\qquad Date: \qquad Per: \qquad

1. State whether the following compounds contain polar covalent bonds, non-polar covalent bonds or ionic bonds. Use the electronegativity values and the table of bond characters to calculate your answers.
a. KCl
b. NO_{2}
c. SO_{2}
d. HBr
e. N_{2}
\qquad
\qquad
f. AlI_{3}
g. SiH_{4}
h. PCl_{5}
i. MgS
j. OF_{2}
2. Predict the type of crystalline solid that would form for each of the above substance: ionic, molecular, or network covalent.
a \qquad
\qquad
b \qquad c \qquad d \qquad
\qquad
g \qquad
\qquad i \qquad
\qquad
3. Predict the type of force of attraction that exists between particles for each of the crystals formed: electrostatic force, hydrogen "bond", dipole-dipole interaction, or London dispersion force.
a \qquad f
b \qquad c \qquad d \qquad e \qquad
g \qquad h \qquad
\qquad
j
4. Explain the solvation process or, what is the same, the formation of a solution from solute and solvent particles by using the concept of particle interactions.

5. Describe how to make a molar solution. Briefly describe the steps involved in the process; include the equipment ware used.

Name: \qquad Date: \qquad Per: \qquad
6. Glycerol boils at a slightly higher temperature than water. What does this reveal about glycerol's attractive forces as compared to the attractive forces found in water? Justify your answer.

Solve the following by finding the moles or the volume needed to make the solution. Show the dimensional-analysis set-up and follow the rules for significant digits.

1. 2.00 L of 3.50 M potassium bromide, KBr . [ans. 7.00 n]
2. 0.250 L of 2.00 M sodium nitrate, NaNO_{3}. [ans. 0.500 n]
3. 0.500 L of 0.100 M magnesium chloride, MgCl_{2}. [ans. 0.0500 n]
4. 500 mL of 4.00 M sodium hydrogen carbonate, NaHCO_{3}. [ans. 2 n]
5. 100 mL of a 10.0 M solution of lithium chloride, LiCl. [ans. 1 n]
6. 5.0 L of 4.0 M magnesium sulfate, MgSO_{4}. [ans. 20.n]
7. How much solute would you need, less or more, to make the previous solution if the only magnesium sulfate available were the heptahydrate (common Epsom salts; $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$) with a greater mass per mole? Explain.
8. 100 mL of a 10.0 mM solution of ATP (adenosine triphosphate). The available form is the dipotassium salt, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{P}_{3} \mathrm{~K}_{2}$. [ans. 0.001 n]
9. How much glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is in 200 mL of a 0.300 M solution? [ans. 0.06 n]
10. 8.0 M urea, $\mathrm{NH}_{2} \mathrm{CONH}_{2}$, is used to denature proteins. How would you make 25 mL of this solution? [ans. 0.20 n]
11. How would you make 1.00 L of a solution that is 3.00 M NaCl and 0.300 M sodium citrate, $\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$? [ans. $\left.3.00 \mathrm{n} \mathrm{NaCl}, 0.300 \mathrm{n} \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right]$
12. What would you change in your previous answer if the sodium citrate is available only as the dihydrate, $\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$? Explain.
13. Given a 1.0 M solution of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, what is the concentration of sodium ions? [ans. 2.0M]
14. How much, in L , of a 2.0 M solution do you need to get 8.0 moles of hydrochloric acid, HCl ? [ans. 4.0L]
15. How much of a 0.50 M soln is needed to get 35 g of potassium nitrate, KNO_{3}, if it is $101.11 \mathrm{~g} / \mathrm{mol}$? [ans. 0.69 L]
©T. M. Chipi, chemistry instructor
\qquad Date: \qquad Per: \qquad
16. You have a 0.150 M soln of iron (II) chloride, FeCl_{2}. What volume, in mL , of this do you need to get $100 . \mathrm{mg}$ of the salt if it weighs $126.75 \mathrm{~g} / \mathrm{mol}$? [ans. 5.25 mL]
17. You have a 10 mM solution of ATP. How much of this do you need to get 1.0 millimoles of ATP? [ans. 0.1L]
18. Continuing from the previous question...How much (in mL) do you need to get $10 \mu \mathrm{~mol}$ of ATP? [ans. 1 mL]
19. Given a 2.00 M solution of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{MM}=180 . \mathrm{g} / \mathrm{mol}\right)$, how much do you need to get 12.5 kg of the solute? [ans. 34.7L]
20. How would you get 2.5 g of lithium perchlorate, $\mathrm{LiClO}_{4}(\mathrm{FM}=106.39 \mathrm{~g} / \mathrm{mol})$, if you have a 0.20 M solution? [ans. 0.12L]
21. Given a 3.00 M solution of sodium chloride, $\mathrm{NaCl}(\mathrm{FM}=58.44 \mathrm{~g} / \mathrm{mol})$, what is the concentration in g solute $/ \mathrm{L}$ solution? [ans. $175 \mathrm{~g} / 1.00 \mathrm{~L}$]

Solve the following problems. Show the dimensional-analysis set-up and follow the rules for significant digits.

22. What is the maximum amount of KCl that can dissolve in 200 g of water? (The solubility of KCl is $34 \mathrm{~g} / 100 \mathrm{~g}$ $\mathrm{H}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$.) [ans. 68 g]
23. What is the solubility of silver nitrate if only 11.1 g can dissolve in 5.0 g of water at $20^{\circ} \mathrm{C}$? [ans. $\frac{222 \mathrm{~g}}{100 \mathrm{~g} \mathrm{H} \mathrm{O}}$]
24. What mass of NaCl (solubility $=35.0 \mathrm{~g} / 100 \mathrm{~g}$ at $20^{\circ} \mathrm{C}$) can dissolve in $3.30 \times 10^{2} \mathrm{~g}$ of water? [ans. 112 g]
25. If the solubility of a particular solute is $\frac{10 \mathrm{~g}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ at $20^{\circ} \mathrm{C}$, which of the following solution concentrations would represent a supersaturated aqueous solution of that solute?
a. $\frac{10 \mathrm{~g}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ at $25^{\circ} \mathrm{C}$
b. $\frac{10 \mathrm{~g}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ at $15^{\circ} \mathrm{C}$
c. $\frac{9 \mathrm{~g}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ at $20^{\circ} \mathrm{C}$
d. $\frac{11 \mathrm{~g}}{100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$ at $20^{\circ} \mathrm{C}$
26. To increase the solubility of a gas at constant temperature from $1.20 \mathrm{~g} / \mathrm{L}$, at 1.4 atm , to $2.3 \mathrm{~g} / \mathrm{L}$, the pressure would have to be increased to \qquad [ans. 2.7 atm]
27. If the solubility of a gas in water is $4.0 \mathrm{~g} / \mathrm{L}$ when the pressure of the gas above the water is 3.0 atm , what is the pressure of the gas above the water when the solubility of the gas is $1.0 \mathrm{~g} / \mathrm{L}$? [ans. 0.75 atm]
28. If the solubility of a gas is $7.5 \mathrm{~g} / \mathrm{L}$ at 404 kPa pressure, what is the solubility of the gas when the pressure is 202 kPa ? [ans. $3.8 \mathrm{~g} / \mathrm{L}$]
©T. M. Chipi, chemistry instructor

Chemistry 1, H/G

Name: \qquad
Practice: Chapters 1, 10, 12
Date: \qquad Per: \qquad
29. The molar enthalpy of fusion for water is $6.008 \mathrm{~kJ} / \mathrm{mol}$. What quantity of energy is released when 253 g of liquid water freezes? The molar mass (MM) of water is $18.02 \mathrm{~g} / \mathrm{mol}$. [ans. 84.4 kJ]
30. The standard molar enthalpy of vaporization for water is $40.79 \mathrm{~kJ} / \mathrm{mol}$. What mass of steam is required to release $500 . \mathrm{kJ}$ of energy upon condensation? $\mathrm{The} \mathrm{MM}_{\mathrm{H} 2 \mathrm{O}}=18.02 \mathrm{~g} / \mathrm{mol}$. [an. 221 g]
31. Given that benzoic acid has a molar mass of $122.1 \mathrm{~g} / \mathrm{mol}$ and a 52.9 g sample of benzoic acid absorbs 7.83 kJ of energy when it melts:
a. Calculate the number of moles in the sample. [ans. 0.433 mol]
b. Calculate the molar enthalpy of fusion of benzoic acid. [ans. $18.1 \mathrm{~kJ} / \mathrm{mol}$]
32. Iron has a molar enthalpy of fusion of $13.807 \mathrm{~kJ} / \mathrm{mol}$. Calculate the molar mass ($\mathrm{MM}=\mathrm{g} / \mathrm{mol}$) of the substance, given that a 125.9 g sample of iron absorbs 31.12 kJ on melting. [ans. $2.254 \mathrm{~mol}, 55.86 \mathrm{~g} / \mathrm{mol}$]

Use the figure below to answer the following questions.

33. What do points E and F represent in the figure above?
34. What does point A represent in the figure above?
35. Explain what the curves AB, AC, and AD represent in the figure above.

