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ABSTRACT 

 

In this paper we explore the development of a parameter free region 

classifier based on Kolmogorov complexity. Given a set of regions 

described by unlimited but fixed number of attributes for each region, 

the region classifier will be able to build a classification tree which will 

help identify which regions are similar/dissimilar to each other based on 

a relative distance measure derived from Kolmogorov complexity.  The 

region classifier is tested with the block level U.S. Census 

demographics data as well as hitech establishment data for a subset of 

metropolitan regions. Preliminary results are presented for the census 

data as well as for the hitech sector for three different time periods.  
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1. INTRODUCTION 

 

Back in the days when Silicon Valley was still considered as a gold-

standard for regional growth; cities/regions all over the world desired to 

be referred to as the next Silicon Valley.  Such emulations/comparisons 

are of course more rhetorical than formal. In fact, it’s not uncommon 

even for a third party observer, studying an object/phenomenon to 

compare it with some other known object/phenomenon and then to find 

patterns/similarities/dissimilarities. Again, such comparisons are seldom 

based on robust statistical analysis. The later may be due to dearth of 

data as well as lack of a universally acceptable methodology that could 

serve as a general purpose classifier that puts different 

objects/phenomena in different boxes. Even if such data together with a 

robust method is available, comparisons based on different attributes 

give different output.  What might be desirable is a universal classifier 

that is easy to use and whose output offers a relative degree of 

similarity/dissimilarity between large number of objects/phenomena.     

 

The following sections describe theoretical basis of a general purpose 

classifier and a practical approach that approximates it.  

 

 

2. KOLMOGOROV COMPLEXITY 

 

Every object/phenomenon that can be described in a human recognized 

language can also be described as a binary sequence of zeros and ones.  

In that case, comparing two or more such objects reduces to comparing 

their respective binary sequences with each other, in other words 

finding a “distance” between the two sequences.  For example one 

could compare two sequences by computing Hamming distance, where 

comparisons are made at the bit level for corresponding bits in each 

sequence.  However, in some cases, such a distance may give 

misleading answer. For eg. take a random  sequence A = 

“00101101010” and generate another sequence B of same length where 

every corresponding bit is reversed, thus B = “11010010101”.  A 

distance measure based on Hamming distance would result in the 

maximum distance between the two indicating they are unlike each 

other, however, in reality one is just the “negative” copy of the other. 

And as pointed out in [1] Bennett et. al if these were bits representing 

an image, the two images are still the same, except that one is a 

negative of the other. Similar arguments apply for other distance 

measures such as Manhattan or Euclidean distance.  Let’s revisit this 

point after describing what Kolmogorov complexity and a distance 

measure based on it.  

 

Given a phenomenon/object the Kolmogorov complexity gives the most 

concise description of that phenomenon/object such as to fully describe 

it.  However, there can be many different ways to provide a concise 

description.  Therefore, one must specify what is meant by a concise 

description.  This is accomplished with the help of a formal description 

language based on binary alphabets as shown below.  

 

Formal Descriptive Language 

Assume that every letter, word, symbol and expression is described in 

terms of strings made of binary alphabets of ‘0’ and ‘1.’  With this 

assumption one can build a lexicographical ordering, a sort of lookup 

table or an interpreter that generates the strings for each letter, word and 

symbol.  Thus a description of an object now consists of a series or 

string of ‘0’s and ‘1’s.  Here is an example of a lookup table that has 

lexicographical ordering,  

 

U = [ (ε;0), (0;1), (1;2), (00;3), (01;4), (10;5),…]           (1)                             

 

where, the first symbol of the pair of symbols inside the parenthesis 

represents binary equivalent string of the second symbol and ε 
represents a NULL or a blank. Using U, an object O may be described 

by variable number of distinct strings Si such that:  

 

D = [ S1, S2, ….Si. ]         (2) 

 

Where D is a set of descriptions of object O.   

 

Let li represent the length in binary bits of string Si such that   

 

li = | Si |        (3) 

 

And  

 

L = [ |S1|, |S2|,….|Si|…] = [l1, l2,…li,…]   (4) 

 

Then the string Si with the smallest length li represents the most concise 

description and the size of such a string is called the Kolmogorov 

complexity, also known are K complexity of that object [2], [5].  

 

K(O) = min [ |S1|, |S2|,….|Si|…]    (5) 

 

or  

 

K = K(O) = min [l1, l2,…li,…]    (6) 

 

Where min represents the minimum over all possible values.    

 



 

Next we introduce the notion of computational complexity. Various 

descriptions of object O can be coded using computational programs 

(formal languages), then all such descriptions represent object O’s 

complexity.  However, the one program with the shortest possible 

description measured in terms of the length of the program represents 

the computational complexity of that object/phenomenon.  In other 

words, the program with the least number of bits represents the most 

compressed description of the object O.  And yet, such a program is 

non-computable [1], [2], [5].  In other words, it’s a theoretical concept 

that sets the lowest threshold in terms of size of the full and concise 

description of that object/phenomenon.  However, all is not lost because 

one may use programs based on Lempel-Ziv [6] compression scheme to 

achieve the smallest or the most compressed description and retrieve the 

original by decompression.  

 

3. KOLMOGOROV COMPLEXITY DISTANCE 

  

Consider two objects O1 and O2, with K complexities of K1 and K2 

respectively derived from the methodology shown in Eq. (1) through 

(6), then K(O2|O1) is called the conditional or relative K-complexity of 

object O2 given O1. Thus 

 

K(O2|O1) = K(O1cO2) – K(O1),    (7)  

 

where K(O1cO2) refers to K-complexity when O1 and O2 are 

concatenated in that order, and ‘c’ is a concatenation operator.   

 K(O2|O1) <> K(O1|O2)    (8)   

In order to compute symmetric quantity that does not depend on the 

order in which O1 and O2 are concatenated one may use the formulae 

from [3] to get the following sequence of Eq (9) through Eq. (12): 

  

Kd = { [K(O1|O2) – K(O2|O2)] / (K(O2|O2) } + { [K(O2|O1) – K(O1|O1)] / 

K(O1|O1) )}        (9) 

 

Where K(Oi|Oi) is K complexity of string generated out of 

concatenation of Oi with itself. Rewriting Kd as: 

 

Kd = { [K(O1cO2) – K(O1)] – [K(O2cO2) – K(O2)]}/[K(O2cO2) –K(O2)] 

}+…{ [K(O2cO1) – K(O2)] – [K(O1cO1) – K(O1)]}/[K(O1cO1) –K(O1)] 

}                   (10) 

 

By using appropriate compressor then the following can be computed: 

 

{[L(l1cl2) – L(l1)] – [L(l2cl2)] – L(l2)] / [L(l2cl2)] – L(l2)]} + … {[L(l2cl1) 

– L(l2)] – [L(l1cl1)] – L(l1)] / [L(l1cl1)] – L(l1)]}         (11) 

 

Another way suggested in [1] is to compute the normalized distance 

between O1 and O2 as: 

 

[L(l1cl2) – min (L(11), L(l2))]/[max(L(l1), L(l2))]   (12) 

 

Note that subtracting min of the two sequences and division by max 

among the two, guarantees that sizes of the sequences does not affect 

the distance measure. Without these two terms, for eg., for same 

number of differences in the sequences, smaller sequences will appear 

to have large difference compared to longer sequence.  

   

Although, Eq. (11) and Eq. (12) satisfy positivity (distance is >= 0) and 

symmetry, they may not satisfy the triangular inequality.  Neverthless, 

for our purpose, where we compare each of the regions with a reference 

region, the relative distance measure in terms of Kolmogorov distance 

does compute.    

 

Next we will illustrate with a toy example how to compute distance 

based on Eq (11).  Following that a more comprehensive test results 

will be given based on block level Census 2000 demographics data 

(http://www.census.gov) as well as Hitech business establishment data 

for the years 1999,  2002 and 2006 (ESRI Business Analyst) for more 

than two dozen regions (Metropolitan divisions) consisting of 104 

counties in the lower 48 states. 

 

 

4. EXAMPLES 

 

Example 1: This example consists of a toy problem. Consider three 5x5 

grids G1 G2 and G3, where each grid cell has a value of either 0 or 1. 

 

 

0 1 1 0 0 

1 0 0 1 0 

0 0 0 0 1 

1 1 0 0 1 

1 0 1 0 0  

0 1 0 0 0 

0 0 1 1 0 

1 0 0 0 1 

1 1 0 0 1 

1 0 1 0 0  

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1  
G1  G2  G3 

 

Rewriting grid values as binary string S1, S2 and S3 by concatenating 

each row we obtain: 

 

S1 = 0110010010000011100110100   

S2 = 0100000110100011100110100  

S3 = 0010000000000000000000001 
 

To apply Eq. (9) we generate the following: 

 

(S1cS2)= 

01100100100000111001101000100000110100011100110100 

(S1cS3)= 

01100100100000111001101000010000000000000000000001 

(S2cS1)= 

01000001101000111001101000110010010000011100110100 

(S3cS1)= 

00100000000000000000000010110010010000011100110100 

(S1cS1)= 

01100100100000111001101000110010010000011100110100 

(S2cS2)= 

01000001101000111001101000100000110100011100110100 

(S3cS3)=  

00100000000000000000000010010000000000000000000001 
 

where ‘c’ is a concatenation operator.  

 

Then Kd(S1S2) is given by: 

 

{ [K(S1cS2) – K(S1)] – [K(S2cS2) – K(S2)]}/[K(S2cS2) –K(S2)] }+…{ 

[K(S2cS1) – K(S2)] – [K(S1cS1) – K(S1)]}/[K(S1cS1) –K(S1)] } (13) 

 

Which results in a value of 1.166667 and Kd(S1S3) is given by: 

 

[K(S1cS3) – K(S1)] – [K(S3cS3) – K(S3)]}/[K(S3cS3) –K(S3)] }+…{ 

[K(S3cS1) – K(S3)] – [K(S1cS1) – K(S1)]}/[K(S1cS1) –K(S1)] } (14) 

 

giving a value of 0.291667, indicating that G1 and G3 are more similar 

than G1 and G2. 

 

As was stated previously that the Kolmogorov distance is a theoretical 

concept that is not easy to compute.  Hence one must use methods that 

are approximations to the theoretical Kolmogorov distance, some of 

which are expressed as the compressors based on Lempel-Ziv 

techniques. 

 

The next several examples deal with large datasets such as Census 

demographics and business listing across 29 metropolitan divisions 

comprising 104 counties in the lower 48 states (see Appendix A for the 

listing of the census division).  To handle such large datasets, we use a 

methodology outlined in [4], represented in Eq. (10).   The metropolitan 

divisions are based on Census boundary data files 

(http://www.census.gov/geo/www/cob/mmsa2003.html) as shown in 

Map 1.  The metropolitan divisions are defined by the US Office of 

Management and Budget 

(http://www.census.gov/population/www/estimates/00-32997.pdf, 

Section 7, Pg 10).   

 

Example 2: The Census demographic data at block level consists of 40 

variables per metropolitan division. The results are based on Eq. (11) 

and were computed using Complearn toolkit 

(http://complearn.sourceforge.net), the output is shown in Figure (4). 

There are three distinct regimes that emerge in terms of normalized 

distance matrix, group 1 consists of New York, Los Angeles, Chicago, 

Philadelphia, Newark, in decreasing order of similarity distance, while 

http://www.census.gov/geo/www/cob/mmsa2003.html
http://www.census.gov/population/www/estimates/00-32997.pdf
http://complearn.sourceforge.net/


Dallas and Wash D.C. are nearly similar in distance from this group 1. 

Group 2 consists of  Detroit, Seattle, Troy (MI) and Anaheim. While 

group 3 consists of Okland, Boston, Fortworth and Miami, San 

Francisco, Cambridge (MA), Camden (NJ), Fort Lauderdale (FL), 

Bethesda (MD), West Palm (FL), …Takoma (WA), Gary (IN), 

Wilimigton, (DE,MD, NJ).  Members of group 3 are similar to members 

of group 1 members in decreasing order of similarity. In fact Gary (IN) 

and Wilmington (DE) are the farthest in demographic similarity 

compared to Los Angeles and New York.  The results are shown in 

Figure (4). 

 

Example 3: This example consists of comparing the same 29 

metropolitan divisions as in previous example but data on the hitech 

sector services (combination of Sofware/IT and Engg/Management 

services).  The data for 2006, 2002 and 1999 was extracted from ESRI’s 

Business Analyst 2.1 products.   

 

Comparative Kolomogorov complexity for year 2006, 2002 and 1999 

are shown in Figure (1), (2) and (3) respectively.  Each of the three 

figures, show three distinct groups of MSA. Of these, 1999 group 

consisting of New York, Los Angeles etc has 9 MSAs, this group 

doubles in size in 2002 and then shrinks back by about a third, yet the 

top five MSAs maintain stable relative positions. Opposite it true for the 

MSAs in the group at the other extreme.  

 

5. CONCLUSION AND FUTURE RESEARCH 

 

With a very simple tool consisting of off-the-shelf compression software 

such as gzip or zip, and applying it to regional datasets, one can emulate 

Kolmogorov complexities and Kolmogorov distances and quickly 

explore and determine whether there are hierarchical relationships 

between different regions and if a clear hierarchy cannot be determined 

then one can get a visual diagram of the relationships in terms of 

similarity distances among the regions. Note that this non-parametric 

analysis  was carried out using little to no pre-processing of the datasets. 

One limitation of the current method is that, since this analysis is based 

on relative distance measure, comparative analysis across different time 

periods cannot be carried out unless one assigns a suitable objective 

desirability/undesirability score to each of the actors in the diagram.  

We hope to address these issues in the future. And yet, the importance 

of K distance diagrams in providing visual cues/information in alternate 

scenarios cannot be ignored. Especially for comparing how relative 

positions change with the addition of new actor(s) or deletion of 

existing actor(s) over different time periods. We plan to apply this 

methodology to number of other fields such as to compare changing 

political power structures; to compare adoption of public policies in 

different regions; to compare how foreclosure rates and housing prices 

change across regions.    
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Figure 1. Hitech service sector in 1999 
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Figure 2. Hitech Service sector in 2006 

 

 

 

 



 

 

Figure 3. Hitech service sector in 2002 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4. Census 2000 Demographics 

 

 

 


