

- **8.** (5 points) How many moles of CCl₄ are there in 171 g of CCl₄?
- A. 26.30 mol
- B. 0.90 mol
- C. 1.11 mol
- D. 153.8 mol
- E. 171 mol
- **9.** (5 points) Balance the following equation with the smallest set of whole numbers.

10. (**10 points**) Nitric Oxide (NO) reacts with oxygen gas to form nitrogen dioxide (NO₂), a dark-brown gas:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

In one experiment 0.886 mole of NO is mixed with 0.503 mole of O_2 . (a) Calculate which of the two reactants is the limiting reagent. (b) Calculate also the number of moles of NO_2 produced.

This is a limiting reagent problem. Let's calculate the moles of NO₂ produced assuming complete reaction for each reactant.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

$$0.886 \text{ mol NO} \times \frac{2 \text{ mol NO}_2}{2 \text{ mol NO}} = 0.886 \text{ mol NO}_2$$

$$0.503 \text{ mol } O_2 \times \frac{2 \text{ mol } NO_2}{1 \text{ mol } O_2} = 1.01 \text{ mol } NO_2$$

NO is the **limiting reagent**; it limits the amount of product produced. The amount of product produced is $0.886 \ mole\ NO_2$.

11. (10 points) Identify the element being oxidized, the element being reduced, the oxidizing agent, and the reducing agent in the following reaction.

$$2KI + F_2 \rightarrow I_2 + 2KF$$

Element oxidized: Γ Element reduced: F_2

Oxidizing agent: F_2 Reducing agent: Γ

12. (10 points) Calculate the percent composition by mass of all the elements in Na₂CO₃.

$$M(Na_2CO_3) = (2 \times 23) + (1 \times 12) + (3 \times 16) = 106 \text{ g/mol}$$

$$\%Na = \frac{2 \times 23}{106} = 0.434 = 43.4\%$$

$$\%C = \frac{12}{106} = 0.113 = 11.3\%$$

$$\%O = \frac{3 \times 16}{106} = 0.453 = 45.3\%$$

13. (**10 points**) A sample of unknown compound was analyzed and found to contain 44.4% C, 6.21% H, 39.5% S and 9.86% O. What is the empirical formula of this compound?

Assume that we have 100g of a substance. Then:

$$n_{\rm C} = 44.4 \text{ g C} \times \frac{1 \text{ mol C}}{12.01 \text{ g C}} = 3.70 \text{ mol C}$$

 $n_{\rm H} = 6.21 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 6.16 \text{ mol H}$
 $n_{\rm S} = 39.5 \text{ g S} \times \frac{1 \text{ mol S}}{32.07 \text{ g S}} = 1.23 \text{ mol S}$
 $n_{\rm O} = 9.86 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 0.616 \text{ mol O}$

Thus, we arrive at the formula $C_{3.70}H_{6.16}S_{1.23}O_{0.616}$. Dividing by the smallest number of moles (0.616 mole) gives the empirical formula, $C_6H_{10}S_2O$.

14. (**10 points**) Balance the following equation and write the corresponding ionic and net ionic equations.

$$BaCl_2(aq) \ + \qquad Na_2SO_4(aq) \ \rightarrow \qquad BaSO_4(s) \ + \qquad NaCl(aq)$$

 $Balanced\ equation:\ BaCl_2(aq) \quad + \quad Na_2SO_4(aq) \quad \rightarrow \ BaSO_4(s) \quad + \quad 2\ NaCl(aq)$

Ionic equation:
$$Ba^{2+} + 2Cl^{-} + 2Na^{+} + SO_{4}^{2-} \rightarrow BaSO_{4}(s) + 2Na^{+} + 2Cl^{-}$$

Net ionic equation: $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4(s)$

15. (**10 points**) What volume of concentrated nitric acid (4.0 M) is required to make 60.0 mL of a 0.3 M nitric acid solution? What volume of water is required?

$$M_iV_i = M_fV_f$$

 $\begin{aligned} M_i &= 4.0 \text{ mol/L} \\ M_f &= 0.2 \text{ mol/L} \\ V_f &= 60 \text{mL} \end{aligned}$

$$\begin{aligned} M_i V_i &= M_f V_f \\ 4.0 \text{ mol/L} \times Vi &= 0.2 \text{ mol/L} \times 60.0 \text{ mL} \\ Vi &= 0.2 \text{ mol/L} \times 60.0 \text{ mL} / 4.0 \text{ mol/L} = 3 \text{mL} \end{aligned}$$

$$60 \text{ mL} - 3 \text{ mL} = 57.0 \text{ mL}$$

16. (10 points) Calculate the mass of KI in grams required to prepare 5.00×10^2 mL of a 2.80 M solution.

Convert the volume into Liters: 5.00×10^2 mL = 0.5 L

The number of moles of KI in 0.5 L of the 2.80 M solution will be:

$$n(KI) = 0.5 L \times 2.80 \text{ mol/L} = 1.40 \text{ mol}$$

Molar mass of KI is M(KI) = 39 + 127 = 166 g/mol

The mass of required KI will then be $m = n \times M = 1.40 \text{ mol} \times 166 \text{ g/mol} = 232 \text{ g}.$

BONUS

1. (5 points) Identify the Brønsted acid in the following reactions. Explain.

$$(1) NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

(2) HI
$$\rightarrow$$
 H⁺ + I⁻

$$(3)~CH_{3}COO^{\text{-}} + ~H^{^{+}} ~\rightarrow ~CH_{3}COOH$$

H₂O, HI, CH₃COOH is the Brønsted acid because it donates a proton to NH₃, H⁺.

2. (5 points) Predict the products of the following single replacement reaction.

$$Fe(s) + CuSO_4(aq) \rightarrow$$

A.
$$Cu(s) + FeSO_4(aq)$$

B.
$$Fe(s) + Cu(s) + SO_4(aq)$$

C.
$$CuS(s) + Fe_2SO_4(aq)$$

E.
$$FeO(s) + CuSO_3(aq)$$

Answer: A

3. (2 points) Which of the following is an example of a *disproportionation reaction*?

A.
$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(1)$$

B.
$$2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$$

C.
$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

D.
$$CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$$

E.
$$2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$$

Answer: C

4. (2 points) Which of the following represents a halogen displacement reaction?

A.
$$2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$$

B.
$$2\text{Na(s)} + 2\text{H}_2\text{O(l)} \rightarrow 2\text{NaOH(aq)} + \text{H}_2(g)$$

C.
$$CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$$

D.
$$2KNO_3(s) \rightarrow 2KNO_2(s) + O_2(g)$$

E.
$$2\text{LiOH}(aq) + \text{H}_2\text{SO}_4(aq) \rightarrow \text{Li}_2\text{SO}_4(aq) + 2\text{H}_2\text{O}(l)$$

Answer: A

5. (2 points) Which of the following represents an acid-base neutralization reaction?

A.
$$2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$$

$$B. \ SO_2(g) + H_2O(l) \rightarrow H_2SO_3(g)$$

C. LiOH(aq) + HNO₃(aq)
$$\rightarrow$$
 LiNO₃(aq) + H₂O(l)

D.
$$2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$$

E.
$$CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$$

Answer: C

6. (2 points) Which of the following represents a *hydrogen displacement reaction*?

A.
$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$$

B.
$$2KBr(aq) + Cl_2(g) \rightarrow 2KCl(aq) + Br_2(l)$$

C.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

D.
$$CaBr_2(aq) + H_2SO_4(aq) \rightarrow CaSO_4(s) + 2HBr(g)$$

E.
$$2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$$

Answer: E

7. (2 points) Which of the following represents a *combustion reaction*?

A.
$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(1)$$

B.
$$LiOH(aq) + HNO_3(aq) \rightarrow LiNO_3(aq) + H_2O(l)$$

C.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Li →Li+ + e- $K \rightarrow K^+ + e^-$ React with cold Ba → Ba²⁺ + 2e water to produce H₂ Ca→Ca²⁺ + 2e⁻ Na→Na+ + e-Mg→Mg²⁺ + 2e⁻ AI - AI3+ + 3e-Zn → Zn²⁺ + 2e⁻ React with steam Cr→Cr3+ + 3eto produce H₂ Fe → Fe²⁺ + 2e⁻ Cd → Cd2+ + 2e-Co→Co2+ + 2e-Ni→Ni²⁺ + 2e⁻ React with acids Sn→Sn²⁺ + 2e⁻ to produce H₂ Pb→Pb2+ + 2e-H₂→2H+ + 2e-Cu→Cu²⁺ + 2e $Ag \rightarrow Ag^+ + e^ Hg \rightarrow Hg^{2+} + 2e^ Pt \rightarrow Pt^{2+} + 2e^-$ Do not react with water or acids to produce H₂ Au → Au3+ + 3e-

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Solubility Rules for Common Ionic Compounds in Water at 25°C

The state of the s	en anno anno anno anno anno anno anno an
Soluble Compounds	Exceptions
Compounds containing alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺) and the ammonium ion (NH ₄ ⁺)	
Nitrates (NO ₃ ⁻), bicarbonates (HCO ₃ ⁻), and chlorates (ClO ₃ ⁻)	
Halides (Cl ⁻ , Br ⁻ , I ⁻)	Halides of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Sulfates (SO ₄ ²⁻)	Sulfates of Ag^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Hg^{2+} , and Pb^{2+}
Insoluble Compounds	Exceptions
Carbonates (CO_3^{2-}), phosphates (PO_4^{3-}), chromates (CrO_4^{2-}), sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion
	Compounds containing alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺) and the ammonium ion (NH ₄ ⁺) Nitrates (NO ₃ ⁻), bicarbonates (HCO ₃ ⁻), and chlorates (ClO ₃ ⁻) Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ² ⁻) Insoluble Compounds Carbonates (CO ₃ ²), phosphates (PO ₄ ³), chromates (CrO ₄ ²), sulfides (S ²)

	۲
	×
S	¥
Ż W	B
ELEMEI	<u>B</u>
RT OF THE	III
IC CHART	VIIB
PERIODIC	ΥIB
PE	٨B
	IVB
	⊞B
	≦

≤

INERT GASES

¥

₹

₩	e <u>1</u>	ა 28 28	18	Ā	39.948	36	Ż	83.80	54	×	131.30	98	Bn	(222)				
. ≖ .	σL	1 8.9984	17	ਹ	35.453	32	ğ	79.909	53	_	126.904	82	¥	(210)				
	∞ (15.9994	16	တ	32.064	34	Se	78.96	52	<u>ө</u>	127.60	84	Ро	(210)				
	~ 2	Z 14.0067	15	۵	30.9738	33	As	74.9216	51	Sb	121.75	83	<u></u>	208.980				
	ى د	12	14		28.086	32	G G		20	S	118.69	82	ЪР	207.19				
	∿ C	<u>ء</u> ق	-	₹	26.9815	3	Ga	69.72	49		114.82	81	F	204.37				
			•		П	30	Z	65.37	48	20	112.40	80	Ρ	200.59	112	<u>ر</u>	(277)	
						29	n O	63.54	47	Ad	107.870	79	ηV	196.967	111	<u>ر</u>	(272)	
						78	Ź	58.71	46	Б	106.4	78	Ŧ	195.09	110	<u>ر</u>	(271)	
						23	၀	58.9332	45	쮼	102.905	17	_	192.2	109	Ξ	(266)	
						5 6	E E	~	44	B	101.07	92	SO	190.2	108	S H	(265)	
					ļ	52	Σ	54.9380	43	ည	[88]	75	Be	186.2	107	В	(262)	
						24	င်	51.996	42	ŝ	95.94	74	≥	183.85	106	Sa	[26 6]	
						23	>	50.942	41	9	92.906	73	_ a	180.948	105	Op	[262]	
						22	F	47.90	40	Z	91.22	72	Ï	178.49	104	Ä	(261)	
						71	Sc	44.956	38	>	88.905	*2 5	La	138.91	+ 88	Ac	(227)	
	4 C	ე ე ე	12	ď	24.372	20	Ca	40.08	38	Š	87.62	99	Ba	137.34	88	Ba	(226)	
T 00.1	e :-	- 6:838	1	Na	22.9898	19	¥	39.102	37	Вb	85.47	22	S	132.905	87	Ļ	(223)	

Numbers in parenthesis are mass numbers of most stable or most common isotope.

Atomic weights corrected to conform to the 1963 values of the Commission on Atomic Weights.

The group designations used here are the former Chemical Abstract Service numbers.

* Lanthanide Series

~	Ŋ	174.97	
2	χ	173.04	
69	٤	168.934	
89	щ	167.26	
67	유	164.930	
99	^		
65	n Eu Gd Tb	158.924	
4	<u>8</u>	157.25	
63	Вn	151.96	
62 63	Pm Sm	150.35	
61	Pm	(147)	
09	PZ	144.24	
23	<u>ڄ</u>	140.907	
28	င္ပ	140.12	
			1

Actinide Series

103	_	(257)
_		_
102	ž	(256)
101	Ρ	(256)
100	ЕЩ	(253)
66	Ш	(254)
86	ŭ	(249)
97	쯆	
96	Amcm	(247)
62	Am	(243)
94	Pu	
93	å	(237)
92	\supset	238.03
91	Ра	(231)
90	<u>۲</u>	232.038