## CHEM 142 - Exam 2

## !!! DO NOT OPEN THIS EXAM BOOK UNTIL TOLD TO DO SO BY THE INSTRUCTOR !!!

Instructor: Dr. Kari Pederson

Date: Friday, August 5
Time: $\quad 9: 40-10: 40 a m$

Location: BAG 154

NO HEADPHONES ALLOWED (EARPLUGS ARE OK)
NO GRAPHING CALCULATORS ALLOWED

ONLY CALCULATORS MAY BE USED AS CALCULATORS (you may not use your cellular phone as a calculator)

NO HATS WITH BRIMS ALLOWED

## !!! PLEASE READ THIS !!!

Indicate all of the following on your scantron form or five points will be deducted from your exam score:

First Name, Last Name, Student Number, Section, Exam Version

YOUR FULL NAME:
first name
last name

YOUR SECTION/SEAT:
discussion section
seat number

| Question | Points Possible | Score |
| :--- | :---: | :--- |
| $1-8$ | 24 |  |
| $9-16$ | 40 |  |
| $17-24$ | 16 |  |
| 25 | 20 |  |
| Scantron Info? | -5 |  |



MULTIPLE CHOICE: CONCEPTS. 8 @ 3 pts each $\boldsymbol{\rightarrow} 24$ POINTS TOTAL
Please mark the one correct answer for each of the following questions on your scantron.

1. Which of the following statements is(are) false?

Oxidation and reduction
I. accompany all chemical changes.
II. result in a change in the oxidation states of the species involved.
III. describe the loss and gain of electron(s), respectively.
IV. cannot occur independently of each other.
A) I only
B) II only
C) III only
D) IV only
E) II, III, and IV
2. In which of the following compounds does nitrogen have the most positive oxidation state?
A) $\mathrm{NH}_{4} \mathrm{Cl} \quad \mathrm{N}:-3$
B) $\mathrm{HNO}_{3} \quad \mathrm{~N}:+5$
C) $\mathrm{N}_{2} \mathrm{O} \quad \mathrm{N}:+\mathbf{1}$
D) $\mathrm{NaNO}_{2} \quad \mathrm{~N}:+\mathbf{3}$
E) $\mathrm{NO}_{2} \quad \mathrm{~N}:+4$
3. A rigid container contains 10.0 g of chlorine gas. With the temperature kept constant, 10.0 g of oxygen gas is added. What happens?
A) The pressure in the container doubles.
B) The pressure in the container increases by less than a factor of 2 .
C) The pressure in the container increases by more than a factor of 2 .
D) The pressure stays the same size, but the volume increases.
E) The pressure decreases by a factor of 2 .
$P \propto n \rightarrow \mathbf{1 0 . 0} \mathrm{~g} \mathrm{O}_{2}$ more moles than $10.0 \mathrm{~g} \mathrm{Cl}_{2}$ means total number of moles will increase by more than a factor of two, therefore total pressure will increase by more than a factor of two.
4. Under which of the following conditions does a gas behave most ideally?
A) STP
B) $\quad P=0.50 \mathrm{~atm}, T=0.0^{\circ} \mathrm{C}$
C) $\quad P=0.50 \mathrm{~atm}, T=100.0^{\circ} \mathrm{C}$
D) $P=1.0 \mathrm{~atm}, T=100.0^{\circ} \mathrm{C}$
E) $\quad P=2.0 \mathrm{~atm}, T=-100.0^{\circ} \mathrm{C}$
5. Consider three 1 L flasks at the same temperature and pressure. Flask A contains CO gas, flask $B$ contains $N_{2}$ gas, and flask $C$ contains $\mathrm{O}_{2}$ gas. In which flask do the molecules have the greatest kinetic energy?
A) flask A
B) flask B
C) flask C
D) The molecules in two of the flasks have the same kinetic energy.
E) The molecules in all of the flasks have the same kinetic energy.
6. Four identical 1.0 L flasks contain the gases $\mathrm{Ne}, \mathrm{CH}_{4}, \mathrm{~N}_{2}$, and $\mathrm{F}_{2}$, each at $0^{\circ} \mathrm{C}$ and 1 atm pressure. For which gas do the molecules have the lowest root mean square velocity ( $\mathrm{u}_{\mathrm{rms}}$ )?
A) Ne
B) $\mathrm{CH}_{4}$
C) $\mathrm{N}_{2}$
D) $F_{2}$
E) The molecules of all the gases have the same root mean square velocity.
$u_{r m s} \propto \frac{1}{M M} \rightarrow$ Highest $M M$ corresponds to lowest $\mathbf{u}_{\text {rms }}$
7. Consider the reaction $\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)$ at $\mathrm{T}=900 \mathrm{~K}$, where it is exothermic with equilibrium constant $\mathrm{K}=0.64$. With the system at equilibrium, more $\mathrm{H}_{2}(g)$ is added. This will result in $\qquad$ _.
A) an increase in $K_{p}$.
B) a decrease in $K_{p}$.
C) a shift in the equilibrium position to the right (products).
D) a shift in the equilibrium position to the left (reactants).
E) none of these
8. The K for the reaction, $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$, is called
A) $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_{4}^{+}$
B) $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_{3}$
C) $\mathrm{K}_{\mathrm{a}}$ for $\mathrm{NH}_{4}^{+}$
D) $\mathrm{K}_{\mathrm{a}}$ for $\mathrm{NH}_{3}$
E) none of the above

MULTIPLE CHOICE: SHORT CALCULATIONS. 8 @ 5 pts each $\rightarrow 40$ TOTAL POINTS Please mark the one correct answer for each of the following questions on your scantron.
9. A student weighs out 0.568 g of KHP (molar mass $=204 \mathrm{~g} / \mathrm{mol}$ ) and titrates to the equivalence point with 36.78 mL of a stock NaOH solution. What is the concentration of the stock NaOH solution? KHP is an acid with one acidic proton.
A) 0.100 M
B) 3.15 M
C) 0.115 M
D) 0.0757 M
E) none of these
$0.568 \mathrm{~g} \mathrm{KHP} \times \frac{1 \mathrm{~mol} \mathrm{KHP}}{204 \mathrm{~g} \mathrm{KHP}}=2.78 \times 10^{-3} \mathrm{~mol} \mathrm{KHP}$
$2.78 \times 10^{-3} \mathrm{~mol} \mathrm{KHP} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{KHP}}=2.78 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
$\frac{2.78 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}}{0.03678 \mathrm{~L}}=0.0757 \mathrm{M} \mathrm{NaOH}$
10. A balloon is inflated with helium to a volume of 4.5 L at $37^{\circ} \mathrm{C}$. If you take the balloon outside on a cold day and the volume decreases to 4.0 L , what is the temperature outside?
A) 276 K
B) 306 K
C) 283 K
D) 349 K
E) none of the above
$\frac{T_{1}}{V_{1}}=\frac{T_{2}}{V_{2}} \rightarrow T_{2}=\frac{T_{1}}{V_{1}} \times V_{2}=\frac{310 \mathrm{~K}}{4.5 \mathrm{~L}} \times 4.0 \mathrm{~L}=276 \mathrm{~K}$
11. A piece of sodium metal undergoes complete reaction with water as follows:

$$
2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(g)
$$

The hydrogen gas generated is collected over water at $25^{\circ} \mathrm{C}$. The volume of gas is 216 mL measured at 1.00 atm . How many grams of sodium reacted? (The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 0.0313 atm .)
A) 0.393 g
B) 0.197 g
C) 0.203 g
D) 0.406 g
E) 3.96 g
$P_{H_{2}}=P_{\text {total }}-P_{\mathrm{H}_{2} \mathrm{O}}=1.00 \mathrm{~atm}-0.0313 \mathrm{~atm}=0.9687 \mathrm{~atm}$
$P V=n R T \rightarrow n=\frac{P V}{R T}=\frac{0.9687 \mathrm{~atm} \cdot 0.216 \mathrm{~L}}{0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 298 \mathrm{~K}}=8.56 \times 10^{-3} \mathrm{~mol} \mathrm{H}$
$8.56 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{H}_{2}}=1.71 \times 10^{-2} \mathrm{~mol} \mathrm{Na}$
$1.71 \times 10^{-2} \mathrm{~mol} \mathrm{Na} \times \frac{22.98977 \mathrm{~g} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}}=0.393 \mathrm{~g} \mathrm{Na}$
12. The diffusion rate of $\mathrm{H}_{2}$ gas is 4.47 times as great as that of a certain noble gas (both gases are at the same temperature). What is the noble gas?
A) He
B) Ne
C) Ar
D) Kr
E) Xe
$\frac{\text { rate }_{1}}{\text { rate }_{2}}=\frac{\sqrt{M M_{2}}}{\sqrt{M M_{1}}} \rightarrow M M_{2}=\left(\frac{\text { rate }_{1}}{\text { rate }_{2}} \times \sqrt{M M_{1}}\right)^{2}=(4.47 \times \sqrt{2})^{2}=39.9 \mathrm{~g} / \mathrm{mol} \rightarrow \mathrm{Ar}$
13. What is the molar mass of a gas that has a density of $5.75 \mathrm{~g} / \mathrm{L}$ at STP?
A) $3.90 \mathrm{~g} / \mathrm{mol}$
B) $129 \mathrm{~g} / \mathrm{mol}$
C) $176 \mathrm{~g} / \mathrm{mol}$
D) $1.91 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
E) none of the above
$P V=\frac{m}{M M} R T \rightarrow M M=\frac{m}{V} \times \frac{R T}{P}=(5.75 \mathrm{~g} / \mathrm{L}) \frac{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) 273 \mathrm{~K}}{1 \mathrm{~atm}}=129 \mathrm{~g} / \mathrm{mol}$
14. The equilibrium constant for $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)$ is 0.76 at 900 K . What is the equilibrium constant for the reaction $\mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g)$ at the same temperature?
A) -0.76
B) 2.6
C) -0.38
D) 1.1
E) $\quad-0.87$
$K^{\prime}=K^{-1 / 2}=(0.76)^{-1 / 2}=1.1$
15. For the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g), \mathrm{K}_{\mathrm{c}}=0.25$ at $25^{\circ} \mathrm{C}$. An equilibrium mixture is found to contain $\left[\mathrm{SO}_{2}\right]=\left[\mathrm{SO}_{3}\right]=0.20 \mathrm{M}$. What is the concentration of $\mathrm{O}_{2}(\mathrm{~g})$ in the flask?
A) 4.00 M
B) 1.25 M
C) 2.00 M
D) 0.25 M
E) none of the above
$K_{c}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \rightarrow\left[\mathrm{O}_{2}\right]=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2} K_{c}}=\frac{0.2^{2}}{0.2^{2} \cdot 0.25}=4.00 \mathrm{M}$
16. A sample of $\mathrm{HNO}_{3}$ is found to have a pH of 4.40. This solution is $\qquad$ .
A) acidic with $\left[\mathrm{HNO}_{3}\right]=4.0 \times 10^{-5} \mathrm{M}$ and $\mathrm{pOH}=9.60$
B) acidic with $\left[\mathrm{HNO}_{3}\right]=2.5 \times 10^{-4} \mathrm{M}$ and $\mathrm{pOH}=4.40$
C) basic with $\left[\mathrm{HNO}_{3}\right]=4.0 \times 10^{-5} \mathrm{M}$ and $\mathrm{pOH}=9.60$
D) basic with $\left[\mathrm{HNO}_{3}\right]=2.5 \times 10^{-4} \mathrm{M}$ and $\mathrm{pOH}=4.40$
E) acidic with $\left[\mathrm{HNO}_{3}\right]=2.5 \times 10^{-4} \mathrm{M}$ and $\mathrm{pOH}=9.60$
$\mathrm{pH}<7 \rightarrow$ acidic
pOH $=14.00-4.40=9.60$
$\left[\mathrm{H}^{+}\right]=10^{-4.40}=4.0 \times 10^{-5} \mathrm{M} \mathrm{H}^{+}$
$4.0 \times 10^{-5} \mathrm{M} \mathrm{H}^{+} \times \frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{H}^{+}}=4.0 \times 10^{-5} \mathrm{M} \mathrm{HNO}_{3}$

MATCHING. 8 @ 2 pts each $\rightarrow 16$ POINTS TOTAL
Please indicate the letter of the one best answer for each of the following questions in the blank. Each answer is used no more than once.
17. Chemical equilibrium is microscopically $\qquad$ A .
18. The following reaction represents a $\qquad$ equilibria.

$$
\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

19. The following is an example of a $\qquad$ reaction.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(a q)
$$

20. Heating magnesium hydroxide produces magnesium oxide and water.

$$
\mathrm{Mg}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{MgO}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

This would be classified as a $\qquad$ reaction.
21. For the following reaction, $\mathrm{K}_{\mathrm{c}}$ is $\qquad$ $K_{p}$.

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)
$$

22. For a certain reaction at $25.0^{\circ} \mathrm{C}$, the value of $K$ is $1.2 \times 10^{-3}$. At $50.0^{\circ} \mathrm{C}$ the value of $K$ is $3.4 \times 10^{-1}$. This means that the reaction is $\qquad$ B $\qquad$ .
23. $\mathrm{HClO}_{4}$ is best classified as a $\qquad$ M $\qquad$ .
24. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is the $\qquad$ of $\mathrm{HPO}_{4}{ }^{2-}$.
A) dynamic
B) endothermic
C) heterogeneous
D) greater than
E) static
F) exothermic
G) homogeneous
H) less than
I) equal to
J) combination
K) decompostion
L) neutralization
M) strong acid
N) weak acid
O) strong base
P) weak base
Q) conjugate acid
R) conjugate base
S) double replacement
T) single replacement
U) combustion

## LONG ANSWER. 20 POINTS TOTAL

25. The following reaction occurs in acidic solution:

$$
\mathrm{VO}_{2}^{+}(a q)+\mathrm{Fe}^{2+}(a q) \rightleftharpoons \mathrm{VO}^{2+}(a q)+\mathrm{Fe}^{3+}(a q)
$$

A) What is the balanced equation for this reaction? ( $6 \mathbf{p t s}$ )
oxidation: $\mathrm{Fe}^{2+}(a q) \rightleftharpoons \mathrm{Fe}^{3+}(a q)$
reduction: $\mathrm{VO}_{2}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{VO}^{2+}(\mathrm{aq})$
balance everything but O and H
oxidation: $\mathrm{Fe}^{2+}(a q) \rightleftharpoons \mathrm{Fe}^{3+}(a q)$
reduction: $\mathrm{VO}_{2}^{+}(a q) \rightleftharpoons \mathrm{VO}^{2+}(a q)$
balance O with $\mathrm{H}_{2} \mathrm{O}$
oxidation: $\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})$
reduction: $\mathrm{VO}_{2}^{+}(a q) \rightleftharpoons \mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)$
balance $\mathbf{H}$ with $\mathbf{H}^{+}$
oxidation: $\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})$
reduction: $\mathrm{VO}_{2}^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Omega)$
balance charges with $\mathbf{e}^{-}$
oxidation: $\mathrm{Fe}^{2+}(a q) \rightleftharpoons \mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-}$
reduction: $\mathrm{VO}_{2}^{+}(\mathrm{aq})+\mathbf{2 \mathrm { H } ^ { + } ( a q ) + \mathrm { e } ^ { - } \rightleftharpoons \mathrm { VO } ^ { 2 + } ( \mathrm { aq } ) + \mathrm { H } _ { 2 } \mathrm { O } ( / ) , ~ ( 1 ) ~}$

## Equalize electron transfer

oxidation: $\mathrm{Fe}^{2+}(a q) \rightleftharpoons \mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-}$
reduction: $\mathrm{VO}_{2}^{+}(\mathrm{aq})+\mathbf{2 \mathrm { H } ^ { + }}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(/)$

Please use your answer from part A for the calculations in parts B-C. If you are unable to write a balanced equation, use the following balanced chemical reaction for the remainder of the problem:
$\mathrm{MnO}_{2}(s)+\mathbf{2} \mathrm{Ag}^{+}(a q)+\mathbf{4} \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathbf{2} \mathrm{Ag}^{2+}(a q)+\mathbf{2 H} \mathrm{H}_{2} \mathrm{O}(I)$
B) What is the equilibrium constant expression, $\mathrm{K}_{\mathrm{c}}$, for your balanced reaction? ( 2 pts )

$$
K_{c}=\frac{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{VO}^{2+}\right]}{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{VO}_{2}^{+}\right]\left[\mathrm{H}^{+}\right]^{2}} \quad \text { OR } \quad K_{c}=\frac{\left[\mathrm{Ag}^{2+}\right]^{2}\left[\mathrm{Mn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{H}^{+}\right]^{4}}
$$

C) A laboratory chemist mixes 1.0 mol of each aqueous and gaseous product or reactant in a rigid 2.0 L container. After the reaction reaches equilibrium, 1.25 mol of the $\mathrm{Fe}^{3+}\left(\right.$ or $\mathrm{Ag}^{2+}$ ) is observed.
i) When the system has reached equilibrium, what are the concentrations of all aqueous and gaseous reactants and products? (10 pts)

|  | $\left[\mathrm{Fe}^{2+}\right]$ | $\left[\mathrm{VO}_{2}{ }^{+}\right]$ | $\left[\mathrm{H}^{+}\right]$ | $\left[\mathrm{Fe}^{3+}\right]$ | $\left[\mathrm{VO}^{2+}\right]$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Initial | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Change | -x | -x | -2 x | +x | +x |
| Equilibrium | $0.5-\mathrm{x}$ | $0.5-\mathrm{x}$ | $0.5-2 \mathrm{x}$ | $0.5+\mathrm{x}$ | $0.5+\mathrm{x}$ |

$$
\begin{aligned}
& \text { At equilibrium, }\left[\mathrm{Fe}^{3+}\right]=\frac{1.25 \mathrm{~mol}}{2.0 \mathrm{~L}}=0.625 \mathrm{M} \quad 0.5+x=0.625 \rightarrow x=0.125 \mathrm{M} \\
& {\left[\mathrm{Fe}^{2+}\right]=0.375 \mathrm{M},\left[\mathrm{VO}_{2}^{+}\right]=0.375 \mathrm{M},\left[\mathrm{H}^{+}\right]=0.25 \mathrm{M},\left[\mathrm{Fe}^{3+}\right]=0.625 \mathrm{M},} \\
& {\left[\mathrm{VO}^{2+}\right]=0.625 \mathrm{M}}
\end{aligned}
$$

OR

|  | $\left[\mathrm{Ag}^{+}\right]$ | $\left[\mathrm{H}^{+}\right]$ | $\left[\mathrm{Mn}^{2+}\right]$ | $\left[\mathrm{Ag}^{2+}\right]$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial | 0.5 | 0.5 | 0.5 | 0.5 |
| Change | -2 x | -4 x | +x | +2 x |
| Equilibrium | $0.5-2 \mathrm{x}$ | $0.5-4 \mathrm{x}$ | $0.5+\mathrm{x}$ | $0.5+2 \mathrm{x}$ |

At equilibrium, $\left[\mathrm{Ag}^{2+}\right]=\frac{1.25 \mathrm{~mol}}{2.0 \mathrm{~L}}=0.625 \mathrm{M} \quad 0.5+2 x=0.625 \rightarrow x=0.0625 \mathrm{M}$
$\left[\mathrm{Ag}^{+}\right]=0.375 \mathrm{M},\left[\mathrm{H}^{+}\right]=0.25 \mathrm{M},\left[\mathrm{Mn}^{2+}\right]=0.5625 \mathrm{M},\left[\mathrm{Ag}^{2+}\right]=0.625 \mathrm{M}$
ii) What is the value of $K_{c}$ ? (2 pts)

$$
K_{c}=\frac{\left[F e^{3+}\right]^{2}\left[V O^{2+}\right]}{\left[F e^{2+}\right]^{2}\left[V O_{2}^{+}\right]\left[H^{+}\right]^{2}}=\frac{(0.625 M)(0.625 M)}{(0.375 M)(0.375 M)(0.25 M)^{2}}=44.4 M^{-2}
$$

OR

$$
K_{c}=\frac{\left[A g^{2+}\right]^{2}\left[\mathrm{Mn}^{2+}\right]}{\left[A g^{+}\right]^{2}\left[H^{+}\right]^{4}}=\frac{(0.625 M)^{2}(0.5625 M)}{(0.375 M)^{2}(0.25 M)^{4}}=400
$$

