Name ______ Section _____

Worksheet 7: Chemical Equilibrium and Acids/Bases

1. For each of the following reactions, write the expressions for K_c and K_p . What is the relationship between K_c and K_p ? Does the reaction represent a homogeneous or heterogeneous equilibrium?

a.
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_c = \frac{\left[HI\right]^2}{\left[H_2\right]\left[I_2\right]}$$
 $K_p = \frac{\left(P_{HI}\right)^2}{P_{H_2}P_{I_2}}$ $K_c = K_p$ homogeneous

b.
$$CH_3OH(g) \rightleftharpoons CO(g) + H_2(g)$$

$$K_c = \frac{[H_2][CO]}{[CH_3OH]}$$
 $K_p = \frac{P_{H_2}P_{CO}}{P_{CH_3OH}}$ $K_c(RT) = K_p$ homogeneous

c.
$$2NH_3(g) + CO_2(g) \rightleftharpoons N_2CH_4O(s) + H_2O(g)$$

$$K_c = \frac{\left[H_2O\right]}{\left[NH_3\right]^2\left[CO_2\right]}$$
 $K_p = \frac{P_{H_2O}}{\left(P_{NH_3}\right)^2 P_{CO_2}}$ $K_c (RT)^{-2} = K_p$ heterogeneous

d.
$$2NBr_3(s) \rightleftharpoons N_2(g) + 3Br_2(g)$$

$$K_c = [Br_2]^3 [N_2]$$
 $K_p = (P_{Br_2})^3 P_{N_2}$ $K_c (RT)^4 = K_p$ heterogeneous

e.
$$2KCIO_3(s) \rightleftharpoons 2KCI(s) + 3O_2(g)$$

$$K_c = [O_2]^3$$
 $K_p = (P_{O_2})^3$ $K_c (RT)^3 = K_p$ heterogeneous

f.
$$CuO(s) + H_2(g) \rightleftharpoons Cu(l) + H_2O(g)$$

$$K_c = \frac{\left[H_2O\right]}{\left[H_2\right]}$$
 $K_p = \frac{P_{H_2O}}{P_{H_2}}$ $K_c = K_p$ heterogeneous

2. The equilibrium constant for the reaction A (g) + B $(g) \rightleftharpoons C(g)$ + D (g) is K. What is the equilibrium constant for each of the following reactions?

a.
$$C(g) + D(g) \rightleftharpoons A(g) + B(g)$$

b.
$$2A(g) + 2B(g) \rightleftharpoons 2C(g) + 2D(g)$$
 \mathbf{K}^2

c.
$$\frac{1}{2}A(g) + \frac{1}{2}B(g) \rightleftharpoons \frac{1}{2}C(g) + \frac{1}{2}D(g)$$
 K^{1/2}

d.
$$2C(g) + 2D(g) \implies 2A(g) + 2B(g)$$
 K⁻²

e.
$$\frac{1}{4}C(g) + \frac{1}{4}D(g) \rightleftharpoons \frac{1}{4}A(g) + \frac{1}{4}B(g)$$
 K^{-1/4}

- 3. For the following reactions calculate K using the given equilibrium conditions. Do the second set of conditions represent a system at equilibrium? If not, which way will the reaction shift in order to reach equilibrium?
 - a. $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$
 - i. $2.80 \times 10^{-4} \text{ mol N}_2$, $2.50 \times 10^{-5} \text{ mol O}_2$, $2.00 \times 10^{-2} \text{ mol N}_2\text{O}$ in a 2.00 L flask

$$[N_2O] = \frac{2.00 \times 10^{-2} \, mol}{2.00 \, L} = 1.00 \times 10^{-2} \, M$$

$$[N_2] = \frac{2.80 \times 10^{-4} \, mol}{2.00 \, L} = 1.40 \times 10^{-4} \, M$$

$$[O_2] = \frac{2.50 \times 10^{-5} \, mol}{2.00 \, L} = 1.25 \times 10^{-5} \, M$$

$$K_c = \frac{\left[N_2 O\right]^2}{\left[N_2\right]^2 \left[O_2\right]} = \frac{\left(1.00 \times 10^{-2}\right)^2}{\left(1.40 \times 10^{-4}\right)^2 \left(1.25 \times 10^{-5}\right)} = 4.08 \times 10^8$$

ii.
$$[N_2]=2.00 \times 10^{-4} M$$
, $[O_2]=0.00245 M$, $[N_2O]=0.200 M$

$$Q_c = \frac{\left[N_2 O\right]^2}{\left[N_2\right]^2 \left[O_2\right]} = \frac{\left(0.200\right)^2}{\left(2.00 \times 10^{-4}\right)^2 \left(0.00245\right)} = 4.08 \times 10^8$$

at equilibrium

b.
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

i.
$$P_{NH3}=3.1 \times 10^{-2} \text{ atm}$$
, $P_{N2}=8.5 \times 10^{-1} \text{ atm}$, $P_{H2}=3.1 \times 10^{-3} \text{ atm}$

$$K_p = \frac{\left(P_{NH_3}\right)^2}{P_{N_2}\left(P_{H_2}\right)^3} = \frac{\left(3.1 \times 10^{-2}\right)^2}{\left(0.85\right)\left(3.1 \times 10^{-3}\right)^3} = 3.8 \times 10^4$$

ii.
$$P_{N2}$$
=0.525 atm, P_{NH3} =0.0167 atm, P_{H2} =0.00761 atm

$$Q_p = \frac{\left(P_{NH_3}\right)^2}{P_{N_2}\left(P_{H_2}\right)^3} = \frac{\left(0.0167\right)^2}{\left(0.525\right)\left(0.00761\right)^3} = 1.21 \times 10^3$$

shift to right (products)

c. $2NO(g) \rightleftharpoons N_2(g) + O_2(g)$

i. 0.032 mol NO, 0.62 mol N_2 , and 4.0 mol O_2 in a 2.0 L

$$[NO] = \frac{0.032mol}{2.0L} = 0.016M$$

$$[N_2] = \frac{0.62mol}{2.0L} = 0.31M$$

$$[O_2] = \frac{4.0mol}{2.0L} = 2.0M$$

$$K_c = \frac{[N_2][O_2]}{[NO]^2} = \frac{(0.31)(2.0)}{(0.016)^2} = 2.4 \times 10^3$$

ii. 0.024 mol NO, 2.0 mol N_2 , and 2.6 mol O_2 in a 1.0 L flask

$$[NO] = \frac{0.024 mol}{1.0 L} = 0.024 M$$

$$[N_2] = \frac{2.0mol}{1.0L} = 2.0M$$

$$[O_2] = \frac{2.6mol}{1.0L} = 2.6M$$

$$Q_c = \frac{[N_2][O_2]}{[NO]^2} = \frac{(2.0)(2.6)}{(0.024)^2} = 9.0 \times 10^3$$

shift to left (reactants)

- 4. For the following reactions and with the information given, calculate K.
 - a. $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$

Initially 12.0 mol SO₃ is placed in a 3.0 L rigid container. At

equilibrium, 3.0 mol SO₂ is present.

	$[SO_3]$	$[SO_2]$	$[O_2]$
Initial	4.0	0	0
Change	-2x	+2x	+x
Equilibrium	4.0-2x=3.0	2x=1.0	x=0.50

Only reactants are present, so reaction must proceed to form products.

$$K_c = \frac{\left[SO_2\right]^2 \left[O_2\right]}{\left[SO_3\right]^2} = \frac{(1.0)^2 (0.50)}{(3.0)^2} = 0.056$$

b. $S_8(g) \rightleftharpoons 4S_2(g)$

Initially, a sample of S_8 is placed in an empty rigid container at a pressure of 1.00 atm. At equilibrium, the partial pressure of S_8 is 0.25 atm.

	P_{S8}	P_{S2}
Initial	1.00	0
Change	-X	+4x
Equilibrium	1.00-x	4x

Only reactants are present, so reaction must proceed to form products.

$$1.00atm - x = 0.25atm \rightarrow x = 0.75atm$$

$$P_{S_2} = 4(0.75atm) = 3.0atm$$

$$K_p = \frac{\left(P_{S_2}\right)^4}{P_{S_8}} = \frac{\left(3.0\right)^4}{0.25} = 3.2 \times 10^2$$

c. $3 \text{Fe}(s) + 4 \text{H}_2 \text{O}(g) \implies \text{Fe}_3 \text{O}_4(s) + 4 \text{H}_2(g)$

When the equilibrium partial pressure of water vapor is 15.0 torr, the total pressure at equilibrium is 36.3 torr.

$$P_{total} = P_{H_2O} + P_{H_2}$$
; 36.3 $torr = 15.0 torr + P_{H_2}$; $P_{H_2} = 21.3 torr$

$$K_{p} = \frac{\left(P_{H_{2}}\right)^{4}}{\left(P_{H_{2}O}\right)^{4}} = \frac{\left(21.3 \ torr \times \frac{1atm}{760 torr}\right)^{4}}{\left(15.0 \ torr \times \frac{1atm}{760 torr}\right)^{4}} = 4.07$$

d. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

In a closed container, 1.00 atm of N_2 is mixed with 2.00 atm of H_2 . At equilibrium, the total pressure is 2.00 atm

	P_{N2}	P_{H2}	P_{NH3}
Initial	1.00	2.00	0
Change	-X	-3x	+2x
Equilibrium	1.00-x	2.00-3x	2x

Only reactants are present, so reaction must form products.

$$P_{total} = 2.00 atm = P_{N_2} + P_{H_2} + P_{NH_3} = (1.00 - x) + (2.00 - 3x) + (2x) \rightarrow x = 0.500 atm$$

$$P_{N_2} = 1.00atm - 0.500atm = 0.500atm$$

$$P_{H_2} = 2.00atm - 3(0.500atm) = 0.500atm$$

$$P_{NH_3} = 2(0.500atm) = 1.00atm$$

$$K_p = \frac{\left[NH_3\right]^2}{\left[N_2\right]\left[H_2\right]^3} = \frac{\left(1.00\right)^2}{\left(0.500\right)\left(0.500\right)^3} = 16.0$$

- 5. For the following reactions and with the given initial conditions and K, calculate the equilibrium concentrations.
 - a. $CaCO_3$ (s) \rightleftharpoons CaO (s) + CO_2 (g) $K_p=1.16$ An evacuated 10.0 L container. $K_p=1.16$ $atm=P_{CO_2}$
 - b. $NH_4OCONH_2(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ $K_p=2.9 \times 10^{-3}$ An evacuated rigid container.

	[NH ₃]	$[CO_2]$
Initial	0	0
Change	+2x	+x
Equilibrium	2x	X

Only reactants are present, so reaction must proceed to form products.

$$K_p = 2.9 \times 10^{-3} = (P_{NH_3})^2 P_{CO_2} = (2x)^2 x = 4x^3 \rightarrow x = 9.0 \times 10^{-2} atm$$

$$P_{NH_3} = 2(9.0 \times 10^{-2} atm) = 0.18 atm$$

 $P_{CO_2} = 9.0 \times 10^{-2} atm$

c. $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$ $K_c=3.75$ All four gases have initial concentrations of 0.800 M

$$K_c = \frac{[SO_3][NO]}{[SO_2][NO_2]}$$
 $Q_c = \frac{[0.800][0.800]}{[0.800][0.800]} = 1.00$ shift to right

	$[SO_2]$	$[NO_2]$	$[SO_3]$	[NO]
Initial	0.800	0.800	0.800	0.800
Change	-X	-X	+X	+x
Equilibrium	0.800-x	0.800-x	0.800+x	0.800+x

$$K_c = \frac{[0.800 + x][0.800 + x]}{[0.800 - x][0.800 - x]} = \frac{[0.800 + x]^2}{[0.800 - x]^2} = 3.75$$

$$\frac{[0.800 + x]}{[0.800 - x]} = \sqrt{3.75} = 1.94 \to 0.800 + x = 1.55 - 1.94x \to x = 0.26M$$

$$[SO_3] = [NO] = 0.800 + 0.26 = 1.06M$$

 $[SO_2] = [NO_2] = 0.800 - 0.26 = 0.54M$

d. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ $K_c=0.050$ Initially, $P_{N2}=0.80$ atm, $P_{O2}=0.20$ atm and $P_{NO}=0$.

	P_{N2}	P_{O2}	P_{NO}
Initial	0.80	0.20	0
Change	-X	-X	+2x
Equilibrium	0.80-x	0.20-x	2x

Only reactants are present, so reaction must proceed to form products.

$$K_c = K_p = \frac{(P_{NO})^2}{P_{N_2}P_{O_2}} = \frac{(2x)^2}{(0.80 - x)(0.20 - x)} = 0.050$$

$$3.95x^2 + 0.050x - 8.0 \times 10^{-3} = 0$$

solve with quadratic formula or graphing calculator $x = 3.9 \times 10^{-2} atm$ only positive root

$$\begin{split} P_{N_2} &= 0.80 atm - \left(3.9 \times 10^{-2} atm\right) = 0.76 atm \\ P_{H_2} &= 0.20 atm - \left(3.9 \times 10^{-2} atm\right) = 0.16 atm \\ P_{NO} &= 2\left(3.9 \times 10^{-2} atm\right) = 7.8 \times 10^{-2} atm \end{split}$$

6. Complete the following table for the reaction:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + Energy$$

	$[N_2]$	$[H_2]$	[NH ₃]
Remove N ₂		increases	decreases
Remove H ₂	increases		decreases
Remove NH ₃	decreases	decreases	
Add N ₂		decreases	increases
Add H ₂	decreases		increases
Add NH ₃	increases	increases	
Decrease temperature	decreases	decreases	increases
Increase temperature	increases	increases	decreases
Decrease pressure	increases	increases	decreases
Increase pressure	decreases	decreases	increases
Decrease volume	decreases	decreases	increases
Increase volume	increases	increases	decreases
Add catalyst			
Add 1 mol Ar (g)			

- 7. Classify each of the following substances as either a strong or weak base/acid. Identify its conjugate acid/base. For the strong acid/base solutions, calculate $[H^+]$, pH, $[OH^-]$, and pOH. $K_w=1.0 \times 10^{-14}$
 - a. 0.250 M HNO_3 strong acid conj. base = $NO_3^ [H^+] = 0.250 M$ $pH = -\log(0.250) = 0.602$ pOH = 14 0.602 = 13.398 $[OH^-] = \frac{10^{-14}}{0.250} = 4.00 \times 10^{-14} M$
 - b. 0.33 M NH_3 weak base conj. acid = NH_4^+ c. 0.40 M HCOOH weak acid conj. base = $HCOO^-$
 - d. 0.50 M HClO_4 strong acid conj. base = ClO_4 $[H^+] = 0.50 M$ $pH = -\log(0.50) = 0.30$

$$pOH = 14 - 0.30 = 13.70$$

$$\left[OH^{-}\right] = \frac{10^{-14}}{0.50} = 2.0 \times 10^{-14} M$$

- e. 0.1 M HF weak acid conj. base = F⁻ f. 0.20 M HCl strong acid conj. base = Cl⁻
 - $\begin{bmatrix} H^+ \end{bmatrix} = 0.20M$ $pH = -\log(0.20) = 0.70$ pOH = 14 - 0.70 = 13.30 $<math display="block">
 \begin{bmatrix} OH^- \end{bmatrix} = \frac{10^{-14}}{0.20} = 5.0 \times 10^{-14} M$
- g. $2.2 \text{ M H}_3\text{PO}_4$ weak acid conj. base = H_2PO_4