

Title:

Study, Formalization, and Analysis of Dalvik Bytecode

Project period:

Software Engineering
SW9, Autumn 2011

Project group:

sw902e11

Authors:

Erik Ramsgaard Wognsen
Henrik Søndberg Karlsen

Supervisors:

René Rydhof Hansen
Mads Chr. Olesen

Abstract:

Android is the most popular smartphone
operating system and several studies show
an increasing problem with malicious third-
party apps. Android apps run in the Dalvik
virtual machine that is a register based VM
for Java. We collect the 1,700 most popu-
lar free apps from Android Market and ob-
serve that many apps use all types of Dalvik
instructions as well as multi-threading, re-
flection, and native ARM code. A thorough
analysis for Android apps should consider all
of these features.
We generalize the Dalvik instruction set
and formalize it using operational semantics
based on the Dalvik documentation, inspec-
tion of the Dalvik VM source code, and man-
ual testing.
We define abstract domains for a control flow
analysis based on the semantic rules. The
analysis is a safe over-approximation of ac-
tual program behaviour defined by flow logic
judgements for a simple control flow analy-
sis that can form the basis of an analysis tool
for Dalvik programs.

Number of printed copies: 5

Number of content pages: 68

Number of appendices: 3

Date of completion: January 5th 2012

The contents of this report are freely available. However, publication (with source information) is only
allowed after written agreement from the authors.

Contents

1 Introduction 2
1.1 Program Analysis . 2
1.2 Operational Semantics and Flow Logic 3

2 Android and Dalvik 4
2.1 Dalvik . 4
2.2 Android Permissions . 6
2.3 Application Package Files . 6
2.4 DEX Format . 7
2.5 Smali and Apktool . 9

3 Study of Apps 10
3.1 Android Market . 10
3.2 App Retrieval . 11

3.2.1 Extracting the Files . 11
3.3 Generalization of Instructions 12
3.4 Usage of Instructions . 13
3.5 Feature Usage . 15

4 Semantic Domains 19
4.1 Notation . 19
4.2 App Structure . 20
4.3 Types . 24
4.4 Subtyping . 24
4.5 Dalvik Instructions . 26
4.6 Semantic Domains . 28
4.7 Program Configurations . 30
4.8 Entry Points and Termination State 30

5 Semantic Rules 32
5.1 Imperative Core . 32

i

CONTENTS

5.2 Objects . 35
5.3 Methods . 36
5.4 Arrays . 40
5.5 Switches . 41
5.6 Exception Semantics . 42

5.6.1 Exception Domains . 42
5.6.2 Exception Rules . 43
5.6.3 Runtime Exceptions 45

6 Flow Logic 47
6.1 Partial Order and Lattices . 47
6.2 Abstract Domains . 48

6.2.1 Abstract Representation Function 51
6.3 Flow Logic Specification . 51

7 Flow Logic Judgements 53
7.1 Imperative Core . 53
7.2 Objects . 56
7.3 Methods . 57
7.4 Arrays . 59
7.5 Switches . 61
7.6 Exception Flow Logic . 61

7.6.1 Abstract Exception Domains 62
7.6.2 Exception Judgements 62
7.6.3 Runtime Exceptions 63

8 Future Work 65
8.1 Implementation . 65
8.2 Java Features . 66
8.3 Native Libraries . 67

9 Conclusion 68

Bibliography 69

A Generalized Instruction Set 72

B Semantic Rules 78

C Flow Logic Judgements 83

ii sw902e11

Preface

The reader is assumed to have basic knowledge about the Java program-
ming language, the Android platform, operational semantics, and program
analysis.

We would like to thank René Rydhof Hansen and Mads Chr. Olesen for the
project idea and for supervising the project.

Parts of the work done in this project has been submitted for Bytecode

2012, the Seventh Workshop on Bytecode Semantics, Verification, Analysis

and Transformation in collaboration with René Rydhof Hansen and Mads
Chr. Olesen.

1

Chapter 1

Introduction

The Android operating system is gaining more users and is the most used
operating system for smartphones [Nie11]. With the increasing number of
users arise a demand for custom applications. This demand is met by An-
droid developers through app markets, such as Android Market [Goo11a].
When the platform expands, so does the possibility of malicious apps which
steal private information from the users [EGC+10], cost the users money by
covertly sending overpriced text-messages [Ali11] or in other ways harm the
user [FFC+11].

In this project, we focus on the increasing problems with malicious apps for
Android. Through static program analysis it is possible to identify apps that
misuse their access to personal information [EOMC11]. To identify instruc-
tion and API usage in typical Android apps, we study 1,700 of the most
popular apps from Android Market. These observations are used in a for-
malization that is necessary to implement a static analysis for Android.

1.1 Program Analysis

A typical example of when information leakage on Android can occur is in
an app that is allowed to access personal information, e.g. the contacts on
the phone, and at the same time is allowed to access the Internet. Previ-
ous studies have “uncovered pervasive use/misuse of personal/phone identi-
fiers” [EOMC11] and others have shown that 66 % of a set of 50 popular apps
that send personal information through the internet connection do not rely
on it to function [HHJ+11], signifying that it is a leakage to the advantage

2

Chapter 1 Operational Semantics and Flow Logic

of advertisers and other third parties rather than to the user. Dynamic and
static program analysis can be used to detect such leakage [EGC+10].

Dynamic analysis requires the ability to run the application to be analyzed
and, at runtime, track the information and how it is used. Furthermore,
dynamic analysis requires a complete input domain for the application if the
goal is to determine whether leakage is possible in any case and not just
during average use. In [EGC+10] and [HHJ+11], they develop a dynamic
analysis for Android, where personal information is tracked at runtime in a
modified Android base to determine if and how it leaves the phone. These
studies only focus on privacy issues and require a custom version of Android
in order to run.

Static analysis can be run on the program source, binary executable or any
intermediate step. It requires no execution of the application, but is able to
determine conservative approximations of the flow of control or data within
the application. Using static analysis, it is possible to track where in the
application personal information could propagate to, and in turn answer
whether or not an application might leak this personal information. Static
analysis can also be used to find patterns of malicious behaviour or typical
programming errors in applications by recognising known patterns in the
analyzed code.

1.2 Operational Semantics and Flow Logic

To develop a formal analysis of Android apps, it is necessary to have a for-
mal specification of its instructions. Operational semantics formally specify
exactly what instructions do, and to our knowledge there is no known for-
mal specification of the Android platform’s bytecode, Dalvik bytecode. In
this project, we therefore formalize the instructions using operational seman-
tics. In addition, a control flow analysis is needed as a basis for any detailed
analysis of information flow. A control flow analysis for a similar language,
Carmel (a Java Card bytecode subset) has previously been developed using
flow logic [Han05]. Due to the similarities between the languages, we specify
the control flow analysis as a flow logic [NNH99].

sw902e11 3

Chapter 2

Android and Dalvik

Android is an operating system for mobile devices that includes various mid-
dleware and key applications [And11c]. It is based on the Linux kernel and al-
lows third-party developers to create apps (applications) that are distributed
on Android Market [Goo11a] among others for end-users to download. The
middleware is typically written in C or C++ while user facing apps run iso-
lated in an application sandbox. In the sandbox, the Dalvik Virtual Machine
runs Dalvik bytecode which is usually compiled from Java. Apps can include
native code for the ARM processor, typically written in C or C++, and this
is also run inside the sandbox. An overview of these layers in the Android
architecture is shown in Figure 2.1.

2.1 Dalvik

Android apps are run in the Dalvik Virtual Machine. It is similar to
regular Java virtual machines but there are several differences between
them [EOMC11]:

Register architecture Dalvik VM instructions are based on a register ar-
chitecture, while regular Java VMs are stack-based. This means that
there is no operand stack available for the instructions, and thus in-
structions instead have register arguments to indicate which data to
work with. There are 216 virtual registers available on Dalvik.

A single DEX file All classes in a Dalvik application is stored in a single
file, while standard Java compilers produce a class file for each Java
class. The DEX file is produced by the dx compiler which packages

4

Chapter 2 Dalvik

Figure 2.1: Android Architecture (from [And11d]).

class files into DEX and also performs some optimisations, such as
inlining primitive constants.

Instruction set There are 200 opcodes in Java bytecode, and 218 in Dalvik
bytecode, but the purposes of large parts of these sets are substantially
different. A large part of the opcodes for Java bytecode is used to
explicitly move data to and from the stack, while Dalvik has none of
these. This results in fewer instructions used per Dalvik program, but
as the instructions instead receive the destination and source registers
as arguments, the instructions are in average longer than those for Java.

Ambiguous primitive types Instructions that access primitive types, such
as long or float, specify only the width of the data type and not the
actual type, which means that this part of the bytecode is ambiguous
compared to regular Java VMs.

sw902e11 5

Android Permissions Chapter 2

2.2 Android Permissions

By default, apps have very limited possibilities and are sandboxed from each
other with separate Unix user IDs [And11d]. To read the user’s private data,
access the network or affect other apps or the operating system, an app
must declare its needs to do so. This is done using permissions, for example
CALL PHONE or READ CONTACTS. An app declares the permissions it needs
statically in the Android Manifest which is an XML file [And11b]. They are
presented at install time and if they are not accepted by the user, installation
is aborted. Once an app is installed it cannot request more permissions, but
is able to probe for permissions in order to check if a specific permission has
been granted to the app. This is typically seen in reusable code in included
programming libraries such as advertisement libraries. The permissions are
enforced by Android using two methods [FCH+11]:

Unix groups Access to all files, including network sockets for Internet and
Bluetooth, is enforced using Unix groups.

Validation mechanism in system process Inside the Dalvik VM each
API that requires permissions implements an RPC interface, which
is invoked by the system process to verify granted permissions.

The different enforcement methods mean that only the apps that run in the
Dalvik VM are able to use regular API calls, hence it is not possible to make
them from native code. However, the native code runs with the same Unix
user ID as the rest of the app, thus making it possible to access Internet and
Bluetooth sockets as well as regular files, e.g. files on an SD-card.

2.3 Application Package Files

Android apps are distributed and installed as APK (application package)
files. The file format is a variant of JAR, used for Java, which is itself based
on the Zip compression format. An APK file includes the following:

META-INF A directory that includes certificates and checksums for the appli-
cation.

res A directory with resources, e.g. images and string values in XML files.

lib A directory with pre-compiled native libraries used by the application,
usually ARM ELF shared object files.

6 sw902e11

Chapter 2 DEX Format

AndroidManifest.xml An XML file that includes a static description of the
app, e.g. name, version, required permissions and the required Android
version. The Android manifest is not to be confused with the JAR
Manifest which is included in the META INF directory.

classes.dex A file with all the classes for the application, saved in the
binary DEX format which runs on the Dalvik VM.

2.4 DEX Format

The DEX file format is different from class files for Java bytecode which
means that standard Java bytecode analysis is not possible directly on a DEX
file. In [EOMC11], they have analyzed Android apps based on a decompila-
tion from DEX to Java, by using their own custom decompiler which is able
to translate DEX to Java bytecode, which was then translated into Java using
existing tools. This approach was chosen to leverage existing Java analysis
tools, but presented problems in each of the translation steps, and this was
our motivation to create an analysis directly for Dalvik bytecode.

Figure 2.2: Layout of the DEX file format. The arrows indicate references
between sections.

Figure 2.2 shows the overall layout of a DEX file.

sw902e11 7

DEX Format Chapter 2

header Data about the rest of the file, such as a checksum and sizes of the
other sections.

string ids A list of string identifiers used throughout the file including type
descriptors and constant strings referred to by the source code. The
actual strings are stored in the data area, and thus an offset to where
the string is kept is saved in this section.

type ids A list similar to the one for strings, except it only has identifier
strings for types. Identifiers for all types referred to by the file must be
placed here, and the items saved must be indices into the string id

section described above.

prototype ids Information about the prototypes (method signatures) used
in the file. It consists of indices into the string id section for a de-
scriptor string of each prototype, an index into the type ids for the
return type and an offset into the data section where the details of the
parameters for the prototype can be found.

fields ids Field items consisting of an index into the type ids for the class
where the field is defined, another index to the type ids section for
the type of the field and an index into string ids for the name of the
field.

methods ids Same as fields, except that an index into the proto ids for
the prototype of the method is used instead of the type index.

class defs Definitions of classes including an index into the type ids section
for each class type, access flags, an index into the type ids for the
superclass, offsets into the data section for interfaces that the class
implements, static fields (if any) and the actual instructions in the
method. In addition, it has indices to info about the source file and
annotations.

data An area containing support data for the above listed sections.

link data Data used for statically linked files.

The id sections can be seen as constant pools, similar to the constant pool
from class files for Java bytecode, except that these contain data for all the
classes in the app and not just from a single class. The integrity of the file
and its indices is verified by the Dalvik bytecode verifier before the app can
run.

8 sw902e11

Chapter 2 Smali and Apktool

2.5 Smali and Apktool

For the study of Android apps in this project, we do not analyse the APK
files directly. Instead, we use a tool to first extract the content of the APK
file and then decompile the binary DEX file into a human readable format.
apktool [Bru11] is an open-source utility that is able to decode resources and
the DEX file from an APK and then run smali [jes11], another open-source
tool, to disassemble the DEX file. This creates a file for each Java class in
the app in a format similar to that of Jasmin [Jon11] which is an assembler
for the Java VM. Below is an example of a method in smali:

1 .method public example(I)I

2 .locals 1

3 .parameter "a"

4 add-int/lit8 v0, p1, 0xa

5 .local v0, b:I

6 return v0

7 .end method

Line 1 is where the method definition begins, at which we can see that the
method example takes one parameter of the type int (I), and returns an
integer as well, represented as the last character of the signature. Line 2-3
tells us that the method uses one local register and that the parameter from
before is called a in the original source code. Line 4 uses the instruction
add-int/lit8 which takes the destination register (v0), the source register
(p1), and the integer literal 0xa. The source register p1 is an alias for the
register v2 which contains the first explicit parameter, a (register v1 con-
tains the object reference that the method is invoked on). Line 5 tells us
that the variable in the register v0 was named b and has the type int. Fi-
nally, the content of the register v0 is returned and the method definition is
ended.

The lines starting with a period are pseudo-instructions that represent the
structure in the DEX file.

The corresponding Java code can be seen here:

1 public int example(int a)

2 {

3 int b = a + 10;

4 return b;

5 }

sw902e11 9

Chapter 3

Study of Apps

In order to identify what instructions are used in Android apps, we have col-
lected 1,700 of the most popular Android apps from Android Market [Goo11a].
This data set is not only used to identify what types of instructions are used,
but also to observe to what extent specialized Java features that could af-
fect a static analysis, such as reflection, native libraries, and dynamic class
loading, are used.

Other studies have had similarly sized data sets: [HHJ+11] had 1,100 apps
and [FCH+11] had 940 apps. These publications do not describe how they
retrieved the apps. In this chapter we first describe Android Market, how the
apps were collected and what obstacles we encountered during the process.
Then, we describe the results from our study of Android apps.

3.1 Android Market

Apps for Android devices are distributed through an online service called
Android Market, where the apps are developed by professionals as well as
amateurs. Publishing apps on the market requires a market account which
can be bought for a small fee. The apps are categorised as either games or
applications, which are sub-categorized in 8 and 26 categories, respectively.
The market contains paid as well as free apps, with a total of nearly 320,000
different apps as of September 2011 [res11].

Apps from Android Market can only be downloaded using a Google Ac-
count on an Android device, and while browsing the market, settings from

10

Chapter 3 App Retrieval

this account are used to filter and sort the available apps. Furthermore, apps
not supported by the hardware on the device are filtered out. We created
a Google Account for this project and left all settings as default except for
the language, which we explicitly changed from Danish to English. Once an
Android device has been connected to an account, the account can be used
to install the apps either through a web browser or through the standard
Market app on the device. Each category for Android Market is by default
sorted by popularity, where the sorting is based on the settings from the
Google Account and the location of the device. The latter means that the
most popular apps listed included several Danish apps.

3.2 App Retrieval

For this study, we downloaded the 50 most popular free apps from each
of the application and game categories in November 2011. The apps are
distributed as APK files, but these files can only be downloaded by the phone,
or using custom software to circumvent the regular download process. We
tried to use a crawler created to look like an Android device to access Android
Market [Rau11] but we could not get it to work. Instead, we automated a
browser on a PC using JavaScript to activate installation of the apps and
created scripts to retrieve the APK file for each app from the phone after
the app had been installed. By installing the apps on an actual Android
device, we were also able to verify that they could in fact be installed since
we experienced that the available apps were not always compatible with our
device and could not be installed. The smartphone we used was a rooted
Samsung Nexus S running Android 2.3. By default, Android devices are
locked such that the user cannot act as the root user on the device. This has
been circumvented using a custom bootloader and a root exploit to enable
us to access all data on the phone and thereby retrieve all APK files.

3.2.1 Extracting the Files

The Android SDK includes a tool called adb (Android Debug Bridge) [Goo11b]
which allows us to connect to a command line shell on the Android device
through a USB cable. Android places the files in different locations on the
phone, depending on the type of application:

/data/app Default location where regular free apps are placed.

sw902e11 11

Generalization of Instructions Chapter 3

/system/app Apps signed by Google or the phone manufacturer.

/mnt/asec/app-pkg-name An encrypted virtual filesystem for each app,
if the app is installed on the external storage (e.g. SD-card).

/data/app-private Apps marked as “protected”, and paid apps, are placed
in this location which is only readable by the root user.

Using adb we were able to pull all the APK files from the phone to the PC.
Apps cannot be placed in more than one category, except for the special
categories Live Wallpapers and Widgets. We removed duplicates in our data
set by removing the apps from these special categories, and replacing them
with the next ones from the list of popular apps.

3.3 Generalization of Instructions

We used our data set to figure out which instructions have to be included in
an analysis. Dalvik supports 218 opcodes which can be found at [And11e].
Some examples are:

• move

• move-wide

• move-wide/from16

• move-object

• add-int

• add-float

• add-float/2addr

Many of these are semantically similar. There are specific instruction vari-
ants for several of the primitive types, and for instructions working on types
with specific widths. We have generalized them into a set of 39 instructions
that each represent a group of semantically similar Dalvik instructions. The
Dalvik bytecode verifier ensures that instructions are used with the proper
types and widths, and therefore we can ignore these in our study. Some
instructions are able to access only the first 16 or 256 registers, while we
simulate that all instructions can access all registers. We use binop as a
generalized instruction for all the instructions that are classified as binary

12 sw902e11

Chapter 3 Usage of Instructions

operations on registers, including add-int and add-float. The 2addr vari-
ants let one of the source registers double as the destination register, so they
are trivial to express as regular three-register instructions. Another instruc-
tion for binary operations, binop-lit, uses a literal value instead of a register
for the second operand. Our unop instruction is a generalization of the in-
structions for unary operations. We have not generalized the instructions
used for method invocation, as their behaviours are different from one an-
other due to the nature of dynamic dispatch. The Dalvik const instructions
are generalized into three instructions: const for primitive type values, and
const-string and const-class for non-primitive type values.

The complete mapping from original Dalvik bytecode instructions to our
generalized instructions can be found in Appendix A.

3.4 Usage of Instructions

We have counted the instructions used in our data set and found a total of
94,413,932 instructions. Table 3.1 shows the distribution of our generalized
instructions and their usage in apps and total number of occurrences.

The results show that the instructions invoke-direct and return-void are
used by all apps, and manual inspection has clarified that this is due to a
constructor which is always present in the R class which specifies resources
included in the app. The two most used instructions are invoke-virtual

and move-result which are used to invoke a normal (virtual) method and
to move its return value from a method to a register, respectively. From
the results we can also see that while there are no generalized instructions
that are not used, specialized array filling instructions (fill-array-data
and filled-new-array) are among the most uncommon instructions, with
the latter being used a total of just 1,930 times in our data set, but it is
still present in more than 20 % of the apps. Monitors, the implementation
of synchronized methods and blocks in Java, are used in 88 % of the apps,
which indicates that developers use more than one thread per app. The use
of const-class in 93 % of the apps indicate that a large amount of the apps
use Java classes as objects or otherwise as parameters for methods, something
which is usually seen in relation to the use of reflection, where classes are
accessed and possibly changed dynamically (at runtime).

sw902e11 13

Usage of Instructions Chapter 3

Instruction Used by Occurrences Of total occ.

invoke-direct 100.00 % 4,533,934 4.80 %
return-void 100.00 % 2,683,104 2.84 %
invoke-virtual 99.59 % 12,718,970 13.47 %
const 99.53 % 8,157,468 8.64 %
move-result 99.47 % 12,391,920 13.13 %
invoke-super 99.47 % 215,434 0.23 %
const-string 99.29 % 5,200,603 5.51 %
new-instance 99.29 % 2,900,269 3.07 %
invoke-static 99.24 % 3,833,347 4.06 %
iput 99.12 % 3,389,122 3.59 %
iget 99.06 % 8,062,226 8.54 %
ifz 99.06 % 3,984,192 4.22 %
goto 98.76 % 3,263,902 3.46 %
return 98.06 % 2,166,727 2.29 %
move-exception 97.71 % 761,554 0.81 %
check-cast 97.53 % 1,055,790 1.12 %
if 97.24 % 1,304,228 1.38 %
binop-lit 96.59 % 1,232,732 1.31 %
invoke-interface 96.35 % 1,761,883 1.87 %
move 96.24 % 5,503,780 5.83 %
new-array 95.47 % 557,610 0.59 %
sget 95.18 % 1,792,583 1.90 %
aput 94.88 % 1,864,219 1.97 %
binop 94.53 % 1,218,279 1.29 %
aget 94.47 % 734,425 0.78 %
unop 94.00 % 530,779 0.56 %
sput 93.88 % 607,269 0.64 %
array-length 93.65 % 263,662 0.28 %
const-class 93.53 % 182,077 0.19 %
throw 93.47 % 521,299 0.55 %
packed-switch 93.35 % 86,468 0.09 %
nop 92.76 % 56,951 0.06 %
cmp 92.00 % 189,789 0.20 %
monitor-exit 88.76 % 287,310 0.30 %
monitor-enter 88.76 % 134,466 0.14 %
fill-array-data 86.71 % 97,906 0.10 %
instance-of 85.76 % 144,576 0.15 %
sparse-switch 69.71 % 21,149 0.02 %
filled-new-array 22.29 % 1,930 0.00 %

Total 94,413,932 100.00 %

Table 3.1: The generalized instructions in our data set ordered by the per-
centage of the 1,700 apps in our data set that use the instruction.

14 sw902e11

Chapter 3 Feature Usage

Feature Used by apps Hereof in libs
Obfuscated source 64.82 % -
Has native libraries 20.35 % -
java/lang/Thread 90.18 % 24.07 %
java/lang/reflect 73.00 % 55.92 %
java/lang/ClassLoader 39.71 % 81.19 %
java/lang/Runtime;->exec 19.53 % 80.44 %

Table 3.2: Percentages of apps in our data set that use various features.

3.5 Feature Usage

Table 3.2 shows some observations we have made from our data set, regarding
the use of the following features:

Obfuscated source Code obfuscation is used to make reverse engineer-
ing of apps harder, and Google recommends [Goo11c] the use of
ProGuard [Eri11] which renames classes and variables to short mean-
ingless names (a, b, c etc.). We searched for the file a.smali within
apps in our data set, and used this as an approximation to determine
if an app is obfuscated. The same approach was used by [EOMC11]
which found 36 % of apps to include any obfuscated source (some apps
are partially obfuscated). We found the file in 64.82 % of the apps.
Both numbers indicate if an app contains any obfuscated source, ei-
ther in the source written by the developer or in a third-party library
included.

Native libraries [EOMC11] have looked at the use of ARM shared object
(.so) files and found that of their 1,100 studied apps from September
2010, 6.45 % included shared objects. We have found that this number
has increased rapidly as 20.35 % of apps in our data set include shared
objects. In addition, a small number of apps include ARM executables.

Threading We found use of monitors in 88 % of the apps, and wanted to
know if the apps also explicitly use threads. We found that 90.18 % of
the apps include a reference to java/lang/Thread.

Reflection With the high usage of const-class we wanted to know if it
is common for Android Developers to use reflection in their apps. We
found that 73 % of the apps include a reference to java/lang/reflect
which is the basic library for reflection in Java.

sw902e11 15

Feature Usage Chapter 3

Class Loading Dynamically loading classes can be done using a class loader,
and potentially means that an app loads DEX files at runtime. We
searched the apps for usage of java/lang/ClassLoader and found it
present in 39.71 % of the apps.

Runtime.exec() The Java method Runtime.exec() is used to execute pro-
grams in a separate native process. This means that an app might run
system commands, such as trying to read logs or gain root permissions.
We searched for java/lang/Runtime;->exec and found it present in
19.53 % of the apps.

We look at two separate kinds of code that we call developer code and library

code. We define developer code as code that lies within the natural packages
for the application. For an application net.company.app extracted to the
folder net.company.app this means all classes located directly in:

net.company.app/

net.company.app/net/

net.company.app/net/company/

net.company.app/net/company/app/

and any subdirectories in net.company.app/net/company/app/. We define
library code as everything else in an app. The third column in Table 3.2
includes the same observations made for only the library code.

The number of classes for each Android app is rather large compared to
what we expect for regular Java applications. Table 3.3 shows the average
number of classes per app, along with the median, maximum and minimum
number found in our data set. We also found the number of inner classes
and inner anonymous classes for each app as Android apps usually include a
lot of these, for example small anonymous classes for alert dialogs and event
listeners. We classified inner classes to be any class with a $ in their full
class name, and anonymous inner classes to be any class with a $ followed
by a digit in their name, since this is how Java compilers usually name them.
Obfuscated apps have fewer of these, if any at all, as obfuscation tools rename
classes. These numbers should therefore be taken as minimum values (unless
a developer has intentionally renamed Dalvik classes). We have included the
same numbers for classes only found in developer code to give an insight into
the number of classes actually written by the app developer for the specific
app, and the number of classes typically found in libraries.

Android apps can declare different components in their Android manifest.
The declared components indicate entry points for the application, which we
discuss further in Section 4.8. Table 3.4 shows the distribution of declared

16 sw902e11

Chapter 3 Feature Usage

Average Median Max Min
Total classes 464.09 264 8335 4
Inner classes 186.76 99 2667 0
Anonymous inner classes 96.34 45 1304 0
Total dev. classes 182.55 100 2909 0
Inner dev. classes 91.78 37 1858 0
Anonymous inner dev. classes 56.73 16 976 0

Table 3.3: Statistics for the use of classes per app in our data set.

components in our data set. The numbers indicate that almost all the apps
include at least one activity (a basic GUI element), that one activity is the
most common thing to have, that services and broadcast receivers (global
event handlers) are declared in about half of the apps and that 16.88 % of
the apps declare a content provider (a manager for shared data, for example
a database).

Component Declares Average Median Mode Max
Activity 98.64 % 12.73 8 1 123
Service 48.82 % 1.02 0 0 23
Content Provider 16.88 % 0.27 0 0 12
Broadcast Receiver 50.88 % 1.38 1 0 43

Table 3.4: Percentage of apps in our data set that have declared at least one
of the specific application components.

We discussed Android permissions and how they are enforced in Section 2.2.
The use of permissions is interesting in relation to what information malicious
apps might leak or misuse. Table 3.5 shows the 20 most declared permissions
in our data set. The Internet permission is the most popular and is declared
in 89.1 % of the apps, 49.4 % of the apps are able to write to external storage
(SD-card) and 45.4 % of them are able to read private information such as
the phone or IMEI number1.

1The IMEI number is used to identify a physical mobile device

sw902e11 17

Feature Usage Chapter 3

Permission Decl. by
1 android.permission.INTERNET 89.1 %
2 android.permission.ACCESS NETWORK STATE 71.6 %
3 android.permission.WRITE EXTERNAL STORAGE 49.4 %
4 android.permission.READ PHONE STATE 45.4 %
5 android.permission.VIBRATE 27.8 %
6 android.permission.WAKE LOCK 24.9 %
7 android.permission.ACCESS COARSE LOCATION 24.0 %
8 android.permission.ACCESS FINE LOCATION 22.6 %
9 android.permission.ACCESS WIFI STATE 18.4 %
10 android.permission.RECEIVE BOOT COMPLETED 11.4 %
11 android.permission.READ CONTACTS 11.2 %
12 android.permission.GET ACCOUNTS 10.2 %
13 android.permission.CAMERA 8.8 %
14 com.android.vending.BILLING 8.3 %
15 android.permission.GET TASKS 7.6 %
16 com.android.launcher.permission.INSTALL SHORTCUT 6.8 %
17 android.permission.WRITE SETTINGS 6.7 %
18 android.permission.CALL PHONE 6.6 %
19 com.google.android.c2dm.permission.RECEIVE 6.0 %
20 android.permission.WRITE CONTACTS 5.6 %

Table 3.5: Android permissions and the part of apps in our data set that
declare that they need them.

18 sw902e11

Chapter 4

Semantic Domains

Formal analysis of Android apps needs a formal definition of the behaviour
of Dalvik bytecode. We will create one using operational semantics with
an approach similar to the one for the Carmel language in [Han05]. Our
semantic rules for the Dalvik bytecode are based on the documentation for
Dalvik [And11e], inspection of the source code for the Dalvik VM in An-
droid [And11f], tests of handwritten smali code, and experiments with dis-
assembly of compiled Java code.

To express semantic rules we need semantic domains so we can refer to the
different parts of an app.

4.1 Notation

We use domains for representation of app structure, but for convenience we
will add access functions using record notation for domains [Siv04]. The
domain D = D1 × . . .× Dn equipped with functions f i : D → Di is ex-
pressed

D = (f 1:D1)× . . .× (f n:Dn)

The access functions will be used in an object-oriented style where, for d ∈ D,
f i(d) is written d.f i and f i(d, a1, . . . , am) is written d.f i(a1, . . . , am). The
notation d[f 7→ x] expresses the domain d where the value of access function
f is updated to x.

19

App Structure Chapter 4

4.2 App Structure

To be able to formalize the semantics we will first need a formal definition
of the structure of Android apps. An app A ∈ App consists of a name, a set
of classes and a set of interfaces. In addition it has a manifest, a certificate,
and sets of resources, assets, and libraries:

App = (name:AppName)×
(classes:P(Class))×
(interfaces:P(Interface))×
(manifest:Manifest)×
(certificate:Certificate)×
(resources:P(Resource))×
(assets:P(Asset))×
(libs:P(Lib))

For now we are only concerned with the classes and interfaces. The others
are placeholders for the details of the contents of an APK as described in
Section 2.3.

A class has a name, an app in which it is defined, the Java package it be-
longs to, a superclass, and then sets of methods, fields, access flags and
implemented interfaces:

Class = (name:ClassName)×
(app:App)×
(package:Package)×
(super:Class⊥)×
(methods:P(Method))×
(fields:P(Field))×
(accessFlags:P(AccessFlag))×
(implements:P(Interface))

For the java.lang.Object class, the superclass will be defined to be ⊥,
hence the domain Class⊥ = Class ∪ {⊥}. Interfaces are similar to classes
except that they support multiple inheritance:

20 sw902e11

Chapter 4 App Structure

Interface = (name: InterfaceName)×
(app:App)×
(package:Package)×
(super:P(Interface))×
(methods:P(Method))×
(fields:P(Field))×
(accessFlags:P(AccessFlag))×
(implementedBy :P(Class))

In Java, packages are used to organize classes in programs, but in Dalvik,
they are only used to check access violations between packages. Packages
have a name, belong to an app, and the set of classes it defines:

Package = (name:PackageName)×
(app:App)×
(classes:P(Class))

We have not included packages in the App domain since they are only relevant
from a class perspective.

Dalvik classes, methods and fields have a set of flags that indicate their
accessibility and overall properties:

AccessFlag = {public, private, protected, final, abstract,
varargs, native, enum, constructor}

Some of the flags are not relevant for all classes, methods and fields, and
some of the flags may not be set at the same time, but we do not reflect
these rules in the domains. Some of the Dalvik access flags are represented
in other parts of the structure, for example isStatic on Field, and the ones
defined here are placeholders and not relevant for our present purposes.

A method has a name, the class where it is implemented, a sequence of
types for its arguments (a sequence A∗ meaning an element from the set
{∅, A,A × A,A × A × A, . . .}), a return type, a function mapping locations
in the method (program counter values) to instructions, a kind indicating
whether the method is virtual, static, or direct (non-overridable, i.e. a con-
structor or private method), an integer designating the maximal number of

sw902e11 21

App Structure Chapter 4

registers needed for local variables, a set of access flags, and finally a func-
tion mapping locations of data tables in the bytecode to the union of the
disjoint sets of array data tables and jump tables for packed and sparse
switches:

Method = (name:MethodName)×
(class:Class)×
(argType:Type∗)×
(returnType:Type ∪ {void})×
(instructionAt:PC → Instruction)×
(kind:Kind)×
(maxLocal:N0)×
(accessFlags:P(AccessFlag))×
(tableAt:PC → ArrayData ∪ PackedSwitch ∪ SparseSwitch)

The program counter domain PC is modelled as integer indices of instruc-
tions in the method with 0 being the first instruction. Ignoring the different
sizes of instructions in the bytecode makes analysis simpler because the next
instruction is found at pc + 1 but does not make the analysis less power-
ful [Han05].

The kind of a method can be one of the following:

Kind = {virtual, static, direct}

where direct is used for constructors and private or final methods, static
for static methods, and virtual for normal overridable methods and all
methods defined in interfaces. It would be straightforward to model Kind
as part of the AccessFlag domain as in the Dalvik implementation, but it
seems more appropriate to keep Kind separate since its elements are mutually
exclusive.

We will also need to refer to the signature of a method which is the first four
components of the Method domain, except that class represents the class or
interface where it is defined:

MethodSignature = (name:MethodName)×
(class:Class ∪ Interface)×
(argType:Type∗)×
(returnType:Type ∪ {void})

22 sw902e11

Chapter 4 App Structure

A field of a class or an interface has a name, the class or interface where it is
defined, a type, an indication of whether it is a static field or not, and then
its access flags:

Field = (name: FieldName)×
(class:Class ∪ Interface)×
(type:Type)×
(isStatic:Bool)×
(accessFlags:P(AccessFlag))

DEX files may contain tables for statically defined arrays:

ArrayData = (size:N0)×
(data:N0 → Prim)

Here, the width of data types is abstracted away so the size is simply the
number of elements in the array.

DEX files may also contain jump tables for switches. Dalvik uses two func-
tionally equivalent types of switches, presumably to minimize the size of
the bytecode: packed-switch if the switch cases are consecutive values and
sparse-switch otherwise:

PackedSwitch = (firstKey :N0)×
(size:N0)×
(packedTargets:N0 → PC)

SparseSwitch = (sparseTargets:N0 → PC)

For packed switches the first case has key firstKey and its target is at index
0 in the packedTargets function, second case has key firstKey + 1 and is at
index 1 and so on. For sparse switches, sparseTargets is simply a mapping
from the defined cases to the jump targets.

sw902e11 23

Types Chapter 4

4.3 Types

The types we model in Dalvik are either reference types or primitive types:

Type ::= RefType | PrimType

Primitive types are split into two kinds based on their width:

PrimType ::= PrimSingle | PrimDouble

PrimSingle ::= boolean | char | byte | short | int | float

PrimDouble ::= long | double

Reference types can be either references to classes or interfaces, or to ar-
rays:

RefType ::= SimpleRef | ArrayType

SimpleRef ::= Class | Interface

Array types are split into two kinds to accommodate the semantics for the
filled-new-array instruction which only accepts arrays of single width el-
ements:

ArrayType ::= ArrayTypeSingle | ArrayTypeDouble

ArrayTypeSingle ::= array (RefType | PrimSingle)

ArrayTypeDouble ::= array PrimDouble

Here, the syntactic element array is used to distinguish array types from
otherwise structurally similar types.

4.4 Subtyping

Java allows subtypes to be used in place of a supertype, so for use in semantics
for type related instructions, we define the subtype relation for reference

24 sw902e11

Chapter 4 Subtyping

types, �, as in [Han05]. A class cl ∈ Class is a proper subtype of class cl ′ if
cl ′ is found in the ancestry of cl :

cl ′ ∈ super∗(cl)

cl � cl ′

where super∗ is the set of superclasses found by traversing the class hierarchy
transitively:

super∗(⊥) = ∅
super∗(cl) = {cl .super} ∪ (cl .super).super∗

A class is a subtype of an interface if the interface belongs to those imple-
mented by the class or its superclasses, or to the interfaces extended by the
interface, and their extension hierarchy:

iface ∈ implements∗(cl)

cl � iface

implements∗(⊥) = ∅
implements∗(cl) = cl .implements

∪ (cl .super).implements∗

∪ (cl .implements).super∗

Since interfaces extend sets of interfaces, the super∗ function on interfaces is
defined on sets:

super∗(ifaces) =
⋃

iface∈ifaces

iface.super ∪ (iface.super).super∗

An array is a subtype of an array when the subtype relation holds for the
element types:

t � t′

(array t) � (array t′)

Because of this rule and the following for classes, the subtype relation is
reflexive:

cl ∈ Class

cl � cl

sw902e11 25

Dalvik Instructions Chapter 4

4.5 Dalvik Instructions

With the overall app structure formalized, we now show the generalized in-
struction set for Dalvik which is used to identify instructions in the semantic
rules:

Instruction ::= nop | const v c | const-class v cl | move v1 v2
| binopbop v1 v2 v3 | binop-litbop v1 v2 c

| unopuop v1 v2 | goto pc

| if rop v1 v2 pc | ifz rop v pc | cmp bias v1 v2 v3
Objects:

| new-instance v cl | const-string v s
| instance-of v1 v2 type

| iget v1 v2 fld | iput v1 v2 fld

| sget v fld | sput v fld

Methods:
| invoke-virtual v1 . . . vn meth

| invoke-direct v1 . . . vn meth

| invoke-super v1 . . . vn meth

| invoke-interface v1 . . . vn meth

| invoke-static v1 . . . vn meth | invoke-static ε meth

| return-void | return v | move-result v
Arrays:

| new-array v1 v2 type | array-length v1 v2
| aget v1 v2 v3 | aput v1 v2 v3
| filled-new-array v1 . . . vn type | filled-new-array ε type

| fill-array-data v pc
Switches:

| packed-switch v pc | sparse-switch v pc
Exceptions:

| throw v | move-exception v | check-cast v type

This covers all our generalized instructions for Dalvik except the monitor
instructions monitor-enter and monitor-exit which are used for thread
safety. We consider concurrency in Dalvik as out of scope for this project due
to time constraints, and therefore the two instructions are excluded.

We define semantic rules for all of the above instructions in Chapter 5, but
ignore exceptions at first to keep the rules simple. We show how excep-
tions can be added to the semantic domains and define rules for the relevant
instructions in Section 5.6.

26 sw902e11

Chapter 4 Dalvik Instructions

Some instructions may take an empty list of argument registers shown as ε
above.

In the instruction definitions, we have that:

cl ∈ Class

fld ∈ Field

meth ∈ MethodSignature

type ∈ RefType

where the domains are known from Sections 4.2 and 4.3. We also have:

v, v1, . . . , vn ∈ Register

c ∈ Prim

s ∈ String

pc ∈ PC

the domains of which will be presented in Section 4.6. The remaining in-
struction arguments and their domains are presented in the rest of this sec-
tion.

For binary and unary operations we define:

bop ∈ BinOp = {add, sub, mul, div, rem, and, or, xor, shl, shr, ushr}
uop ∈ UnOp = {neg, not}

Besides the unary operations, there is a number of type conversion instruc-
tions, such as int-to-long or double-to-int. These instructions cannot
fail (throw exceptions), they can only lose precision (in the case of shorten-
ing operations) or information (the not-a-number floating point value NaN

becomes zero when converted to an integral type). Therefore they are safe
to ignore until types are included in the analysis.

For conditional jumps, Dalvik uses the following relational operators:

rop ∈ RelOp = {eq, ne, lt, le, gt, ge}

For comparisons without jumps, the cmpbias instruction exists where:

bias ∈ Bias = {l, g, ε}

sw902e11 27

Semantic Domains Chapter 4

Bias relates to the outcome of comparisons with NaN but since cmp may also
be used with longs, there is also an unbiased version, here represented by
ε. Beside noting that these operations are available we will not go into more
depth with them.

4.6 Semantic Domains

Values in our representation of Dalvik programs are either primitive values,
heap references, or classes:

Val = Prim+ Ref + Class

The details of the values of variables will not be relevant so primitive values
can simply be represented as integers:

Prim = Z

DEX files may contain strings that can be used with the const-string in-
struction. In other words, they are not yet objects of the java.lang.String
class. These are represented as sequences of characters:

String = Char∗

where characters represent Unicode code points and can be modelled by N0.

As mentioned in Section 4.2, program counters are simply integer indices of
instructions:

PC = N0

A program counter value can be used to give an absolute address of an
instruction in an app:

Addr = Method× PC

The Dalvik VM uses registers for computation and storage of local variables.
It has a special register for holding a return value and then 216 numbered
regular registers which we will generalize to N0:

28 sw902e11

Chapter 4 Semantic Domains

Register = N0 ∪ {retval}

We will also need to represent a function to map registers to values, with ⊥
in the case of undefined register contents:

LocalReg = Register → Val⊥

For storing objects, arrays and static fields, Dalvik uses the heap. To simplify
the representation, we will use a static heap S ∈ StaticHeap which simply
maps fields to values for fields fld ∈ Field where fld .isStatic is true:

StaticHeap = Field → Val

The normal heap will map references to either objects or arrays:

Heap = Ref → (Object+ Array)

References are abstract locations or a null reference. In Dalvik bytecode, null
references are represented by the number zero but we use null to be able to
distinguish them in the semantics:

Ref = Location ∪ {null}

Since Dalvik does not support pointers and pointer arithmetic, it will not be
necessary to know what locations are except that we can model an arbitrary
number of unique locations.

An object belongs to a class and has a mapping of fields to values:

Object = (class:Class)× (field: Field → Val)

The class of a field is also accessible from the field but this value is the class
or interface where the field is defined while the above class is the instantiated
concrete class.

Similarly, arrays have a type, a size and a mapping of indices to values:

Array = (type:ArrayType)× (length:N0)× (value:N0 → Val)

sw902e11 29

Program Configurations Chapter 4

4.7 Program Configurations

The configuration that we base our semantic rules on is defined as:

Configuration = StaticHeap× Heap× CallStack

CallStack = Frame∗

Each configuration consists of the static and dynamic heap, both defined
in the section above, and finally a call stack which is a sequence of frames.
Each frame in the stack includes a method, a program counter offset into the
method, and the local registers for the method:

Frame = Method× PC× LocalReg

Handling exceptions requires another type of frames, but we make the nec-
essary changes when treating exceptions in Section 5.6. We use the following
notation when referring to a call stack in CallStack:

〈m, pc,R〉 :: SF

where 〈m, pc,R〉 represents the top stack frame (with m ∈ Method, pc ∈ PC,
R ∈ LocalReg) and SF represents the rest of the stack. The :: operator is
used to concatenate stack frames.

The semantic rules can now be defined, using reduction rules of the form:

A ⊢ C =⇒ C ′

Where the app A ∈ App and C,C ′ ∈ Configuration, or, equivalently:

A ⊢ 〈S,H, SF 〉 =⇒ 〈S ′, H ′, SF ′〉

where S, S ′ ∈ StaticHeap, H,H ′ ∈ Heap, and SF, SF ′ ∈ CallStack.

4.8 Entry Points and Termination State

Unlike Java programs, Android apps have no main() method where the ap-
plication starts. Android applications have a set of entry points. Which
one is used is based on the kind of application and how the application is

30 sw902e11

Chapter 4 Entry Points and Termination State

started. The entry points include constructors and onCreate() methods for
Activities, Services, Content Providers, and Broadcast Receivers.

Android applications are not supposed to terminate by themselves, and their
termination points vary depending on the type of the application. Once
an application has been started, it is not supposed to be terminated un-
less the system runs out of memory, or if the application is an Activity

and its finish() method is called. In most cases, the application has an
onDestroy() method which is called as the last method, but there is no
guarantee as the application can either kill itself directly, or the system can
kill the application due to lack of memory. Therefore, we cannot presume any
termination state, and we therefore do not provide any specific termination
configuration for our semantics.

sw902e11 31

Chapter 5

Semantic Rules

With the domains and the notation defined, we are now ready to define the
actual semantic rules. We start with regular instructions grouped logically
together while ignoring exceptions until Section 5.6 where we show how they
can be added. Concurrency and related Dalvik instructions are out of scope,
but are discussed in Section 8.2. The semantic rules in this chapter are also
summarized in Appendix B.

5.1 Imperative Core

The first group of instructions for which we define semantic rules is the
one concerned with basic flow within a method, constants, comparisons and
branching. The first rule of the imperative core instructions in Dalvik is
the rule for the nop instruction. The instruction is also known as no-op,
or no-operation in other languages, and does nothing except increment the
program counter. Even though the instruction does essentially nothing it is
still used, e.g., for padding and alignment around inlined data tables. The
configuration is just updated with an increased program counter in order to
move to the next instruction:

m.instructionAt(pc) = nop

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

We use m.instructionAt(pc) where m ∈ Method, pc ∈ PC to identify the
instruction we are working with.

Constants are put in registers using the const instruction. This requires an
update of the registers on the next program counter where the destination

32

Chapter 5 Imperative Core

register is mapped to the constant:

m.instructionAt(pc) = const v c

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ c]〉 :: SF 〉

where the constant c can be a value of any of the primitive types in Dalvik.
A specialized similar instruction is const-class which maps the destination
register to a Dalvik class instead of a primitive typed value:

m.instructionAt(pc) = const-class v cl

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ cl]〉 :: SF 〉

Copying content from one register to another is done using the move instruc-
tion. The semantics are similar to const but it has to look up the content
of register v2:

m.instructionAt(pc) = move v1 v2
A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ R(v2)]〉 :: SF 〉

In general, the first argument of an instruction is the destination registers
when a destination is relevant.

Binary operations on primitive types are done using the binopop instruction
where op ∈ BinOp as defined in Section 4.5. We use an auxiliary function to
carry out the operation for the given operator:

binOpop(c1, c2) = c1 op c2

The implementation of this is trivial and is skipped here. The auxiliary
function is used in the semantic rule where the destination register is mapped
to the result:

m.instructionAt(pc) = binopop v1 v2 v3 c = binOpop(R(v2), R(v3))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

For binary operations with a literal value, the same auxiliary function is
used:

m.instructionAt(pc) = binop-litop v1 v2 c c′ = binOpop(R(v2), c)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c′]〉 :: SF 〉

For unary operations, such as negation, we use a similar auxiliary func-
tion:

unOpop(c) = op c

where op ∈ UnOp, and the implementation again is trivial. The semantic
rule is then:

m.instructionAt(pc) = unopop v1 v2 c = unOpop(R(v2))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

sw902e11 33

Imperative Core Chapter 5

There are several ways of branching in Dalvik bytecode, and the first we will
look at is goto:

m.instructionAt(pc) = goto pc′

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

where the program counter is simply updated in the new configuration to
the one which was specified as the argument to the instruction. The new
program counter must be an address within the current method, but this is
checked by the bytecode verifier.

For conditional branching we use an auxiliary function:

relOpop(c1, c2) = c1 op c2

where op ∈ RelOp. The result of the method is either true or false, depending
of the relation between the two variables. An example implementation of this,
for the operator eq is:

relOpeq(c1, c2) =

{
true if c1 = c2
false otherwise

The function is used in our two rules for if:

m.instructionAt(pc) = if op v1 v2 pc′ relOpop(R(v1), R(v2))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = if op v1 v2 pc′ ¬relOpop(R(v1), R(v2))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

The first applies when relOpop is true, and the second when it is false. If
the result is true, the program counter is updated to the new one given as
an argument for the instruction. Otherwise, we move to the next instruc-
tion in the method. There is another similar instruction in Dalvik, ifz,
where the comparison is always with zero. We have two similar rules for this
instruction:

m.instructionAt(pc) = ifz op v pc′ relOpop(R(v), 0)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = ifz op v pc′ ¬relOpop(R(v), 0)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

The primitive types long, float and double can be compared using the cmp

instruction. Again we use an auxiliary function for the result. The function
should return 0 if the values of the two arguments given are equal, 1 if the
second is larger, or −1 if the first is larger. The “bias” is for floating point
operations and indicate how NaN comparisons are treated: g-bias returns

34 sw902e11

Chapter 5 Objects

1 for NaN comparisons, and l-bias returns −1. The actual implementation
is not relevant for the semantics and would be trivial to implement from
the documentation. We do not model special floating point values such as
NaN but discuss it here because it is embedded in the syntax of the Dalvik
instruction set like binary and unary operations. The instruction maps the
destination register to the result from the auxiliary function:

m.instructionAt(pc) = cmp bias v1 v2 v3 c = cmpbias(R(v2), R(v3))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

5.2 Objects

We now turn focus to the part of instructions concerned with objects. In
Dalvik, objects are allocated on the heap, and beside defining how to allocate
them we will also define rules for comparing object types, getting and setting
field values on objects as well as for static fields.

To allocate objects on the heap, we use an auxiliary function:

newObject:Heap× Class → Heap× Ref

newObject(H, cl) = (H ′, loc)

where loc /∈ dom(H), H ′ = H[loc 7→ o], o ∈ Object, and o.class = cl . The
function takes an existing heap and a class, and returns a modified heap
along with a reference to a new location for the allocated object. It is used
in the rule for new-instance which is supplied with the class for which a
new instance should be created and a destination register for the reference
to the object:

m.instructionAt(pc) = new-instance v cl (H ′, loc) = newObject(H, cl)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

We have previously defined semantic rules for two variations of const, but
Dalvik has one more variant that requires its own case: const-string. It
handles constant strings defined at compile-time. The second argument to
the instruction is a string, and the instruction converts this primitive string
into an object of the String class on the heap, and maps the destination
register to the new reference:

m.instructionAt(pc) = const-string v s
(H ′, loc) = newObject(H, String) o = H ′(loc) H ′[loc 7→ o[value 7→ s]]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

sw902e11 35

Methods Chapter 5

To check if a given reference is an instance of a specific type, the instruction
instance-of can be used. It maps a destination register to either 1 or 0,
depending on whether or not the reference-bearing register is of the specified
type:

m.instructionAt(pc) = instance-of v1 v2 type

loc = R(v2) o = H(loc) c =

1 if o ∈ Object ∧ o.class � type ∨
o ∈ Array ∧ o.type � type

0 otherwise

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

Notice how the referenced object must be in the Object or Array domain
before the types can be compared. The reason for this is that arrays are also
allocated on the heap. We describe arrays in more details in Section 5.4.

Fields on objects are defined as mappings to values, which makes it easy to
update and reference them on object instances. For the instruction iget the
referenced object is looked up on the heap, and the destination register is
mapped to the field of the referenced object instance:

m.instructionAt(pc) = iget v1 v2 fld R(v2) = loc o = H(loc)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ o.fld]〉 :: SF 〉

For the iput instruction a similar object lookup is performed, but for this
instruction we update the field mapping on the object to the value of the
source register:

m.instructionAt(pc) = iput v1 v2 fld R(v2) = loc o = H(loc)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ o[fld 7→ R(v1)]], 〈m, pc+ 1, R〉 :: SF 〉

Unlike other instructions, put-instructions take the source register as the first
argument to be symmetric with get-instructions.

Static fields are all placed on the static heap, S, which makes accessing and
updating the fields trivial:

m.instructionAt(pc) = sget v fld

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ S(fld)] :: SF 〉〉

m.instructionAt(pc) = sput v fld

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S[fld 7→ R(v)], H, 〈m, pc+ 1, R :: SF 〉〉

5.3 Methods

We now look at instructions for invoking methods and returning from them.
Dalvik, like Java, uses dynamic dispatch, where the implementation of a

36 sw902e11

Chapter 5 Methods

method is looked up at runtime due to the Java class hierarchy. The various
invoke instructions use different auxiliary functions to do the lookup at run-
time. Before we formalise these auxiliary functions, we define a notation to
indicate that a method signature meth ∈ MethodSignature is compatible with
a given method m ∈ Method. We write meth ⊳ m which is defined as:

meth ⊳ m iff m.name = meth.name ∧
m.argType = meth.argType ∧
m.returnType = meth.returnType

Furthermore, we define the number of arguments for a method to be the
length, | · |, of the argType domain sequence:

arity(meth) = |meth.argType|

To resolve the actual method that has to be called, we use the following
function to search through the class hierarchy for virtual methods (all non-
static methods that are overridable or defined in interfaces):

resolveMethod(meth, cl) =

⊥ if cl = ⊥
m if m ∈ cl .methods ∧meth ⊳ m ∧

m.kind = virtual

resolveMethod(meth, cl .super) otherwise

The semantic rule for invoke-virtual is then defined as:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc)
n = arity(meth) m′ = resolveMethod(meth, o.class)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

The instruction receives n arguments and the signature of the method to
invoke. The first argument v1 is a reference to the object on which the
method should be invoked. The location of the method is resolved using
resolveMethod and this method is put into a new frame on top of the call
stack, with the program counter set to 0. A new set of local registers, R′,
is created, where the first m′.maxLocal registers are mapped to ⊥ from Val

such that they are initially undefined. The arguments are then mapped into
the next registers.

sw902e11 37

Methods Chapter 5

Because we are not addressing exceptions yet, resolveMethod returning ⊥
will result in a stuck configuration.

Invoking methods through an interface in Dalvik uses dynamic dispatch as
invoke-virtual, and the semantic rules are the same because the actual
implementation of an invoked method is found in the runtime class, or any
of its superclasses:

m.instructionAt(pc) = invoke-interface v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc)
n = arity(meth) m′ = resolveMethod(meth, o.class)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

Non-static private methods and constructors are invoked using
invoke-direct. Another auxiliary function is needed to resolve the
method at runtime:

resolveDirectMethod(meth, cl) ={
m if m ∈ cl .methods ∧meth ⊳ m ∧m.kind = direct

⊥ otherwise

it is similar to the one before, except that it should not recurse through the
class hierarchy as direct methods are always present in the class of the object,
the method is being invoked on. Other than that, the semantic rule is the
same:

m.instructionAt(pc) = invoke-direct v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc)
n = arity(meth) m′ = resolveDirectMethod(meth, o.class)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

In Dalvik, a method in a parent (super) class is invoked with the invoke-super
instruction. The method which has to be resolved at runtime is then located
in o.class.super or above:

m.instructionAt(pc) = invoke-super v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc) o.class.super 6= ⊥
n = arity(meth) m′ = resolveMethod(meth, o.class.super)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

Static methods in Dalvik can be inherited, but since they are not called on
objects, resolving the method can be done from merely the method itself.

38 sw902e11

Chapter 5 Methods

We use the recursive auxiliary function resolveStaticMethod for this:

resolveStaticMethod(meth, cl) =

⊥ if cl = ⊥
m if m ∈ cl .methods ∧meth ⊳ m ∧

m.kind = static

resolveStaticMethod(meth, cl .super) otherwise

Static methods in Dalvik are invoked in a similar way as the other type of
methods we have looked at:

m.instructionAt(pc) = invoke-static v1 . . . vn meth

n = arity(meth) m′ = resolveStaticMethod(meth,meth.class)
R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,

m′.maxLocal + 1 7→ v1, . . . ,m
′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

where meth.class is the class from where the method resolving should be-
gin. With no object reference, the instruction is not guaranteed at least one
argument to the static method, thus we need another rule for this case:

m.instructionAt(pc) = invoke-static ε meth

n = arity(meth) m′ = resolveStaticMethod(meth,meth.class)
R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

When methods return in Dalvik, the top frame of the call stack is removed.
This returns the control to the method of the frame now on top. When a
method has no return value, the semantic rule is:

m.instructionAt(pc) = return-void

A ⊢ 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒ 〈S,H, 〈m′, pc′ + 1, R′〉 :: SF 〉

When the method returns a value, the special register retval is mapped to
the value in the frame now on top of the call stack:

m.instructionAt(pc) = return v

A ⊢ 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒
〈S,H, 〈m′, pc′ + 1, R′[retval 7→ R(v)]〉 :: SF 〉

The content of the special register is only available on the very next operation
after something has been put in it. Therefore, the instruction move-result

should be used right after return in order to move the result from the special
register retval to another register that can be read at a later point:

m.instructionAt(pc) = move-result v

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ R(retval)]〉 :: SF 〉

sw902e11 39

Arrays Chapter 5

5.4 Arrays

Dalvik supports Java arrays, including arrays of arrays. Arrays are allocated
on the heap in a way similar to objects. We use the following function to
update the heap and get a reference to the new array:

newArray :Heap× N× ArrayType → Heap× Ref

newArray(H,n, type) = (H ′, loc)

where loc /∈ dom(H), H ′ = H[loc 7→ a], a ∈ Array, a.length = n, and
a.type = type.

Creating a new array is done using the new-array instruction:

m.instructionAt(pc) = new-array v1 v2 type

type ∈ ArrayType n = R(v2) ≥ 0 (H ′, loc) = newArray(H,n, type)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v1 7→ loc]〉 :: SF 〉

It can create arrays of all reference or primitive types.

The size of an array can be retrieved using the array-length instruction
where the destination register is mapped to the length of the array:

m.instructionAt(pc) = array-length v1 v2 R(v2) = loc a = H(loc)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc,R[v1 7→ a.length]〉 :: SF 〉

Retrieving and updating values in arrays requires the heap reference to the
array, an index into the array and a destination or source. The values of the
array are found in the function a.value where a ∈ Array:

m.instructionAt(pc) = aget v1 v2 v3 R(v2) = loc a = H(loc) i = R(v3)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ a.value(i)]〉 :: SF 〉

m.instructionAt(pc) = aput v1 v2 v3 R(v2) = loc a = H(loc) i = R(v3)
value′ = a.value[i 7→ R(v1)] a′ = a[value 7→ value′]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ a′], 〈m, pc+ 1, R〉 :: SF 〉

Dalvik supports the instruction filled-new-array which pre-fills a new ar-
ray with given values. There cannot be more than five values, and the type
of the array must be in the domain ArrayTypeSingle. Once the array has been
allocated, and the values have been mapped in the array, the heap is updated
with the modified array and the retval register is mapped to the location
of the array:

m.instructionAt(pc) = filled-new-array v1 . . . vn type

type ∈ ArrayTypeSingle 1 ≤ n ≤ 5
(H ′, loc) = newArray(H,n, type) a = H ′(loc)

value′ = a.value[0 7→ R(v1), . . . , n− 1 7→ R(vn)] a′ = a[value 7→ value′]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loc 7→ a′], 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

40 sw902e11

Chapter 5 Switches

Since the instruction does not require content arguments, it is possible to
create an empty array:

m.instructionAt(pc) = filled-new-array ε type

type ∈ ArrayTypeSingle (H ′, loc) = newArray(H, 0, type)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

The final instruction for arrays is fill-array-data. It fills an existing array
with data found in a static table. The array will be filled from the beginning
(index 0) and if there are fewer elements in the data table than the array
provides space for, the rest of the array is left unchanged. The static table
can be found using a program counter value in the current method, where
the table d ∈ ArrayData and the data can be retrieved using a function
data:

m.instructionAt(pc) = fill-array-data v pc′

R(v) = loc loc 6= null a = H(loc) d = m.tableAt(pc′)
value′ = a.value[0 7→ d.data(0), . . . , d.size − 1 7→ d.data(d.size − 1)]

a′ = a[value 7→ value′]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ a′], 〈m, pc+ 1, R〉 :: SF 〉

5.5 Switches

Dalvik has support for switch instructions with two types of switches: packed
and sparse. The sparse-switch instruction simply looks up the received key
in the target table while packed-switch calculates the table index to look
at from the lookup key and the value of the first key in the table. In both
cases, control is transferred to the instruction at the new program counter if
a match is found. Otherwise, control falls through to the next instruction as
in nop.

m.instructionAt(pc) = packed-switch v pc′ s = m.tableAt(pc′)
i = R(v)− s.firstKey i ∈ dom(s.packedTargets) pc′′ = s.packedTargets(i)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′′, R〉 :: SF 〉

m.instructionAt(pc) = packed-switch v pc′ s = m.tableAt(pc′)
i = R(v)− s.firstKey i /∈ dom(s.packedTargets)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = sparse-switch v pc′ s = m.tableAt(pc′)
R(v) ∈ dom(s.sparseTargets) pc′′ = s.sparseTargets(R(v))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′′, R〉 :: SF 〉

m.instructionAt(pc) = sparse-switch v pc′ s = m.tableAt(pc′)
R(v) /∈ dom(s.sparseTargets)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

sw902e11 41

Exception Semantics Chapter 5

5.6 Exception Semantics

Exceptions can be thrown in two situations: Either explicitly using the throw
instruction, or by the system in case of a runtime error, such as a null deref-
erence. Many instructions may throw these runtime exceptions, but we have
not modelled that in the previous sections to keep the complexity of the rules
down. Without exception rules, the semantics will end in a stuck configura-
tion in those cases. However, in this section we show how the semantics can
be expanded with runtime exceptions. Since exceptions are used explicitly
in almost all apps as seen in Section 3.4, and implicitly in all apps because
of runtime exceptions, they are important to consider.

5.6.1 Exception Domains

Exception handlers belong to methods so we extend the Method domain
with a function mapping from exception handler indices to the correspond-
ing exception handlers. The indices are defined by the compiler which has
the responsibility of finding the right order of the exception handlers corre-
sponding to their catch types and placements in the source code, possibly
nested within each other.

handlers:N0 → ExcHandler

An exception handler has a type for the exceptions it may catch, a program
counter value pointing to the handler code, and program counter values defin-
ing the boundaries of the region covered by the exception handler:

ExcHandler = (catchType:Class⊥)×
(handlerAddr:PC)×
(startAddr:PC)×
(endAddr:PC)

The ⊥ element in the domain for catchType represents a Java finally

clause. In Java bytecode, a finally block is stored as a subroutine, and
instructions to jump to that subroutine are inserted at the end of the try

block and at the end of each catch block. The subroutine is also registered
as a catch-all exception handler used in case none of the others match. This
means that the finally block will always be run. Dalvik works the same
way, except that the finally blocks are inlined because it does not support

42 sw902e11

Chapter 5 Exception Semantics

subroutines. This means that a Java finally block in Dalvik does not re-
quire special treatment and can simply be used as a normal catch block that
catches all exceptions in addition to the places where its code is inlined.

Exceptions that are not handled in the method where it is thrown are put
on the call stack for the next method’s exception handlers to try to handle.
To represent that, we modify the CallStack domain to make it possible for
the top frame to be an exception frame:

CallStack = (Frame+ ExcFrame)× Frame∗

An exception frame contains the location of its corresponding exception ob-
ject on the heap and the address of the instruction that threw the excep-
tion:

ExcFrame = Location×Method× PC

5.6.2 Exception Rules

First, we define the semantic rules for the instruction throw which can throw
any subclass of Throwable as an exception1. There are two cases, one where
an appropriate exception handler is found in the local method, and one where
it is not:

m.instructionAt(pc) = throw v
R(v) = locE cl = H(locE).class cl � Throwable findHandler(m, pc, cl) = pc′

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

m.instructionAt(pc) = throw v
R(v) = locE cl = H(locE).class cl � Throwable findHandler(m, pc, cl) = ⊥

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈locE ,m, pc〉 :: SF 〉

We use the auxiliary function findHandler to find an exception handler
matching the location in the method and the given exception class. Be-
fore we define this function, we define two other auxiliary functions. The
canHandle function is able to determine if an exception handler (h) can han-
dle the given exception (clE) for the specific location in the method, and if
their types match:

canHandle(h, pc, clE) ≡ h.startAddr ≤ pc ≤ h.endAddr ∧
(clE � h.catchType ∨ h.catchType = ⊥)

1By “exception”, we always mean a subclass of Throwable.

sw902e11 43

Exception Semantics Chapter 5

where h is a handler in the domain ExcHandler, pc ∈ PC and clE ∈ Class ∧
clE � Throwable. The function is used by isFirstHandler which determines
if the specified handler is the first applicable handler (the one with the highest
index) in the given set:

isFirstHandler(η, i, pc, clE) ≡ canHandle(η(i), pc, clE) ∧
(∀j ≤ i: canHandle(η(j), pc, clE))

where η is a function mapping indices to handlers for a specific method,
i is the index for a specific handler, pc ∈ PC and clE ∈ Class ∧ clE �
Throwable.

We can now define findHandler:

findHandler(m, pc, clE) =

η(i).handlerAddr if η = m.handlers ∧ dom(η) 6= ∅ ∧
∃i: isFirstHandler(η, i, pc, clE)

⊥ otherwise

which returns the first exception handler for the given exception class in the
method, or ⊥ in case no handler was found.

Next, we need semantic rules for when an exception frame is on top of the
stack. In this case, two things can happen. If the local method (the method
frame below the exception frame) has an appropriate exception handler, the
exception frame is removed from the stack, the program counter is updated
to the location of the handler, and the retval register is mapped to the
exception in the new top frame:

cl = H(locE).class findHandler(m, pc, cl) = pc′

A ⊢ 〈S,H, 〈locE ,mE , pcE〉 :: 〈m, pc,R〉 :: SF 〉 =⇒
〈S,H, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

If the local method does not have an appropriate exception handler, the
exception frame is removed from the top of the stack, so is the second one,
and a new exception frame is added instead. The new exception frame has
a method and a program counter corresponding to the method frame which
was just removed, thus it is the same as re-throwing the exception to the
next method in the call hierarchy.

cl = H(locE).class findHandler(m, pc, cl) = ⊥

A ⊢ 〈S,H, 〈locE ,mE , pcE〉 :: 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈locE ,m, pc〉 :: SF 〉

In an exception handler, the first instruction must be move-exception if
the exception object is needed by the handler. This instruction is similar to
move-result except that the object must be an exception:

44 sw902e11

Chapter 5 Exception Semantics

m.instructionAt(pc) = move-exception v
locE = R(v) H(locE).class � Throwable

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ R(retval)]〉 :: SF 〉

5.6.3 Runtime Exceptions

The previous section covered explicitly thrown exceptions, and now we will
show how to handle runtime exceptions. The Dalvik instruction check-cast

checks whether or not a type cast is possible. The instruction throws a
ClassCastException if it is not. First, we define the case where the type
cast is possible and no exception is thrown:

m.instructionAt(pc) = check-cast v type

loc = R(v) o = H(loc)
(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

If the given type is not a subtype of the instance type, the exception is thrown
and again we have two cases: One where there is a local handler, and one
where there is not:

m.instructionAt(pc) = check-cast v type

loc = R(v) o = H(loc)
(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

findHandler(m, pc, ClassCastException) = pc′

(H ′, locE) = newObject(H, ClassCastException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

m.instructionAt(pc) = check-cast v type

loc = R(v) o = H(loc)
(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

findHandler(m, pc, ClassCastException) = ⊥
(H ′, locE) = newObject(H, ClassCastException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈locE ,m, pc〉 :: SF 〉

Notice how we allocate a new exception object before the exception is either
put in retval or in an exception frame.

Null-pointer exceptions are common errors in Java, and they can be thrown
in several of the Dalvik instructions as well, including throw. We define
two rules for invoke-virtual that handle the case where the given object
reference is null. They are similar to the previous exception rules, as the
first one fits when there is a local handler and the second one when there is
not. They both allocate the NullPointerException on the heap before the
exception is used:

sw902e11 45

Exception Semantics Chapter 5

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth

R(v1) = null findHandler(m, pc, NullPointerException) = pc′

(H ′, locE) = newObject(H, NullPointerException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth

R(v1) = null findHandler(m, pc, NullPointerException) = ⊥
(H ′, locE) = newObject(H, NullPointerException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈locE ,m, pc〉 :: SF 〉

46 sw902e11

Chapter 6

Flow Logic

In this chapter we define a control flow analysis based on the semantics
for Dalvik from Chapter 5. The analysis is expressed as flow logic judge-
ments [NNH99]. First, we introduce the necessary concepts and define ab-
stract domains for the analysis.

6.1 Partial Order and Lattices

Flow logic is based on partial order and lattices. Before we define our analysis,
the necessary concepts are introduced briefly. They are standard definitions
discussed in [NNH99].

Partial order A partial order in a set S is a relation, ⊑, on S that is
reflexive, anti-symmetric, and transitive:

• ∀x ∈ S : x ⊑ x

• ∀x, y ∈ S : x ⊑ y ∧ y ⊑ x ⇒ x = y

• ∀x, y, z ∈ S : x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

A set S with a partial order ⊑ is called a partially ordered set and denoted
(S,⊑).

Least upper bound For X ⊆ S, we say that y ∈ S is an upper bound of
X if ∀x ∈ X : x ⊑ y. In addition, if y ⊑ z for all upper bounds z, then y

47

Abstract Domains Chapter 6

is the least upper bound of X, denoted
⊔

X. The binary least upper bound⊔
{x, y} is written x⊔ y.

Greatest lower bound Similarly, y ∈ S is a lower bound if ∀x ∈ X : y ⊑ x,
and the greatest lower bound

d
X if z ⊑ y for all lower bounds z. The great-

est lower bound
d

{x, y} is written x ⊓ y.

Complete lattice A partially ordered set (S,⊑) where S 6= ∅ is a complete

lattice if
⊔

X and
d
X exist for all X ⊆ S.

Powerset lattice A powerset P(S) over S forms a complete lattice or-
dered by subset inclusion where

⊔
P(S) = S = ⊤ is called the top element,

and
d

P(S) = ∅ = ⊥ is the bottom element. Figure 6.1 illustrates a power-
set lattice. We use powerset lattices to represent sets of values in abstract
domains in the analysis.

Figure 6.1: A powerset lattice over {x, y, z} (from [KSm11]).

6.2 Abstract Domains

In this section, we define the abstract domains which are abstractions of
the concrete semantic domains. They are defined in ways that are relevant
for control flow analysis. The abstract domains are necessary to statically
represent values that are only available at runtime.

48 sw902e11

Chapter 6 Abstract Domains

Just like the semantic domains, the abstract domain for values will consist
of primitive values, references, and classes:

Val = Prim+ Ref + Class

As in [Han05], the overbar is used to distinguish abstract domains from
semantic, or concrete, domains. Since the analysis is an over-approximation,
we will need to be able to represent sets of possible values. The hat notation
will be used to represent abstract domains that are complete lattices ordered
by subset inclusion:

V̂al = P(Val)

Primitive values are represented as integers, so there is no difference from
the semantic domain:

Prim = Prim = Z

P̂rim = P(Prim)

Strings and classes will be used in the same way:

Ŝtring = P(String) = P(String)

Ĉlass = P(Class) = P(Class)

References can be object references or array references:

Ref = ObjRef + ArrRef

For objects, we will use the representation of modelling references as classes
or null:

ObjRef = Class ∪ {null}

This means that objects of the same class cannot be distinguished. By using
the Cartesian product of the class and the address of the instruction that

sw902e11 49

Abstract Domains Chapter 6

created the object, the analysis could become more precise, but we leave it
out to keep the analysis simple.

Array references are modelled after the array type, and similarly to objects,
the analysis could be improved by including the creation point of the ar-
ray.

ArrRef = ArrayType ∪ {null}

Abstract values from these domains are written (Ref x), (ObjRef x), and
(ArrRef x) for readability.

Abstract addresses will be represented as their corresponding semantic do-
main but with the addition of a special program counter value representing
the end of control flow for methods:

Addr = Addr + (Method× {END})

The addition of this explicit value makes each method have easily referrable
entry and exit points: pc = 0 and pc = END, respectively.

For the abstract representation of the LocalReg domain, we could simply
map Register → V̂al, but for a more precise analysis inside methods, flow
sensitivity can be added by keeping track of values in registers at all points
in a method:

̂LocalReg = Addr → (Register ∪ {END}) → V̂al

This means that for R̂ ∈ ̂LocalReg, a ∈ Addr, the value R̂(a) is a function
mapping registers to abstract values. The token END is reused as a pseudo-
register such that for m ∈ Method, the expression R̂(m,END) is notation
for R̂(m,END)(END). This is used in the judgements for method invocation
instructions in Section 7.3 to pass return values to the retval register.

As with the semantic domains, the heap is split into the static and dynamic
parts. The static heap maps fields to values:

̂StaticHeap = Field → V̂al

and the dynamic heap maps references to objects and arrays:

Ĥeap = Ref → (Ôbject+ Ârray)

50 sw902e11

Chapter 6 Flow Logic Specification

The state of an object is the state of its (instance) fields:

Ôbject = Field → V̂al

For a simple analysis, the length and structure of arrays can be ignored.
Instead the array is simply represented as an unordered set of values:

Ârray = V̂al

6.2.1 Abstract Representation Function

For specifying the flow logic judgements of Dalvik instructions, a represen-
tation function is needed to map concrete semantic values into their corre-
sponding abstract representations. Since our analysis represents all values as
elements in sets of possible values, we can simply create a singleton set with
the value:

β(c) = {c}

In the const, cmp, and instance-of instructions in Chapter 7, the repre-

sentation function will map Prim → P̂rim, for const-string it will map

String → Ŝtring, and lastly for const-class, new-instance, throw, and

check-cast, it will map Class → Ĉlass.

6.3 Flow Logic Specification

The abstract representation of a semantic program configuration can now
be specified from the abstract domains as the domain for the control flow
analysis:

Ânalysis = ̂StaticHeap× Ĥeap× ̂LocalReg

Since each component is a lattice, the Ânalysis domain is also a lattice with
one element being smaller than another if each of the components of the
first element is smaller than the corresponding component of the second
element. This ordering is used to compare analysis results. When used
between functions, the ordering is taken as a point-wise extension of the

ordering on the codomain. For example, for R̂ ∈ ̂LocalReg and a1, a2 ∈
Addr:

R̂(a1) ⊑ R̂(a2) iff ∀r ∈ dom(R̂(a1)) : R̂(a1)(r) ⊑ R̂(a2)(r)

sw902e11 51

Flow Logic Specification Chapter 6

For convenience we will extend the relation for functions to be able to com-
pare all codomain values except those mapped to, from some specified set.
In general, for functions F1, F2 and the set to exclude X:

F1 ⊑X F2 iff ∀a ∈ dom(F1) \X : F1(a) ⊑ F2(a)

The analysis specifies judgements that define when an analysis result (from

the Ânalysis domain) is acceptable:

(Ŝ, Ĥ, R̂) |= (m, pc): instr

where (Ŝ, Ĥ, R̂) ∈ Ânalysis and instr is the instruction at pc in method m.
In the next chapter we specify and explain the judgements for the Dalvik
instructions.

52 sw902e11

Chapter 7

Flow Logic Judgements

As with the semantics, we will first treat Dalvik without exceptions and then
add them in Section 7.6. The judgements in this chapter are also summarized
in Appendix C.

7.1 Imperative Core

The semantics for the nop instruction state that its only effect is incrementing
the program counter. Since this does not change the state of the registers,
they are all copied into the analysis of the next program point:

(Ŝ, Ĥ, R̂) |= (m, pc): nop

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)

The static and dynamic heaps do not depend on instruction addresses, so
they are not copied each time the program counter changes. By “copy”
actually we mean that the least upper bound of the old and new value is
used as the new value, or, alternatively, that the union of the sets of possible
values is used as the new set of possible values. A solution that satisfies
this ordering and all of the following for each instruction in each method in
the program will be a safe over-approximation of all possible values in every
method.

After a const instruction, the contents of its destination register will be
known at the next program point to be the abstract value of the argu-
ment. The rest of the registers are copied forward unchanged as signified

53

Imperative Core Chapter 7

by the ⊑{v} relation:

(Ŝ, Ĥ, R̂) |= (m, pc): const v c

iff β(c) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

The conditions of the judgements are connected by an implicit conjunc-
tion.

The instruction const-class works the same way:

(Ŝ, Ĥ, R̂) |= (m, pc): const-class v cl

iff β(cl) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

The instruction move is like const except that the contents of a register is
copied instead of a constant value:

(Ŝ, Ĥ, R̂) |= (m, pc): move v1 v2
iff R̂(m, pc)(v2) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

For a binary operation, the value to be copied forward to the destination

register is determined by the binary abstract b̂inOp function:

(Ŝ, Ĥ, R̂) |= (m, pc): binopop v1 v2 v3

iff ̂binOpop(R̂(m, pc)(v2), R̂(m, pc)(v3)) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

The simplest such function always returns ⊤ from the P̂rim domain, meaning
all possible primitive values:

̂binOpop(c1, c2) = ⊤
P̂rim

This function can be improved for the benefit of a specific analysis. The case
for binary operations with a literal value is similar:

(Ŝ, Ĥ, R̂) |= (m, pc): binop-litop v1 v2 c

iff ̂binOpop(R̂(m, pc)(v2), β(c)) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

54 sw902e11

Chapter 7 Imperative Core

Unary operations are also similar:

(Ŝ, Ĥ, R̂) |= (m, pc): unopop v1 v2

iff ûnOpop(R̂(m, pc)(v2)) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

where

ûnOpop(c) = ⊤
P̂rim

The goto instruction unconditionally branches to its argument. This is done
simply by copying all registers to the ones at new address:

(Ŝ, Ĥ, R̂) |= (m, pc): goto pc′

iff R̂(m, pc) ⊑ R̂(m, pc′)

Branching with if is like goto except that there are two possibilities for
the next program counter value. A simple and safe over-approximation is to
assume both branches are taken, so register contents are simply copied to
both program points:

(Ŝ, Ĥ, R̂) |= (m, pc): if op v1 v2 pc′

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)

R̂(m, pc) ⊑ R̂(m, pc′)

The same applies for ifz:

(Ŝ, Ĥ, R̂) |= (m, pc): ifz op v1 pc′

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)

R̂(m, pc) ⊑ R̂(m, pc′)

A more precise analysis could choose based on the sets of values in the reg-
isters and the given operator where above rules simply ignore them.

Comparison is similar to the if instructions, except that the result of the
comparison affects the given destination register rather than the program
counter. We over-approximate by storing all possible results from the com-
parison into the destination register:

(Ŝ, Ĥ, R̂) |= (m, pc): cmp bias v1 v2 v3
iff β(−1)⊔ β(0)⊔ β(1) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

sw902e11 55

Objects Chapter 7

7.2 Objects

When a new object is created, a reference to it is stored in the destination
register of the new-instance instruction:

(Ŝ, Ĥ, R̂) |= (m, pc): new-instance v cl

iff β(cl) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

Since object references are modelled as classes and since these are all known
statically, there is no need to “create” a new object on the heap, and the
class can be used directly as a reference.

The const-string instruction is simply a shortcut for creating a new
java.lang.String instance and setting its value1 to the given constant
string. As with new-instance, the reference to the object is stored in the
destination register:

(Ŝ, Ĥ, R̂) |= (m, pc): const-string v s

iff β(s) ⊑ Ĥ(ObjRef String)(value)

(ObjRef String) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

As with cmp, the instance-of instruction simply stores the union/least up-
per bound of the possible results in the destination register:

(Ŝ, Ĥ, R̂) |= (m, pc): instance-of v1 v2 type

iff β(0)⊔ β(1) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

Unlike new-instance, the two instructions iget and iput access object con-
tents, so they use the abstract dynamic heap. Since registers in the analysis
contain multiple values, all of them must be used, but since registers may
contain values of different types, we will use the notation (ObjRef cl) to only
match the object references and not the array references:

(Ŝ, Ĥ, R̂) |= (m, pc): iget v1 v2 fld

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v2):

Ĥ(ObjRef cl)(fld) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

1In the Apache Harmony Java implementation used in Android, the String class uses
the name “value” for the variable holding the character array representing the string.

56 sw902e11

Chapter 7 Methods

(Ŝ, Ĥ, R̂) |= (m, pc): iput v1 v2 fld

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v2):

R̂(m, pc)(v1) ⊑ Ĥ(ObjRef cl)(fld)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

On the static heap the situation is simpler since fields are identified uniquely
by name:

(Ŝ, Ĥ, R̂) |= (m, pc): sget v fld

iff Ŝ(fld) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): sput v fld

iff R̂(m, pc)(v) ⊑ Ŝ(fld)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

7.3 Methods

The invoke-virtual instruction works as follows: For each possible object
the method can be called on, the method is resolved (by dynamic dispatch
using the resolveMethod function from the semantics), the arguments are
transferred, and the retval register is updated with the return value unless
the return type of the method is void:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

As usual, all but the affected register are transferred untouched. The invoke
instructions and filled-new-array are the only ones that set the contents
of the retval register (until we add exceptions), and its value is only defined
at instructions immediately following those. Therefore, we do not need to
explicitly exclude it from being copied forward in other instructions.

There are no differences between the conditions for invoke-virtual and

sw902e11 57

Methods Chapter 7

invoke-interface:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-interface v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

The judgement for direct methods is the same as for virtual methods except
that the appropriate resolve function is used:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-direct v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveDirectMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

invoke-super is also the same as for virtual methods except that the super-
class must be defined and that the resolving starts from the superclass of the
given object:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-super v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
cl .super 6= ⊥
m′ = resolveMethod(meth, cl .super)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

Static methods are different since they are not invoked on objects, but oth-
erwise the structure is the same:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-static v1 . . . vn meth

iff m′ = resolveStaticMethod(meth)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

58 sw902e11

Chapter 7 Arrays

The judgement for methods with no arguments is even simpler since the
copying of arguments is skipped:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-static ε meth

iff m′ = resolveStaticMethod(meth)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

The return instruction sets the value at the END pseudo register to be read
by the invoke instructions:

(Ŝ, Ĥ, R̂) |= (m, pc): return v

iff R̂(m, pc)(v) ⊑ R̂(m,END)

For void methods no constraints are generated by returning:

(Ŝ, Ĥ, R̂) |= (m, pc): return-void
iff true

Finally, after a method has been invoked and its return value transferred to
the retval register of the next instruction, the value can then be moved to
a regular register:

(Ŝ, Ĥ, R̂) |= (m, pc): move-result v

iff R̂(m, pc)(retval) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

7.4 Arrays

As with object references, array references are modelled after statically known
information, so for the new-array instruction, the heap is not affected, but
the array reference, which is simply the array type, is stored in the destination
register. The array length is irrelevant since arrays are modelled as unordered
sets of values:

(Ŝ, Ĥ, R̂) |= (m, pc): new-array v1 v2 type

iff (ArrRef type) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

sw902e11 59

Arrays Chapter 7

Since the array length is not tracked, the array-length instruction, like

the b̂inOp and ûnOp functions, is no more precise than ⊤ from the P̂rim

domain:
(Ŝ, Ĥ, R̂) |= (m, pc): array-length v1 v2

iff ⊤
P̂rim

⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

The array get instruction transfers each array reference to the destination
register of the next instruction while ignoring the given array index:

(Ŝ, Ĥ, R̂) |= (m, pc): aget v1 v2 v3
iff ∀(ArrRef type) ∈ R̂(m, pc)(v2): Ĥ(ArrRef type) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

The array put instruction simply adds to the heap and does not affect the
registers:

(Ŝ, Ĥ, R̂) |= (m, pc): aput v1 v2 v3
iff ∀(ArrRef type) ∈ R̂(m, pc)(v2): R̂(m, pc)(v1) ⊑ Ĥ(ArrRef type)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

The filled-new-array instruction is a specialized instruction that con-
structs a new array of the given type and with the values from the argument
registers. It stores a reference to the new array in the retval register as
if it was a method call. Because of our simple representation of arrays, the
given content arguments are simply stored in the array modelling the array
reference:

(Ŝ, Ĥ, R̂) |= (m, pc): filled-new-array v1 . . . vn type

iff {(ArrRef type)} ⊑ R̂(m, pc+ 1)(retval)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ Ĥ(ArrRef type)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

Since filled-new-array may be called with no arguments, thus creating a
new array of length zero, we use the following judgement that is the same
as the previous one except that no values are copied into the array on the
heap:

(Ŝ, Ĥ, R̂) |= (m, pc): filled-new-array ε type

iff {(ArrRef type)} ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

60 sw902e11

Chapter 7 Switches

The final array related instruction fills an existing array with data from a
statically defined table referenced by a program counter value. Registers
contain various values, so only array references are used, and each of the
referenced arrays is filled with the data from the table looked up by the
tableAt function:

(Ŝ, Ĥ, R̂) |= (m, pc): fill-array-data v pc ′

iff ∀(ArrRef type) ∈ R̂(m, pc)(v):
d = m.tableAt(pc′)
∀0 ≤ i ≤ d.size − 1:

d.data(i) ⊑ Ĥ(ArrRef type)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

7.5 Switches

The control flow for the two switch instructions follow the same structure:
Look up the switch table using the tableAt function and, for each jump
target, copy the current register values to that location and also to the next
program counter for the situation where no case matches. The lookup key in
the argument register is ignored.

(Ŝ, Ĥ, R̂) |= (m, pc): packed-switch v pc′

iff s = m.tableAt(pc′)
∀pc′′ ∈ s.packedTargets:

R̂(m, pc) ⊑ R̂(m, pc′′)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): sparse-switch v pc ′

iff s = m.tableAt(pc′)
∀pc′′ ∈ s.sparseTargets:

R̂(m, pc) ⊑ R̂(m, pc′′)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

7.6 Exception Flow Logic

In this section we show how an analysis can be defined to handle exceptions.
First, we define the abstract domains necessary and then we define flow
judgements for the exception semantics.

sw902e11 61

Exception Flow Logic Chapter 7

7.6.1 Abstract Exception Domains

Exceptions are objects of a subclass of Throwable. For clarity, we introduce
an abstract domain for exception references:

ExcRef = ObjRef

Since we do not model the call stack directly in the analysis, we will also
need a way to treat exceptions that cannot be handled in the method they
are thrown. The exception cache tracks sets of exceptions in methods:

̂ExcCache = Method → P(ExcRef)

When the exception cache is added to the previous analysis, we get the
exception analysis domain:

ÂnalysisEXC = ̂StaticHeap× Ĥeap× ̂LocalReg × ̂ExcCache

7.6.2 Exception Judgements

From the semantics in Section 5.6, we know that two things can happen when
an exception is thrown: If a local handler exists, control is transferred to that
handler with a reference to the exception object in the retval register. If
no local handler exists, the method aborts and the exception is put on the
call stack in an exception frame. The analysis will treat this situation with
the following auxiliary predicate:

HANDLE(R̂,Ê)((ExcRef clE), (m, pc)) ≡

findHandler(m, pc, clE) = pc′ ⇒

β(ExcRef clE) ⊑ R̂(m, pc′)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc′)

findHandler(m, pc, clE) = ⊥ ⇒

β(ExcRef clE) ⊑ Ê(m)

The predicate uses the findHandler function defined in the semantics to check
if a handler for an exception of class clE that was thrown at pc in method m
is available. If it is, the exception reference is stored in the retval register

62 sw902e11

Chapter 7 Exception Flow Logic

of the program counter value of the handler (with β as previously defined)
and the remaining registers are copied untouched. If not, the exception is
stored in the exception cache to be handled by the invoke instructions.

We will first demonstrate HANDLE in the throw instruction. Each exception
reference in the argument register is handled and since the instruction fails
on a null reference, a NullPointerException is also handled:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): throw v

iff ∀(ExcRef clE) ∈ R̂(m, pc)(v):
HANDLE(R̂,Ê)((ExcRef clE), (m, pc))

HANDLE(R̂,Ê)((ExcRef NullPointerException), (m, pc))

The conditions for the move-exception instruction are identical to the ones
from the move-result instruction:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): move-exception v

iff R̂(m, pc)(retval) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

7.6.3 Runtime Exceptions

The semantics of the check-cast instruction state that two things may
happen: In case the cast is acceptable it works like nop, otherwise a
ClassCastException is thrown:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): check-cast v type

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)
HANDLE(R̂,Ê)((ExcRef ClassCastException), (m, pc))

As the last instruction in the exception analysis, we present invoke-virtual.
Compared to the non-exception aware version, the instruction now handles
each unhandled exception from the exception cache of the method being
called and it handles a NullPointerException in case the method had been
called on a null reference:

sw902e11 63

Exception Flow Logic Chapter 7

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

∀(ExcRef clE) ∈ Ê(m′) : HANDLE(R̂,Ê)((ExcRef clE), (m, pc))

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

HANDLE(R̂,Ê)((ExcRef NullPointerException), (m, pc))

64 sw902e11

Chapter 8

Future Work

In this chapter we look at the possibilities for future work in three areas:
implementation of the analysis, expansion of the analysis to make it more
precise, and expansion of the formalization to include concurrency and Java
reflection. In addition, we look at some of the limitations of only analyzing
Dalvik bytecode.

8.1 Implementation

With the operational semantic rules for Dalvik bytecode, and the control flow
analysis specified in flow logic, the analysis is now ready be used on apps.
However, without an automated tool to run the analysis it will be a very
tedious task to do even for a small app. Instead, the flow judgements can be
converted using a constraint generator into a set of constraints that can be
solved by an automated solver such as Prolog [Dan12] or Datalog [Dat12].
This requires the bytecode to be available but since parts of the Android API
is not written in Java, these parts should be analyzed by another method. By
manually analysing often-used API methods this will additionally result in a
more precise analysis. We have included the 20 most used library methods in
our data set in Table 8.1, which shows that an analysis could clearly benefit
from a precise manual inspection of string handling methods.

65

Java Features Chapter 8

Calls Method
1,278,534 java/lang/StringBuilder->append(String)StringBuilder

556,232 java/lang/StringBuilder->toString()String

442,197 java/lang/Object-><init>()V

354,901 java/lang/StringBuilder-><init>()V

284,448 java/lang/String->equals(Object)Z

194,952 java/lang/StringBuilder-><init>(String)V

183,849 java/lang/StringBuffer->append(String)StringBuffer

149,807 java/lang/Integer->valueOf(I)Integer

137,022 java/lang/StringBuilder->append(I)StringBuilder

107,464 java/lang/String->length()I

97,309 java/util/Iterator->hasNext()Z

96,830 java/util/Map->put(Object;Object)Object

96,785 java/util/Iterator->next()Object

85,157 java/util/HashMap->put(Object;Object)Object

81,411 java/lang/StringBuilder->append(Object)StringBuilder

72,085 android/widget/TextView->setText(CharSequence)V

67,802 java/util/List->add(Object)Z

67,123 java/lang/IllegalArgumentException-><init>(String)V

67,113 java/lang/String->valueOf(Object)String

63,289 java/util/ArrayList->add(Object)Z

Table 8.1: The 20 most used library methods in our data set.

8.2 Java Features

Due to time constraints, we have not included concurrency in our formaliza-
tion of Dalvik, nor did we handle it in the control flow analysis. Our study
in Section 3.4 showed that monitors are used in 88 % of all the studied apps,
and further inspection showed that 90 % of the apps use the Java library
for threading. These numbers indicate that an analysis should handle con-
currency, possibly by expanding the formalization and analysis to include
concurrency.

In Java, and thus Dalvik, it is possible to examine and modify classes, meth-
ods and fields at runtime through the Java Reflection API. The analysis we
have developed will fail to follow flow through Java reflection, as it will in
most cases be seen as a call to a library method for which the result is un-
known. Other studies of Android apps [FCH+11] used static analysis to find
overprivileged apps, and expanded their analysis to analyze reflective calls

66 sw902e11

Chapter 8 Native Libraries

to a depth of two method calls. Despite of this, they were not able to fully
resolve 41 % of the reflective calls. They identified use of reflection in 61 %
of their studied apps, while we found it in 73 % of the apps.

Reflection in Android apps is used for several things, such as accessing private
or hidden methods and JSON parsing [FCH+11]. We performed manual
inspections of the use of reflection in our data sample and confirmed these
uses. Furthermore, our study shows that more than half of the reflection
calls are in libraries. Android releases are not all backward compatible with
all features. Some features are added or removed when new versions are
released. Our samples indicate that this is one of the main reasons why
reflection is used, such that the developer is able to release the same code
for a larger set of Android versions. In addition, the Android documentation
recommends use of reflection to increase backward compatibility [And11a].
The Android API has a large set of internal methods that have been hidden
(removed from the public JAR library which contains the Android API) and
are not guaranteed to be present. Accessing these hidden methods is one of
the other common uses of reflection in Android. An expansion of our analysis
should include not only formalization of semantics for reflective method calls,
but could also try to identify the patterns described here.

The usage of Runtime.exec() in 19.53 % of the apps we have studied raises
some concern, and should also be further investigated. We inspected some of
these uses, and found execution of both the su and logcat programs which,
if successful, give the app access to run commands as the super user on the
platform or read logs from all applications, respectively.

8.3 Native Libraries

We identified the use of native libraries in 20.35 % of the apps. This means
that these apps are able to run code which can not be analyzed by static anal-
ysis of Dalvik bytecode alone. Static analysis of the libraries would require
expansion to analyze ARM assembly as well. We identified an increased use
of the native libraries compared to previous studies. Vulnerabilities have been
found in the Linux kernel used by Android, and has been exploited [Obe11].
Therefore, any expansion or implementation of our analysis should identify
calls to these native libraries, and possibly analyze them as well.

sw902e11 67

Chapter 9

Conclusion

We found several studies that show the increasing problem with malicious
apps and privacy problems on the Android platform. Android apps run in
the Dalvik virtual machine that is a register based VM for Java.

We collected the 1,700 most popular free apps from Android Market, and
through a study of these we found that: All the types of Dalvik instructions
are used by the 1,700 apps, and most of them are used in all apps. Specialised
Java features, such as multi-threading, reflection and execution of programs
outside the VM are used by a large part of the apps. We confirmed the risk of
information leakage from apps by looking at the permissions required of the
apps. Android developers tend to obfuscate their code, use several hundreds
of classes, and include a lot of third-party library code in their apps. A
thorough analysis for Android apps should consider all of these findings and
be able to analyze Dalvik bytecode as well as native ARM code.

We generalized the Dalvik instruction set and formalized it using operational
semantics. We defined formal representation of apps, types and the neces-
sary semantic domains. The semantic rules were defined without considering
exceptions, but we demonstrated how they can be added. The semantic rules
were based on the Dalvik documentation, inspection of the Dalvik VM source
code, and manual testing.

We defined abstract domains based on powerset lattices for a control flow
analysis based on the semantic rules. The analysis is a safe over-approximation
of actual program behaviour defined by flow logic judgements for a simple
control flow analysis that could form the basis of an analysis tool.

68

Bibliography

[Ali11] Alienvault Labs. Analysis of Trojan-
SMS.AndroidOS.FakePlayer.a. http://labs.alienvault.com/

labs/index.php/2010/analysis-of-trojan-sms-androidos-

fakeplayer-a/, November 29th 2011.

[And11a] Android Developers. Backward Compatibility for Applica-
tions. http://developer.android.com/resources/articles/

backward-compatibility.html, December 15th 2011.

[And11b] Android Developers. Security and Permissions. http:

//developer.android.com/guide/topics/security/

security.html, November 29th 2011.

[And11c] Android Developers. What is Android? http://developer.

android.com/guide/basics/what-is-android.html, November
29th 2011.

[And11d] Android Open Source Project. Android Security Overview. http:
//source.android.com/tech/security/index.html, November
29th 2011.

[And11e] Android Open Source Project. Bytecode for the Dalvik VM. http:
//source.android.com/tech/dalvik/dalvik-bytecode.html,
December 13th 2011.

[And11f] Android Open Source Project. Downloading the Source
Tree. http://source.android.com/source/downloading.html,
December 14th 2011.

[Bru11] Brut.alll. android-apktool. http://code.google.com/p/

android-apktool/, November 29th 2011.

[Dan12] Daniel Diaz. The GNU Prolog web site. http://www.gprolog.

org, January 3rd 2012.

69

BIBLIOGRAPHY Appendix

[Dat12] Datalog Educational System. Datalog Educational System. http:
//www.fdi.ucm.es/profesor/fernan/DES/, January 3rd 2012.

[EGC+10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitor-
ing on smartphones. In Proceedings of the 9th USENIX conference

on Operating systems design and implementation, OSDI’10, pages
1–6, Berkeley, CA, USA, 2010. USENIX Association.

[EOMC11] William Enck, Damien Octeau, Patrick McDaniel, and Swarat
Chaudhuri. A study of android application security. In Proceedings

of the 20th USENIX conference on Security, SEC’11, pages 21–21,
Berkeley, CA, USA, 2011. USENIX Association.

[Eri11] Eric Lafortune. ProGuard. http://proguard.sourceforge.net,
December 13th 2011.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and
David Wagner. Android permissions demystified. In Proceedings

of the 18th ACM conference on Computer and communications se-

curity, CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM.

[FFC+11] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna,
and David Wagner. A survey of mobile malware in the wild. In
Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices, SPSM ’11, pages 3–14, New York,
NY, USA, 2011. ACM.

[Goo11a] Google. Android Market. https://market.android.com, Novem-
ber 29th 2011.

[Goo11b] Google Inc. Android Debug Bridge — Android Devel-
opers. http://developer.android.com/guide/developing/

tools/adb.html, December 18th 2011.

[Goo11c] Google Inc. ProGuard — Android Developers. http:

//developer.android.com/guide/developing/tools/

proguard.html, December 13th 2011.

[Han05] René Rydhof Hansen. Flow Logic for Language-Based Safety and

Security. PhD thesis, Technical University of Denmark, 2005.

[HHJ+11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter,
and David Wetherall. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications. In

70 sw902e11

Appendix BIBLIOGRAPHY

Proceedings of the 18th ACM conference on Computer and commu-

nications security, CCS ’11, pages 639–652, New York, NY, USA,
2011. ACM.

[jes11] jesusfreke. smali - An assembler/disassembler for Android’s dex
format. http://code.google.com/p/smali/, November 29th
2011.

[Jon11] Jonathan Meyer. About Jasmin. http://jasmin.sourceforge.

net/about.html, December 14th 2011.

[KSm11] KSmrq. Hasse diagram of powerset of 3. http:

//commons.wikimedia.org/wiki/File:Hasse_diagram_of_

powerset_of_3.svg, December 15th 2011.

[Nie11] Nielsen Company, The. Android Market Shares Recent Acquires.
http://blog.nielsen.com/nielsenwire/?p=27418, April 26th
2011.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin-

ciples of Program Analysis. Springer-Verlag New York, Inc., 1999.

[Obe11] Jon Oberhide. Don’t Root Robots. http://jon.oberheide.org/
files/bsides11-dontrootrobots.pdf, December 15th 2011.

[Rau11] Raunak. Marketplace crawler for Android Enthusiast. http://

code.google.com/p/android-marketplace-crawler/, Decem-
ber 18th 2011.

[res11] research2guidance. Android Market Insights. http:

//www.research2guidance.com/shop/index.php/android-

market-insights-september-2011, October 8th 2011.

[Siv04] Igor Siveroni. Operational Semantics of the Java Card Virtual
Machine. Journal of Logic and Algebraic Programming, 58(1–2):3–
25, January–March 2004.

sw902e11 71

Appendix A

Generalized Instruction Set

Opcode Original instruction Generalized instruction

00 nop nop

01 move move

02 move/from16

03 move/16

04 move-wide

05 move-wide/from16

06 move-wide/16

07 move-object

08 move-object/from16

09 move-object/16

0a move-result move-result

0b move-result-wide

0c move-result-object

0d move-exception move-exception

0e return-void return-void

0f return return

10 return-wide

11 return-object

12 const/4 const

13 const/16

14 const

15 const/high16

16 const-wide/16

17 const-wide/32

18 const-wide

19 const-wide/high16

1a const-string const-string

1b const-string/jumbo

1c const-class const-class

72

Appendix A

Opcode Original instruction Generalized instruction

1d monitor-enter monitor-enter

1e monitor-exit monitor-exit

1f check-cast check-cast

20 instance-of instance-of

21 array-length array-length

22 new-instance new-instance

23 new-array new-array

24 filled-new-array filled-new-array

25 filled-new-array/range

26 fill-array-data fill-array-data

27 throw throw

28 goto goto

29 goto/16

2a goto/32

2b packed-switch packed-switch

2c sparse-switch sparse-switch

2d cmpl-float cmp

2e cmpg-float

2f cmpl-double

30 cmpg-double

31 cmp-long

32 if-eq if

33 if-ne

34 if-lt

35 if-ge

36 if-gt

37 if-le

38 if-eqz ifz

39 if-nez

3a if-ltz

3b if-gez

3c if-gtz

3d if-lez

3e..43 (unused)
44 aget aget

45 aget-wide

46 aget-object

47 aget-boolean

48 aget-byte

49 aget-char

4a aget-short

4b aput aput

4c aput-wide

4d aput-object

sw902e11 73

Appendix A

Opcode Original instruction Generalized instruction

4e aput-boolean

4f aput-byte

50 aput-char

51 aput-short

52 iget iget

53 iget-wide

54 iget-object

55 iget-boolean

56 iget-byte

57 iget-char

58 iget-short

59 iput iput

5a iput-wide

5b iput-object

5c iput-boolean

5d iput-byte

5e iput-char

5f iput-short

60 sget sget

61 sget-wide

62 sget-object

63 sget-boolean

64 sget-byte

65 sget-char

66 sget-short

67 sput sput

68 sput-wide

69 sput-object

6a sput-boolean

6b sput-byte

6c sput-char

6d sput-short

6e invoke-virtual invoke-virtual

6f invoke-super invoke-super

70 invoke-direct invoke-direct

71 invoke-static invoke-static

72 invoke-interface invoke-interface

73 (unused)
74 invoke-virtual/range invoke-virtual

75 invoke-super/range invoke-super

76 invoke-direct/range invoke-direct

77 invoke-static/range invoke-static

78 invoke-interface/range invoke-interface

79..7a (unused)

74 sw902e11

Appendix A

Opcode Original instruction Generalized instruction

7b neg-int unop

7c not-int

7d neg-long

7e not-long

7f neg-float

80 neg-double

81 int-to-long

82 int-to-float

83 int-to-double

84 long-to-int

85 long-to-float

86 long-to-double

87 float-to-int

88 float-to-long

89 float-to-double

8a double-to-int

8b double-to-long

8c double-to-float

8d int-to-byte

8e int-to-char

8f int-to-short

90 add-int binop

91 sub-int

92 mul-int

93 div-int

94 rem-int

95 and-int

96 or-int

97 xor-int

98 shl-int

99 shr-int

9a ushr-int

9b add-long

9c sub-long

9d mul-long

9e div-long

9f rem-long

a0 and-long

a1 or-long

a2 xor-long

a3 shl-long

a4 shr-long

a5 ushr-long

a6 add-float

sw902e11 75

Appendix A

Opcode Original instruction Generalized instruction

a7 sub-float

a8 mul-float

a9 div-float

aa rem-float

ab add-double

ac sub-double

ad mul-double

ae div-double

af rem-double

b0 add-int/2addr binop

b1 sub-int/2addr

b2 mul-int/2addr

b3 div-int/2addr

b4 rem-int/2addr

b5 and-int/2addr

b6 or-int/2addr

b7 xor-int/2addr

b8 shl-int/2addr

b9 shr-int/2addr

ba ushr-int/2addr

bb add-long/2addr

bc sub-long/2addr

bd mul-long/2addr

be div-long/2addr

bf rem-long/2addr

c0 and-long/2addr

c1 or-long/2addr

c2 xor-long/2addr

c3 shl-long/2addr

c4 shr-long/2addr

c5 ushr-long/2addr

c6 add-float/2addr

c7 sub-float/2addr

c8 mul-float/2addr

c9 div-float/2addr

ca rem-float/2addr

cb add-double/2addr

cc sub-double/2addr

cd mul-double/2addr

ce div-double/2addr

cf rem-double/2addr

d0 add-int/lit16 binop-lit

d1 rsub-int

d2 mul-int/lit16

76 sw902e11

Appendix A

Opcode Original instruction Generalized instruction

d3 div-int/lit16

d4 rem-int/lit16

d5 and-int/lit16

d6 or-int/lit16

d7 xor-int/lit16

d8 add-int/lit8

d9 rsub-int/lit8

da mul-int/lit8

db div-int/lit8

dc rem-int/lit8

dd and-int/lit8

de or-int/lit8

df xor-int/lit8

e0 shl-int/lit8

e1 shr-int/lit8

e2 ushr-int/lit8

e3..ff (unused)

sw902e11 77

Appendix B

Semantic Rules

m.instructionAt(pc) = nop

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = const v c

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ c]〉 :: SF 〉

m.instructionAt(pc) = const-class v cl

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ cl]〉 :: SF 〉

m.instructionAt(pc) = move v1 v2
A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ R(v2)]〉 :: SF 〉

m.instructionAt(pc) = move-result v

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ R(retval)]〉 :: SF 〉

m.instructionAt(pc) = binopop v1 v2 v3 c = binOpop(R(v2), R(v3))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = binop-litop v1 v2 c c′ = binOpop(R(v2), c)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c′]〉 :: SF 〉

m.instructionAt(pc) = unopop v1 v2 c = unOpop(R(v2))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = goto pc′

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = if op v1 v2 pc′ relOpop(R(v1), R(v2))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = if op v1 v2 pc′ ¬relOpop(R(v1), R(v2))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

78

Appendix B

m.instructionAt(pc) = ifz op v pc′ relOpop(R(v), 0)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = ifz op v pc′ ¬relOpop(R(v), 0)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = new-instance v cl (H ′, loc) = newObject(H, cl)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = const-string v s
(H ′, loc) = newObject(H, String) o = H ′(loc) H ′[loc 7→ o[value 7→ s]]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = iget v1 v2 fld R(v2) = loc o = H(loc)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ o.fld]〉 :: SF 〉

m.instructionAt(pc) = iput v1 v2 fld R(v2) = loc o = H(loc)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ o[fld 7→ R(v1)]], 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = sget v fld

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ S(fld)] :: SF 〉〉

m.instructionAt(pc) = sput v fld

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S[fld 7→ R(v)], H, 〈m, pc+ 1, R :: SF 〉〉

m.instructionAt(pc) = instance-of v1 v2 type

loc = R(v2) o = H(loc) c =

1 if o ∈ Object ∧ o.class � type ∨
o ∈ Array ∧ o.type � type

0 otherwise

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = cmp bias v1 v2 v3 c = cmpbias(R(v2), R(v3))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc)
n = arity(meth) m′ = resolveMethod(meth, o.class)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-direct v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc)
n = arity(meth) m′ = resolveDirectMethod(meth, o.class)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

sw902e11 79

Appendix B

m.instructionAt(pc) = invoke-interface v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc)
n = arity(meth) m′ = resolveMethod(meth, o.class)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-super v1 . . . vn meth

R(v1) = loc loc 6= null o = H(loc) o.class.super 6= ⊥
n = arity(meth) m′ = resolveMethod(meth, o.class.super)

R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ v1, . . . ,m

′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-static v1 . . . vn meth

n = arity(meth) m′ = resolveStaticMethod(meth,meth.class)
R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,

m′.maxLocal + 1 7→ v1, . . . ,m
′.maxLocal + arity(m′) 7→ vn]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-static ε meth

n = arity(meth) m′ = resolveStaticMethod(meth,meth.class)
R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = return-void

A ⊢ 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒ 〈S,H, 〈m′, pc′ + 1, R′〉 :: SF 〉

m.instructionAt(pc) = return v

A ⊢ 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒
〈S,H, 〈m′, pc′ + 1, R′[retval 7→ R(v)]〉 :: SF 〉

m.instructionAt(pc) = new-array v1 v2 type

type ∈ ArrayType n = R(v2) ≥ 0 (H ′, loc) = newArray(H,n, type)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v1 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = array-length v1 v2 R(v2) = loc a = H(loc)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc,R[v1 7→ a.length]〉 :: SF 〉

m.instructionAt(pc) = aget v1 v2 v3 R(v2) = loc a = H(loc) i = R(v3)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ a.value(i)]〉 :: SF 〉

m.instructionAt(pc) = aput v1 v2 v3 R(v2) = loc a = H(loc) i = R(v3)
value′ = a.value[i 7→ R(v1)] a′ = a[value 7→ value′]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ a′], 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = filled-new-array v1 . . . vn type

type ∈ ArrayTypeSingle 1 ≤ n ≤ 5
(H ′, loc) = newArray(H,n, type) a = H ′(loc)

value′ = a.value[0 7→ R(v1), . . . , n− 1 7→ R(vn)] a′ = a[value 7→ value′]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loc 7→ a′], 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

80 sw902e11

Appendix B

m.instructionAt(pc) = filled-new-array ε type

type ∈ ArrayTypeSingle (H ′, loc) = newArray(H, 0, type)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = fill-array-data v pc′

R(v) = loc loc 6= null a = H(loc) d = m.tableAt(pc′)
value′ = a.value[0 7→ d.data(0), . . . , d.size − 1 7→ d.data(d.size − 1)]

a′ = a[value 7→ value′]

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ a′], 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = packed-switch v pc′ s = m.tableAt(pc′)
i = R(v)− s.firstKey i ∈ dom(s.packedTargets) pc′′ = s.packedTargets(i)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′′, R〉 :: SF 〉

m.instructionAt(pc) = packed-switch v pc′ s = m.tableAt(pc′)
i = R(v)− s.firstKey i /∈ dom(s.packedTargets)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = sparse-switch v pc′ s = m.tableAt(pc′)
R(v) ∈ dom(s.sparseTargets) pc′′ = s.sparseTargets(R(v))

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′′, R〉 :: SF 〉

m.instructionAt(pc) = sparse-switch v pc′ s = m.tableAt(pc′)
R(v) /∈ dom(s.sparseTargets)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = throw v
R(v) = locE cl = H(locE).class cl � Throwable findHandler(m, pc, cl) = pc′

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

m.instructionAt(pc) = throw v
R(v) = locE cl = H(locE).class cl � Throwable findHandler(m, pc, cl) = ⊥

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈locE ,m, pc〉 :: SF 〉

m.instructionAt(pc) = move-exception v
locE = R(v) H(locE).class � Throwable

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ R(retval)]〉 :: SF 〉

cl = H(locE).class findHandler(m, pc, cl) = pc′

A ⊢ 〈S,H, 〈locE ,mE , pcE〉 :: 〈m, pc,R〉 :: SF 〉 =⇒
〈S,H, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

cl = H(locE).class findHandler(m, pc, cl) = ⊥

A ⊢ 〈S,H, 〈locE ,mE , pcE〉 :: 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈locE ,m, pc〉 :: SF 〉

m.instructionAt(pc) = check-cast v type

loc = R(v) o = H(loc)
(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

sw902e11 81

Appendix B

m.instructionAt(pc) = check-cast v type

loc = R(v) o = H(loc)
(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

findHandler(m, pc, ClassCastException) = pc′

(H ′, locE) = newObject(H, ClassCastException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

m.instructionAt(pc) = check-cast v type

loc = R(v) o = H(loc)
(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

findHandler(m, pc, ClassCastException) = ⊥
(H ′, locE) = newObject(H, ClassCastException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈locE ,m, pc〉 :: SF 〉

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth

R(v1) = null findHandler(m, pc, NullPointerException) = pc′

(H ′, locE) = newObject(H, NullPointerException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc′, R[retval 7→ locE]〉 :: SF 〉

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth

R(v1) = null findHandler(m, pc, NullPointerException) = ⊥
(H ′, locE) = newObject(H, NullPointerException)

A ⊢ 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈locE ,m, pc〉 :: SF 〉

82 sw902e11

Appendix C

Flow Logic Judgements

(Ŝ, Ĥ, R̂) |= (m, pc): nop

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): const v c

iff β(c) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): const-class v cl

iff β(cl) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): move v1 v2
iff R̂(m, pc)(v2) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): move-result v

iff R̂(m, pc)(retval) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): binopop v1 v2 v3

iff ̂binOpop(R̂(m, pc)(v2), R̂(m, pc)(v3)) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): binop-litop v1 v2 c

iff ̂binOpop(R̂(m, pc)(v2), β(c)) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

83

Appendix C

(Ŝ, Ĥ, R̂) |= (m, pc): unopop v1 v2

iff ûnOpop(R̂(m, pc)(v2)) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): goto pc′

iff R̂(m, pc) ⊑ R̂(m, pc′)

(Ŝ, Ĥ, R̂) |= (m, pc): if op v1 v2 pc′

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)

R̂(m, pc) ⊑ R̂(m, pc′)

(Ŝ, Ĥ, R̂) |= (m, pc): ifz op v1 pc′

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)

R̂(m, pc) ⊑ R̂(m, pc′)

(Ŝ, Ĥ, R̂) |= (m, pc): cmp bias v1 v2 v3
iff β(−1)⊔ β(0)⊔ β(1) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): new-instance v cl

iff β(cl) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): const-string v s

iff β(s) ⊑ Ĥ(ObjRef String)(value)

(ObjRef String) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): instance-of v1 v2 type

iff β(0)⊔ β(1) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): iget v1 v2 fld

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v2):

Ĥ(ObjRef cl)(fld) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): iput v1 v2 fld

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v2):

R̂(m, pc)(v1) ⊑ Ĥ(ObjRef cl)(fld)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

84 sw902e11

Appendix C

(Ŝ, Ĥ, R̂) |= (m, pc): sget v fld

iff Ŝ(fld) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): sput v fld

iff R̂(m, pc)(v) ⊑ Ŝ(fld)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-direct v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveDirectMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-interface v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-super v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
cl .super 6= ⊥
m′ = resolveMethod(meth, cl .super)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

sw902e11 85

Appendix C

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-static v1 . . . vn meth

iff m′ = resolveStaticMethod(meth)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-static ε meth

iff m′ = resolveStaticMethod(meth)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): return v

iff R̂(m, pc)(v) ⊑ R̂(m,END)

(Ŝ, Ĥ, R̂) |= (m, pc): return-void
iff true

(Ŝ, Ĥ, R̂) |= (m, pc): new-array v1 v2 type

iff (ArrRef type) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): array-length v1 v2
iff ⊤

P̂rim
⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): aget v1 v2 v3
iff ∀(ArrRef type) ∈ R̂(m, pc)(v2): Ĥ(ArrRef type) ⊑ R̂(m, pc+ 1)(v1)

R̂(m, pc) ⊑{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): aput v1 v2 v3
iff ∀(ArrRef type) ∈ R̂(m, pc)(v2): R̂(m, pc)(v1) ⊑ Ĥ(ArrRef type)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): filled-new-array v1 . . . vn type

iff {(ArrRef type)} ⊑ R̂(m, pc+ 1)(retval)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ Ĥ(ArrRef type)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): filled-new-array ε type

iff {(ArrRef type)} ⊑ R̂(m, pc+ 1)(retval)

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

86 sw902e11

Appendix C

(Ŝ, Ĥ, R̂) |= (m, pc): fill-array-data v pc ′

iff ∀(ArrRef type) ∈ R̂(m, pc)(v):
d = m.tableAt(pc′)
∀0 ≤ i ≤ d.size − 1:

d.data(i) ⊑ Ĥ(ArrRef type)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): packed-switch v pc′

iff s = m.tableAt(pc′)
∀pc′′ ∈ s.packedTargets:

R̂(m, pc) ⊑ R̂(m, pc′′)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂) |= (m, pc): sparse-switch v pc ′

iff s = m.tableAt(pc′)
∀pc′′ ∈ s.sparseTargets:

R̂(m, pc) ⊑ R̂(m, pc′′)

R̂(m, pc) ⊑ R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): throw v

iff ∀(ExcRef clE) ∈ R̂(m, pc)(v):
HANDLE(R̂,Ê)((ExcRef clE), (m, pc))

HANDLE(R̂,Ê)((ExcRef NullPointerException), (m, pc))

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): move-exception v

iff R̂(m, pc)(retval) ⊑ R̂(m, pc+ 1)(v)

R̂(m, pc) ⊑{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): check-cast v type

iff R̂(m, pc) ⊑ R̂(m, pc+ 1)
HANDLE(R̂,Ê)((ExcRef ClassCastException), (m, pc))

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) ⊑ R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) ⊑ R̂(m, pc+ 1)(retval)

∀(ExcRef clE) ∈ Ê(m′) : HANDLE(R̂,Ê)((ExcRef clE), (m, pc))

R̂(m, pc) ⊑{retval} R̂(m, pc+ 1)

HANDLE(R̂,Ê)((ExcRef NullPointerException), (m, pc))

sw902e11 87

