 4.0, 2.0, 49.0,
(I

(

(

(

(

(

, 1.0, 5.0, 2.0, 18.01),

1.0, 2.0, 0.0, 22.01),
AXP-2010.pdf.txt’, 2
0.0, 1.0, 1.0, 254.0, , 1.0, 7.0, 2.0, 4.01),
"Boeing-2010.pdf.txt’, 138.0,

4.0, 0.0, 2.0, 96.0, 4.0, 0.0, 7.0, 9.0, 16.01),
"Caterpillar-2010.pdf.txt’, 9.0,

0.0, 0.0, 0.0, 5.0, 0.0, 1.0, 0.0, 0.0, 3.01),

(and so on).

Answer:

def dirFilesCountWordVectorHits (dirTxts,daConceptVector) :
rr

Similar to but adds to dirFilesCountWord.

And similar to dirFilesCountWordHits, but adds to it.

Modifies the second input parameter, daConceptVector, which

now it is assumed has the form as returned by

getConceptVector (). That is, a list whose first element

is the concept name and whose second element is a list

of tuples. Instead of a single search pattern, as before,

we have a concept vector.

The function returns a list of 3-tuples.

Given a directory, dirTxts, holding a number text files,

and a concept vector, daConceptVector, returns a list of 3-tuples

in which the first item is the file name, the second item is the

total number of times the search term in the search vector

appear in the file. The

third item is a list of the counts of patterns in the document matching

22

the input patterns in the concept vector. This list is in the order
in which the search patterns appear in the concept wvector.
This function DOES use the re module to accomplish this task.
The function processes its input file after converting it to
lower case, so in the hit list we do not have duplications due
to capitalization.
rror
daFileNames = os.listdir (dirTxts)
toReturnData = []
First element is the name of the concept:
#toReturn.append (daConceptVector[0])
Get the list of tuples for the concept:
conceptList = daConceptVector([1l]
#compiledPattern = re.compile (daWord, re.I)
for daFileName in daFileNames:
f = open(dirTxts + os.sep + daFileName,’r’)
ftext = f.read() .lower ()
f.close()
findingsCounts = []
for (weight,term) in conceptList:
wt = float (weight)
compiledPattern = re.compile(term,re.I)
daFindings = compiledPattern.findall (ftext)
#print (daFindings)
daCount = len (daFindings)
daScore = daCount * wt
findingsCounts.append (daScore)
#daHits = sorted(set (daFindings))

toReturnData.append((daFileName, sum(findingsCounts), findingsCounts))

return [daConceptVector[0], toReturnData]

3.8 Write the Full Report
Write a function and associated code that conforms to the following template and documentation.

def writeCSVFileSumScoresShowScores (daData,daFile, conceptVector) :

rrr

Similar to writeCSVFileCount2Tuples, but adds hits list.
Given daData, assumed to have the form of the return value

23

from dirFilesCountWordVectorHits (, writes to the file
daFile the conceptName in the first line.

The second line has "Source File, Score," followed by the
labels from the conceptVector.

Following that it writes each tuple to a line, with a comma
as the separater. The third item, a listt, is "flattened" and
each item (a hit count) in the list 1is written out with
comma Sseparations.

The tuples are written in the order given in da2Tuples.The
function returns a message string when it has completed:
"Done writing file " + daFile

rrs

[Your code here.]
Here’s a script for running the function:

def g8() :

rrzrs

A little script to exercise the code for question 8.
rrr
aConVec = mytexan.getConceptVectorLabeled (pathToConceptVectors, \
"MarchExplorelLabeled.txt’)
theDirTexts = pathToTextCollections + os.sep + DowIndTxts
someData = mytexan.dirFilesCountWordVectorHits (theDirTexts, aConVec)

coreData = mytexan.sortListOfTuples (someDatall], 1)
theData = [someData[0], coreData]
daFile = 7..’” + os.sep + 'outputs’ + os.sep + ’SumShowScores.txt’

aResult = mytexan.writeCSVFileSumScoresShowScores (theData, \
daFile, aConVec)
print ("Done. " + daFile + ".")

as ()
When you run it, it should behave as follows:
Done. ../outputs/SumShowScores.txt.

If you then launch Excel and import the file SumShowScores.txt, what you see will be (something
very like) Figure B.

Answer:

def writeCSVFileSumScoresShowScores (daData,daFile, conceptVector) :
rrr

24

A

J

[

K

[

| Concept: MarchExplorelabeled

Source File
JPMC-2010.pdf.txt
Travelers-2010.pdf.txt

GE-2010.pdf.txt

AXP-2010.pdf.txt

7 |Chevron-2010.pdf.txt

Cisco-2011.pdf.txt
HP-2011.pdf.txt
Boeing-2010.pdf.txt
IBM-2010.pdf.txt
Microsoft-2011.pdf txt
PG-2011.pdf.txt
3M-2010.pdf.txt
Exxon-2010.pdf.txt
Coca-Cola-2010.pdf.txt

17 |Alcoa-2010.pdf.txt

22

24
25

27
28
29

31

Walt-Disney-2010.pdf.txt
ATT-2010.pdf.txt
United-Technologies-2010.pdf.txt
Verizon-2010.pdf.txt
Wal-mart-2010.pdf.txt
Kraftfoods-2010.pdf.txt
Pfizer-2010.pdf.txt
HomeDepot-2011.pdf.txt
McDonalds-2010.pdf .txt
Merck-2010.pdf.txt
Dupont-2010.pdf.txt
Caterpillar-2010.pdf.txt
Intel-2010.pdf.txt

Figure 5: Imported file produced by texan.writeCSVFileSumScoresShowScores()

Score explor* search* variation® risk®* experiment®* play* flexib* discover®* innovat*

942
488
325
270
185
163
151
138
136
130
122
101
100

86
83
82
74
65

31
27
26
26
15
13

0
3
0

[
[y
o wo

F=y
P

COOOOONUVMOKRHEKLMODOROONK

0

0000k OO

sy
~

HOOOO0OOOOOKHHDHDOODOOOO

25

OO0 0000 KFHFOKHFONNWODODOORFEKORNEKRNWDODOHONW

835
465
283
254

41
133
122

100
56
36
74
29
75
55
48
43
56
31
33

22
22

[=RN0, B -]

OO0 0O0O0OOHOOFHFHFOOOHOOOOM,ODOODOO OO

6

H OO NMNUNOOKORNDO

[
(=]

NHOOOONWON -

7

[y

OO O0OONOOOOWRENRFENEFEFEODUOWRESNOODNNDLOO

15
8
2
2

N
B

OO ONOQOKKHFONNONDWOOONKENEWKE =

16
4

34

4
4
14
12
16
20
18
83
18
S
10
10
4
22
S
25
10
11
15
4
2
13
12
3

A

Similar to writeCSVFileCount2Tuples, but adds hits list.
Given daData, assumed to have the form of the return value
from dirFilesCountWordVectorHits (, writes to the file
daFile the conceptName in the first line.
The second line has "Source File, Score," followed by the
labels from the conceptVector.
Following that it writes each tuple to a line, with a comma
as the separater. The third item, a listt, is "flattened" and
each item (a hit count) in the 1list 1is written out with
comma separations.
The tuples are written in the order given in da2Tuples.The
function returns a message string when it has completed:
"Done writing file " 4+ daFile
rror
conceptName = daDatal[0]
f = open(daFile,’'w’)
f.write (' Concept: ’ + conceptName + ’"\n’)
f.write (’ Source File, Score’)
conceptTuples = conceptVector([1l]
for (a, b, label) in conceptTuples:
f.write(’,’ + label)
f.write('\n’)
da3Tuples = daDatal[l]
#daSortedTuples = sortListOfTuples (da2Tuples, 1)
for aTuple in da3Tuples:
f.write(aTuple[0] + ’,’ + str(aTuple([l]))
for aCount in aTuple[2]:
f.write(’,’+ str(aCount))

f.write("\n’)

f.close ()
return "Done writing file " + daFile + "."

4 Generalizing All This a Bit

We have developed some useful functions in the context of exploring concept matching between
a concept vector based on March’s exploration vocabulary and a corpus (document collection)
composed of annual reports from the Dow Jones Industrials. In general, there will be a many-to-
many relationship between concept vectors and corpora (plural of “corpus”). We should like our

26

software to accommodate exploring such many-to-many relationships.
To begin, we have a concept vector for March’s exploitation vocabulary:

1$$S\bexploit.*«?\bSSexploitx*
1$3$5\brefine.«?\bSSSrefinex
1$$$\bchoice.*?\bSSSchoice~
1Ss\bproduction.*?\bSSSproduction*
1$$$\befficien.x?\b$SSefficienx
15$S\bselect.x?\bS$SSselect*
1$$$\bimplement . *?\bS$$S$implement *
1$$S\bexecut.+x?\bSSSexecut »

It resides in the MarchExploitLabeled.txt file in the concept s directory, whose contents are listed
by running this script:

def listConceptVectorFiles():
rrs
Prints a list of the file names of the available
concept vector files.
rrr
print (' pathToConceptVectors = ’ + pathToConceptVectors)
dalist = os.listdir (pathToConceptVectors)
print (daList)
listConceptVectorFiles ()

When you run it you will see

pathToConceptVectors = ../concepts
[MarchExploitLabeled.txt’, ’'MarchExplorelLabeled.txt’]

We can generalize the procedure of question 8 to accommodate arbitrary concept vectors and
arbitrary corpora as follows:

def reportCorpusConcept (corpus, conceptFile):
rrrs

A little script to exercise the code for question 8.
rrs
print (" pathToConceptVectors = 7 + pathToConceptVectors)
print (' pathToTextCollections = ' + pathToTextCollections)
aConVec = mytexan.getConceptVectorLabeled (pathToConceptVectors, \
conceptFile)
theDirTexts = pathToTextCollections + os.sep + corpus
someData = mytexan.dirFilesCountWordVectorHits (theDirTexts, aConVec)
coreData = mytexan.sortListOfTuples (someDatall], 1)

27

theData = [someData[0], coreData]

daFile = 7..’ + os.sep t+ 'outputs’ + os.sep + ’'Results’ + conceptFile
aResult = mytexan.writeCSVFileSumScoresShowScores (theData, \
daFile, aConVec)
print ("Done. " + daFile + ".")
if you add

reportCorpusConcept (' DowdonesIndustrials2009’,’MarchExploitLabeled.txt’)

to the module and execute it, a CSV file called ResultsMarchExploitLabeled.txt will be written to
the outputs directory. If you then import this file into Excel, you get what you see in Figure B.
Compare it with Figure B, found on page I3.

_ A | B | € [D] E | F | G [H | ! i Y]
_1 |Concept: MarchExploitLabeled
2 |Source File Score exploit*® refine* choice* production* efficien® select* implement® execut*
_3 |Chevron-2010.pdf.txt 375 0 98 0 210 12 13 4 38
_4 |Alcoa-2010.pcf.txt 315 0 80 4 34 18] 14 96
5 |JPMC-2010.pcf.txt 248 0 18 0 25 10 75 32 88
_6 | Boeing-2010.pdf.txt 228 1 0 0 108 23 15 6 75
_ 7 |Travelers-2010.pdf.txt 218 0 5 3 5 15 64 12 114
_8 |HP-2011.pdf.txt 171 1 0 1 S 17 8 27 108
_9 |Walt-Disney-2010.pdf.txt 156 4 0 0 79 0 5 3 65
10 |Coca-Cola-2010.pdf.txt 133 0 1 0 50 13 1 6 58
as 1 |Exxon-2010.pdf.txt 139 0 13 0 38 45 17 5 15
B}_!Cisco-mn.pdf.txt 105 0 2 1 8 6 16 10 62
13 |United-Technologies-2010.paf.txt 87 0 0 3 21 37 1 4 21
14 |GE-2010.pdf.txt 32 1 0 0 14 14 13 1 43
15 |I1BM-2010.pdf.txt 30 0 0 1 2 25 13 14 35
16 |HomeDepot-2011.pdf.txt 87 0 0 0 2 10 16 14 45
17 |AXP-2010.pdf.txt 78 0 1 4 1 3 34 14 21
18 |3M-2010.pdf.txt 74 0 0 0 1 7 5 6 45
19 |Verizon-2010.pdf.txt 63 0 0 2 0 16 7 3 41
20 |PG-2011.pdf.t 63 0 Y 4 2 5 7 6 40
21 |Caterpillar-2010.paf.txt 58 0 0 1 16 16 0 1 24
22 |Kraftfoods-2010.pdf.txt 56 0 0 13 12 10 2 4 15
23 |Wal-mart-2010.pdf.txt 54 0 0 2 0 13 1 0 38
24 |ATT-2010.pdf.txt 52 0 1 2 0 3 5 2 39
25 |Microsoft-2011.pdf.txt 50 0 0 B 2 8 8 8 20
26 |McDonalds-2010.pdf.txt 40 0 1 6 2 6 0 3 22
27 |Merck-2010.paf.txt 36 0 0 1 1 2 0 3 28
28 |Pfizer-2010.pdf.txt 23 0 0 2 2 1 0 1 17
29 |Intel-2010.pdf.txt 15 0 0 0 2 0 0 0 13
30 |Dupont-2010.pdf.txt 6 0 0 0 1 1 3 0 1

Figure 6: Imported file produced by texan.writeCSVFileSumScoresShowScores() with MarchEx-
ploitLabeled.txt concept vector

So that’s for the concept vector side. On the corpora side, if we add additional corpora we can
use them as well. And we have. If you run this script:

28

def listTextCorporal):

rrzs

Prints a list of the directory names of the available
corpora (document collections) in text format.

rrr

print ("pathToTextCollections = ' + pathToTextCollections)
daList = os.listdir (pathToTextCollections)
print (daList)

#
listTextCorpora ()

you will see on output

pathToTextCollections = ../collections/text
[Consumer Goods’, ’'DowJonesIndustrials2009’, ’Healthcare’,
"IndustrialGoods’]

Running
reportCorpusConcept (' Healthcare’,’MarchExploitLabeled.txt’)

leads to the report in Figure [1.
Running

reportCorpusConcept (' Healthcare’, 'MarchExploreLabeled.txt’)

leads to the report in Figure B.
So, by these means we are able to general a great deal of interesting and useful data.

S Assignment

On WebCafé you will find a file named rtr.zip. You should download it to a place of convenience
for you and unzip it. This will produce a directory called rtr (“Root of the Text Repository”),
with the following subdirectories (folders):

rtr/
code/
collections/
text/
concepts/
outputs/

29

_ A | S R e e) [F [G [H | I E=ES
_ 1 |Concept: MarchExploitLabeled
_ 2 |Source File Score exploit* refine* choice® production* efficien* select* implement* execut*
_ 3 |Metcare-2011.pdf.txt 435 0 0 1 0 1 36 24 373
_ 4 |CIGNA-2010.pdf.txt 174 0 1 10 1 28 30 37 67
5 |Amerigroup-2010.pdf.txt 145 0 1 17 0 7 21 37 62
_ 6 |Medco-2011.pdf.txt 134 0 0 6 1 16 17 26 68
_ 7 |IHHI-2010.pdf.txt 133 0 0 2 0 4 10 23 94
_ 8 |Rotech-2011.pdf.txt 127 0 1 1 0 10 13 65 37
_ 9 |Gentiva-2010.pcf.txt 121 0 1 1 10 12 15 31 51
10 |Humana-2010.pdf.txt 120 0 0 6 0 7 22 35 50
11 |Phyhealth-2010.pdf.txt 118 0 0 3 0 S 16 24 66
12 | UniversalAmericanCorp-2010.pdf.txt 114 0 0 0 8 8 30 40 28
13 |Magellan-2010.pdf.txt 111 0 0 1 0 3 16 23 68
14 MolinaHealthcare-2010.pdf.txt 109 1 2 1 0 11 8 44 42
15 |lincare-2011.pdf.txt 100 0 0 0 5 § 2 8 28 61
16 |AlmostFamily-2010.pdf.txt 97 0 0 0 2 3 13 38 41
17 Amedisys-2010.pdf.txt 54 1 0 3 0 12 14 24 40
18 |Addus-2010.pdf.txt 30 0 0 2 0 5 16 35 32
19 |Fortis-2011.pdf.txt 83 0 0 0 1 4 5 14 59
20 | ExpressScripts-2010.pdf.txt 45 0 0 6 1 1 11 7 15
21 |United-2010.pdf.txt 45 0 0 10 0 5 1 2 27
22 |Wellpoint-2010.pdf.txt 33 0 0 3 0 8 1 6 15
23 |Chemed-2010.pdf.txt 26 0 1 1 1 0 8 0 15
24 |CapitaiHealth-2009-10.pdf.txt 24 0 0 13 0 1 4 5 1
25 |KMCH-2011.pdf.txt 24 0 0 1 0 3 2 1 17
26 |Abano-2011.pdf.txt 19 0 0 0 1 4 1 1 12
27 |HealthManagementAssoc-2010.pdf.txt 17 0 0 2 0 2 0 1 12
ﬁ_ Centene-2010.pdf.txt 16 0 0 0 0 0 4 3 S
29 |Odontroprev-2010.pdf.txt 13 0 0 1 0 1 4 0 7
30 |Wellcare-2010.pdf.txt 13 0 0 1 0 0 0 2 10
31 |Aetna-2010.pdf.txt 10 0 0 0 0 0 0 0 10
32 |Electromed-2010.pdf.txt 5 0 0 0 0 0 1 1 3
33

Figure 7: From running reportCorpusConcept (' Healthcare’,’MarchExploitLabeled.txt’)

30

_ A T 7 T <) » iy i G P T ey Y e &)
_ 1 |Concept: MarchExploreLabeled
_ 2 |Source File Score explor* search* variation® risk® experiment® play* flexib* discover* innovat*
_ 3 |CIGNA-2010.pdf.txt 277 0 1 4 238 0 1 22 1 10
L4 | UniversalAmericanCorp-2010.pdf.txt 206 0 0 3 1%6 0 0 3 2 2
_ 5 |Humana-2010.pdf.txt 187 0 0 2 175 0 0 2 4 4
_ 6 | Metcare-2011.pdf.txt 155 < 2 1 146 0 0 1 0 1
_ 7 |Magellan-2010.pdf.txt 137 0 0 0 118 0 0 2 0 16
_ 8 |Medco-2011.pdf.txt 126 0 0 1 354 0 0 6 2 23
_ 9 |MolinaHealthcare-2010.pdf.txt 115 0 0 4 95 0 3 11 2 0o
10 |Phyhealth-2010.pdf.txt 93 0 0 0 85 0 3 2 1 2
11 |Amerigroup-2010.pdf.txt 82 3 0 2 66 1 0 8 2 0
12 |Amedisys-2010.pdf.txt 80 0 0 0 69 0 0 1 0 10
13 |Fortis-2011.pdf.txt 75 0 0 3 61 0 £l 0 0 2
14 |Odontroprev-2010.pdf.txt 75 0 0 5 68 0 0 2 0 0
15 |Gentiva-2010.pdf.txt 70 4 0 2 55 0 2 3 0 4
16 |Rotech-2011.pdf.txt 63 2 1 1 54 0 0 2 3 0
17 |IHHI-2010.pdf.txt 59 0 0 1 54 0 0 0 4 0
_18 |AimostFamily-2010.pdf.txt 57 2 0 0 54 0 0 0 1 0
19 |Addus-2010.pdf.txt 53 0 2 1 45 0 0 1 1 3
20 |Abano-2011.pdf.txt 44 0 0 0 38 0 0 0 0 6
21 |lincare-2011.pdf.txt 31 0 0 1 30 0 0 0 0 0
22 |United-2010.pdf.txt 31 0 3 0 1 0 2 0 0 15
23 |CapitalHealth-2009-10.pdf.txt 28 4 1 0 3 0 0 0 5 15
24 |Centene-2010.pdf.txt 23 0 0 0 17 0 1 0 0 5
25 |ExpressScripts-2010.pdf.txt 20 2 o 0 3 0 1 o 0 14
26 |Chemed-2010.pdf.txt 15 0 0 0 14 0 0 0 0 1
27 |HealthManagementAssoc-2010.pdf.txt 14 0 0 0 5 0 1 2 0 6
28 |Wellpoint-2010.pdf.txt 11 0 0 0 2 0 0 0 0 S
29 |Electromed-2010.pdf.txt 6 0 0 0 4 0 0 0 0 2
30 |KMCH-2011.pdf.txt 6 0 0 0 2 0 4 0 0 0
31 |Wellcare-2010.pdf.txt 2 0 0 0 2 0 0 0 0 0
32 |Aetna-2010.pdf.txt 1 0 0 0 0 0 0 0 0 1

33

Figure 8: From running reportCorpusConcept (' Healthcare’, 'MarchExploreLabeled.txt’)

31

You are to develop your code in the context of this directory system. In the code directory you
will find a Python module called myexercisetexan.py. It contains useful material, discussed
above, for testing your code and helping you to develop your code.

Your assignment is to complete each of the tasks in §3 (all 8 of them). Put all of your code in a
single Python module called mytexan.py (“MY TEXt ANalytics” module). Put your module in
the code directory and be sure it works when called and tested by the myexercisetexan.py
module. Once you have completed this assignment, create a folder on WebCafé called case?2 and
put just your mytexan.py module in it.

This case 2 assignment is due by 5 p.m. on Saturday 5 May 2012.

This due date is different from what’s on the syllabus (it’s later) and
what was stated (mistakenly, a typo) in the case 2 assignment
document (infeasible for handing in grades).

References

Gottschalk, L. A. (1995). Content Analysis of Verbal Behavior: New Findings and Clinical Appli-
cations. Lawrence Erlbaum Associates, Hillsdale, NJ.

Gottschalk, L. A. and Gleser, G. C. (1969). The Measurement of Psychological States Through the
Content Analysis of Verbal Behavior. University of California Press, Berkeley and Los Angeles,
CA.

Gottschalk, L. A., Winget, C. N., and Gleser, G. C. (1969). Manual of Instructions for Using the
Gottschalk-Gleser Content Analysis Scales: Anxiety, Hostility, and Social Alienation—Personal
Disorganization. University of California Press, Berkeley and Los Angeles, CA.

Larcker, D. F. and Zakolyukina, A. A. (2012). Detecting deceptive discussions in conference
calls. Journal of Accounting Research, pages no—no. http://dx.doi.org/10.1111/73.
T4 75=679X 2012 00450 %,

Loewenstein, J., Ocasio, W., and Jones, C. (2012). Vocabularies and vocabulary structure: A
new approach linking categories, practices, and institutions. The Academy of Management
Annals. Available online 13 March 2012. http://dx.doi.org/10.1080/19416520.
2017 660763.

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science,
2:71-87.

Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S. (2008). More than words: Quantifying
language to measure firms’ fundamentals. The Journal of Finance, LXIII(3):1437-1467.

32

http://dx.doi.org/10.1111/j.1475-679X.2012.00450.x
http://dx.doi.org/10.1111/j.1475-679X.2012.00450.x
http://dx.doi.org/10.1080/19416520.2012.660763
http://dx.doi.org/10.1080/19416520.2012.660763

Uotila, J., Maula, M., Keil, T., and Zahra, S. A. (2009). Exploration, exploitation, and financial
performance: Analysis of S&P 500 corporations. Strategic Management Journal, 30:221-231.

$Id: case—assignment-2-rl.tex 3002 2012-05-09 22:19:39Z sok $

33

