Exam \# 2

Name \qquad
Date \qquad

1. (2 points) How many atoms or molecules is a mole.

Avogadro's number of specific kind of atom or molecule.
2. (3 points) Circle all the ion pairs which can form precipitates?
(A) Li^{+}and $\mathrm{NO}_{3}{ }^{-}$
(B) Pb^{+}and Br^{-}
(C) Ag^{+}and $\mathrm{SO}_{4}{ }^{2-}$
(D) Ca^{2+} and OH^{-}
3. (3 points) Which of the following compounds are strong electrolyte \qquad
Which of the following compounds are weak electrolyte \qquad
A. HCl - strong
B. $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
C. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose) - nonelectrolyte
D. NaCl - strong
4. (3 points) What is the average mass, in grams, of one atom of calcium?
A. $6.02 \times 10^{23} \mathrm{~g}$
B. $1.50 \times 10^{-24} \mathrm{~g}$
C. $6.66 \times 10^{-23} \mathrm{~g}$
D. 40.08 g
E. $40.08 \times 10^{-23} \mathrm{~g}$
5. (3 points) Which one of the following does not represent 1.00 mol of the indicated substance?
A. $6.02 \times 10^{23} \mathrm{C}$ atoms
B. 55.85 .0 g Fe
C. 12.01 g C
D. 27.5 g Zn
E. $6.02 \times 10^{23} \mathrm{Fe}$ atoms
6. (3 points) What is the chemical formula of the salt produced by neutralization of potassium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ with sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$?
A. CaSO_{3}
B. $\mathrm{Ca}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
C. $\mathrm{Ca}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Ca}\left(\mathrm{SO}_{4}\right)_{2}$
E. CaSO_{4}
7. (3 points) The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. +8
B. +7
C. +6
D. -7
E. -8
8. (5 points) How many moles of CCl_{4} are there in 171 g of CCl_{4} ?
A. 26.30 mol
B. 0.90 mol
C. 1.11 mol
D. 153.8 mol
E. 171 mol
9. (5 points) Balance the following equation with the smallest set of whole numbers.
10. (10 points) Nitric Oxide (NO) reacts with oxygen gas to form nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, a dark-brown gas:
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
In one experiment 0.886 mole of NO is mixed with 0.503 mole of O_{2}. (a) Calculate which of the two reactants is the limiting reagent. (b) Calculate also the number of moles of NO_{2} produced.

This is a limiting reagent problem. Let's calculate the moles of NO_{2} produced assuming complete reaction for each reactant.

$$
\begin{aligned}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) & \rightarrow 2 \mathrm{NO}_{2}(g) \\
& 0.886 \mathrm{~mol} \mathrm{NO} \times \frac{2 \mathrm{~mol} \mathrm{NO}_{2}}{2 \mathrm{~mol} \mathrm{NO}}=0.886 \mathrm{~mol} \mathrm{NO}_{2} \\
& 0.503 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=1.01 \mathrm{~mol} \mathrm{NO}_{2}
\end{aligned}
$$

NO is the limiting reagent; it limits the amount of product produced. The amount of product produced is 0.886 mole NO_{2}.
11. (10 points) Identify the element being oxidized, the element being reduced, the oxidizing agent, and the reducing agent in the following reaction.

$$
2 \mathrm{KI}+\mathrm{F}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{KF}
$$

Element oxidized: I^{-}

Oxidizing agent: $\quad \mathrm{F}_{2}$

Element reduced: F_{2}

Reducing agent: I^{-}
12. (10 points) Calculate the percent composition by mass of all the elements in $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\mathrm{M}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=(2 \times 23)+(1 \times 12)+(3 \times 16)=106 \mathrm{~g} / \mathrm{mol}$
$\% N a=\frac{2 \times 23}{106}=0.434=43.4 \%$
$\% C=\frac{12}{106}=0.113=11.3 \%$
$\% O=\frac{3 \times 16}{106}=0.453=45.3 \%$
13. (10 points) A sample of unknown compound was analyzed and found to contain $44.4 \% \mathrm{C}$, $6.21 \% \mathrm{H}, 39.5 \% \mathrm{~S}$ and $9.86 \% \mathrm{O}$. What is the empirical formula of this compound?

Assume that we have 100 g of a substance. Then:

$$
\begin{aligned}
& n_{\mathrm{C}}=44.4 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=3.70 \mathrm{~mol} \mathrm{C} \\
& n_{\mathrm{H}}=6.21 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=6.16 \mathrm{~mol} \mathrm{H} \\
& n_{\mathrm{S}}=39.5 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g} \mathrm{~S}}=1.23 \mathrm{~mol} \mathrm{~S} \\
& n_{\mathrm{O}}=9.86 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.616 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Thus, we arrive at the formula $\mathrm{C}_{3.70} \mathrm{H}_{6.16} \mathrm{~S}_{1.23} \mathrm{O}_{0.616}$. Dividing by the smallest number of moles (0.616 mole) gives the empirical formula, $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 0}} \mathbf{S}_{\mathbf{2}} \mathbf{O}$.
14. (10 points) Balance the following equation and write the corresponding ionic and net ionic equations.

$$
\mathrm{BaCl}_{2}(\mathrm{aq})+\quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \quad \mathrm{BaSO}_{4}(\mathrm{~s})+\quad \mathrm{NaCl}(\mathrm{aq})
$$

Balanced equation: $\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$

Ionic equation: $\mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}$

Net ionic equation: $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
15. (10 points) What volume of concentrated nitric acid (4.0 M) is required to make 60.0 mL of a 0.3 M nitric acid solution? What volume of water is required?

$$
\mathrm{M}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\mathrm{M}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
$$

$\mathrm{M}_{\mathrm{i}}=4.0 \mathrm{~mol} / \mathrm{L}$
$\mathrm{M}_{\mathrm{f}}=0.2 \mathrm{~mol} / \mathrm{L}$
$\mathrm{V}_{\mathrm{f}}=60 \mathrm{~mL}$

$$
\begin{gathered}
\mathrm{M}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\mathrm{M}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}} \\
4.0 \mathrm{~mol} / \mathrm{L} \times \mathrm{Vi}=0.2 \mathrm{~mol} / \mathrm{L} \times 60.0 \mathrm{~mL} \\
\mathrm{Vi}=0.2 \mathrm{~mol} / \mathrm{L} \times 60.0 \mathrm{~mL} / 4.0 \mathrm{~mol} / \mathrm{L}=3 \mathrm{~mL} \\
60 \mathrm{~mL}-3 \mathrm{~mL}=57.0 \mathrm{~mL}
\end{gathered}
$$

16. (10 points) Calculate the mass of KI in grams required to prepare $5.00 \times 10^{2} \mathrm{~mL}$ of a 2.80 M solution.

Convert the volume into Liters: $5.00 \times 10^{2} \mathrm{~mL}=0.5 \mathrm{~L}$
The number of moles of KI in 0.5 L of the 2.80 M solution will be:
$\mathrm{n}(\mathrm{KI})=0.5 \mathrm{~L} \times 2.80 \mathrm{~mol} / \mathrm{L}=1.40 \mathrm{~mol}$
Molar mass of KI is $M(\mathrm{KI})=39+127=166 \mathrm{~g} / \mathrm{mol}$
The mass of required KI will then be $\mathrm{m}=\mathrm{n} \times M=1.40 \mathrm{~mol} \times 166 \mathrm{~g} / \mathrm{mol}=232 \mathrm{~g}$.

BONUS

1. (5 points) Identify the Brønsted acid in the following reactions. Explain.

$$
\begin{gathered}
\text { (1) } \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
\text {(2) } \mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-} \\
\text {(3) } \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}
\end{gathered}
$$

$\mathrm{H}_{2} \mathrm{O}, \mathrm{HI}, \mathrm{CH}_{3} \mathrm{COOH}$ is the Brønsted acid because it donates a proton to $\mathrm{NH}_{3}, \mathrm{H}^{+}$.
2. (5 points) Predict the products of the following single replacement reaction.
$\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow$
A. $\mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$
B. $\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}(\mathrm{s})+\mathrm{SO}_{4}(\mathrm{aq})$
C. $\mathrm{CuS}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D. $\mathrm{FeCuSO}_{4}(\mathrm{aq})$
E. $\mathrm{FeO}(\mathrm{s})+\mathrm{CuSO}_{3}(\mathrm{aq})$

Answer: A
3. (2 points) Which of the following is an example of a disproportionation reaction?
A. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
E. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Answer: C
4. (2 points) Which of the following represents a halogen displacement reaction?
A. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
B. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
C. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
D. $2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
E. $2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Answer: A
5. (2 points) Which of the following represents an acid-base neutralization reaction?
A. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
B. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{~g})$
C. $\mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
E. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$ Answer: C
6. (2 points) Which of the following represents a hydrogen displacement reaction?
A. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
E. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Answer: E
7. (2 points) Which of the following represents a combustion reaction?
A. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
E. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Answer: A

	$\mathrm{Li} \rightarrow \mathrm{Li}^{+}+\mathrm{e}^{-}$ $\mathrm{K} \rightarrow \mathrm{K}^{+}+\mathrm{e}^{-}$ $\mathrm{Ba} \rightarrow \mathrm{Ba}^{2+}+2 e^{-}$ $\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 e^{-}$ $\mathrm{Na} \rightarrow \mathrm{Na}^{+}+e^{-}$ $\mathbf{M g} \rightarrow \mathbf{M g}^{2+}+2 e^{-}$ $A I \rightarrow A l^{3+}+3 e^{-}$ $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 e^{-}$ $\mathrm{Cr} \rightarrow \mathrm{Cr}^{3+}+3 e^{-}$ $\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 e^{-}$ $\mathrm{Cd} \rightarrow \mathrm{Cd}^{2+}+2 e^{-}$ $\mathrm{Co} \rightarrow \mathrm{Co}^{2+}+2 e^{-}$ $\mathrm{Ni} \rightarrow \mathrm{Ni}^{2+}+2 e^{-}$ $\mathrm{Sn} \rightarrow \mathrm{Sn}^{2+}+2 e^{-}$ $\mathrm{Pb} \rightarrow \mathrm{Pb}^{2+}+2 e^{-}$ $\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 e^{-}$ $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 e^{-}$ $\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+e^{-}$ $\mathrm{Hg} \rightarrow \mathrm{Hg}^{2+}+2 e^{-}$ $\mathrm{Pt} \rightarrow \mathrm{Pt}^{2+}+2 e^{-}$ $\mathrm{Au} \rightarrow \mathrm{Au}^{3+}+3 e^{-}$	React with cold water to produce H_{2} React with steam to produce H_{2} React with acids to produce H_{2} Do not react with water or acids to produce H_{2}

Solubility Rules for Common Ionic Compounds in Water at $25^{\circ} \mathrm{C}$

Soluble Compounds Exceptions

Compounds containing
alkali metal ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$,
$\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$) and the
ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$
Nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, bicarbonates
$\left(\mathrm{HCO}_{3}^{-}\right)$, and chlorates
$\left(\mathrm{ClO}_{3}^{-}\right)$
Halides $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right) \quad$ Halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}$, and Pb^{2+}
Sulfates $\left(\mathrm{SO}_{4}^{2-}\right) \quad$ Sulfates of $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}^{2+}$, and Pb^{2+}

Insoluble Compounds Exceptions

Carbonates $\left(\mathrm{CO}_{3}^{2-}\right)$, phosphates Compounds containing alkali metal ions
$\left(\mathrm{PO}_{4}^{3-}\right)$, chromates $\left(\mathrm{CrO}_{4}^{2-}\right)$,
sulfides (S^{2-})
Hydroxides $\left(\mathrm{OH}^{-}\right)$

Compounds containing alkali metal ions and the Ba^{2+} ion

Numbers in parenthesis are mass numbers of most stable or most
Atomic weights corrected to conform to the 1963 yalues of the Commission on Atomic Weights.
The group designations used
here sre the former Chemiced
Abstract Servioe mumers.

