NOTES 12: SEQUENCES AND SERIES	Name: Key	
	Date:	Period:
	Mrs. Nguyen's Initial:	

LESSON 12.1 – SEQUENCES AND SUMMATION NOTATION

Definition of a	A <u>sequence</u> is a set of numbers written in	Exam	ple:		
Sequence	Each number in the sequence is called a <u>term</u> and is denoted as $a_1, a_2, a_3,, a_n$.	а, З	az G	az 12	a ₄ a _n 24

Practice Problems: Find the first four terms and the 100th term of the following sequences.

<u>Practice Problems</u>: Find the <u>nth term of</u> a sequence whose first several terms are given. $n = \frac{1}{2}$

<u>Practice Problems</u>: Find the first five terms of the given recursively defined sequence.

7. $a_n = \frac{a_{n-1}}{a_n}$ and	$a_1 = -8$	8. $a_n = \frac{1}{a_1 = 1}$ and $a_1 = 1$	9. $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ and $a_1 = a_2 = a_3 = 1$
<i>n</i> 2	1	$n + a_{n-1}$	$a_{4} = a_{3} + a_{2} + a_{1}$
$a_2 = \frac{a_{2-1}}{2} = \frac{a_1}{2}$	<u>'</u> = 2 = 4	$a_2 = \frac{1}{1+a_1} = \frac{1}{2}$	= 1 + 1 + 1 = 3
$a_3 = \frac{a_{3-1}}{2} = \frac{a_2}{2} =$	$\frac{-4}{2} = -2$	$a_3 = \frac{1}{1+a_2} = \frac{1}{1+\frac{1}{2}} = \frac{2}{3}$	$a_5 = a_4 + a_3 + a_2 = 3 + 1 + 1 = 5$
$a_4 = \frac{a_3}{2} = \frac{-2}{2} =$	-1	$a_4 = \frac{1}{1+\frac{2}{3}} = \frac{3}{5}$	$a_{f} = 5 + 3 + 1 = 9$
$a_{-} = \frac{-1}{2}$		$a_5 = \frac{1}{1+3/5} = \frac{5}{8}$	
Partial Sum of a	The nth pa	artial sum of a sequence is found by	Example: Sum of the first 5
Sequence	adding up	the first n terms of the sequence.	terms of example # 9
		S ₅	+++++++3+5=

<u>Practice Problems</u>: Find the first four partial sums and the nth partial sum of the sequence a_n .

10.
$$a_n = \frac{3}{2^n}$$

 $a_1 = \frac{3}{2}$
 $a_2 = \frac{3}{2}$
 $a_2 = \frac{3}{2}$
 $a_3 = \frac{3}{8}$
 $a_4 = \frac{3}{16}$
 $s_1 = \frac{3}{2}$
 $s_1 = \frac{3}{2}$
 $s_2 = \frac{3}{2} + \frac{3}{4} + \frac{3}{8} = \frac{21}{8}$
 $a_3 = \frac{3}{16}$
 $s_4 = \frac{3}{16} + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} = \frac{21}{8}$
 $a_4 = \frac{3}{16}$
11. $a_n = \frac{4}{n+3} - \frac{4}{n+2}$
 $a_1 = -\frac{1}{3}$
 $a_2 = -\frac{1}{3}$
 $a_2 = -\frac{1}{5}$
 $a_3 = -\frac{2}{15}$
 $a_3 = -\frac{2}{15}$
 $a_4 = -\frac{2}{15} - \frac{2}{15} = -\frac{2}{3}$
 $a_4 = -\frac{2}{15} - \frac{2}{15} = -\frac{2}{3}$
 $a_4 = -\frac{2}{21}$
 $a_4 = -\frac{2}{21}$
 $a_4 = -\frac{2}{21}$
 $a_4 = -\frac{2}{21} - \frac{2}{21} = -\frac{16}{3}$

Sigma/Summation Notation $\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n$	Example: $a_2 + a_3 + a_4$ $\leq i^2 = 4 + 9 + 16$ i=2 = 29
---	---

Practice Problems: Find each sum.

$$12. \quad \sum_{k=1}^{4} k^{2} \qquad 13. \quad \sum_{i=1}^{3} i2^{i} \qquad 14. \quad \sum_{j=1}^{5} \frac{1}{j} \qquad a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{4} + a_{5} \qquad a_{1} + a_{2} + a_{4} + a_{5} + a_{$$

LESSON 12.2 – ARITHMETIC SEQUENCES

Definition of an Arithmetic Sequence	An <u>arithmetic sequence</u> is a sequence in which the difference between consecutive terms is constant. That difference is called the <u>common difference</u> .	Example: $a_1 a_2 a_3 a_4 a_5 a_1$ 2 4 6 8 10 1 4 6 8 10 d = 2 2 2 2
Arithmetic	The nth term of an arithmetic sequence is	Example:
Sequence Formula	$a_n = a_1 + (n-1)d_{\rm R} \text{common diff}$ Jirst term	$a_n = 2 + (n - 1)^2$ = 2 + 2n - 2
	U	0 - 9-

<u>Practice Problems</u>: Find the nth term of the <u>arithmetic sequence with the given first term a</u> and common difference d. $a_n = 2n$

1. $a = -6, d = 3$	2. $a = 7, d = -2$
$a_n = -6 + (n-1)3$	$a_n = 7 + (n-1)(-2)$
= -6 + 3n - 3	= 7 - 2n + 2
$a_n = 3n - 9$	$\int \overline{a_n} = -2n + 9$

<u>Practice Problems</u>: Find the specified term.

<u>Practice Problems</u> : Find the specified term. $-5 -5$				
	\land			
3. 18^{th} term of 3, 7, 11,	4. 9^{th} term of 3, -2, -7,	5. 15^{th} term of 20, 23, 26, 29,		
$a_1 = 3$ $d = 4$	a,=3 d=-2-3=-5	$a_1 = 20$ $d = 3$		
n = 18	n = 9	n = 15		
a = 3 + (18 - 1)(4)	$a_q = 3 + (9 - 1)(-5)$	$a_{1} = 20 + (15 - 1)(3)$		
18	= 3 + (-40)	s = 20 + 42		
= 3 + (7)(4)	$[a_{1} = -37]$	$a_{r} = 62$		
$Ta_{18} = 71$	(1)	13		

<u>Practice Problems</u>: Determine the common difference, the fifth term, the nth term, and the 100th term of the arithmetic sequence.

6.
$$1, 5, 9, 13, ...$$

 $a_{1} = 1$ $d = 4$
 $a_{n} = (+(n-1))^{4}$
 $= 1 + 4n - 4$
 $a_{n} = 4n - 3$
 $a_{\zeta} = 4(5) - 3 = 17$
 $a_{100} = 4(100)^{-3} = (397)^{-3}$
Mrs. Nguyen – Honors Algebra II – Chapter 12 Notes
 $a_{10} = \frac{1}{2} + \frac{2}{3}$
 $a_{10} = \frac{1}{2} + \frac{2}{3} + \frac{2}{3}$
 $a_{10} = \frac{1}{2} + \frac{2}{3} + \frac{2}{3}$
 $a_{10} = \frac{1}{2} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3}$
 $a_{10} = \frac{1}{2} + \frac{2}{3} + \frac{2}{3}$

<u>Practice Problems</u>: Find the first term of each sequence described. Then find a_{100} .

9.
$$a_8=12, a_{15}=61$$

 $a_n = a_1 + (n-1) d$
 $a_{15} = a_3 + (15-8) d$
 $d_1 = 12 + (7) d$
 $d_2 = a_1 + (8-1) T$
 $a_5 = a_1 + (5-1) 22$
 $a_5 = a_1 + (5-1) 22$
 $a_5 = a_1 + (5-1) 3$
 $a_5 = a_1 + (6-1) 3$
 $a_5 = a_1 + (6-1) 3$
 $a_5 = a_1 + 15 = 3a_1 = -5$
 $a_1 = -5 + (9q) (3)$
 $= -5 + 2qT$
 $a_1 = -5 + 2qT$
 $a_1 = -5 + 2qT$
 $a_1 = 2q2$
Definition of
Arithmetic Series
The arithmetic series is the sum of
all the terms in an arithmetic
sequence
 $a_1 = a_2$
 $a_1 = a_1 + a_2$
 $a_1 = -5 + 2qT$
 $a_1 = 2q2$
The sum of the first n terms of an arithmetic

	sequence.	The sum of the first n terms of an arithmetic
1+2+3	918 + 99 + 100	series is: $S_n = n \left(\frac{a_1 + a_n}{a_1 + a_n} \right)$
1+2+3+4	···· + 100	$S_{1} = \frac{100}{1 + 100} = \frac{100 \cdot 101}{1 - 100} = (50)(101)$

<u>Practice Problems</u>: Find the partial sum S_n of the arithmetic sequence that satisfies the given condition.

12.
$$a=3, d=2, n=12$$

 $S_{12} = (2\left(\frac{3+2n}{2}\right))$
 $\left(a_{n} = 3+(n-1)(2)\right)$
 $= 3+2n-2$
 $a_{n} = 2n+1$
 $a_{12} = 2(12)+1 = 25$
 $S_{12} = (2\left(\frac{3+25}{2}\right))$
 $= 6(28)$
 $= 168$
13. $a=100, d=-5, n=8$
 $a_{g} = 100 + (8-1)(-5)$
 $= 100 - 35 = 65$
 $S_{g} = 8(\frac{100 + 65}{2})$
 $= 4(165)$
 $= 1660$
14. $a_{2} = 8, a_{5} = 9.5, n=15$
 $a_{5} = a_{2} + (5-2)d$
 $9.5 = 8 + 3d$
 $1.5 = 3d \Rightarrow d = \frac{1}{2}$
 $a_{2} = a_{1} + (2-1)\frac{1}{2}$
 $8 = a_{1} + \frac{1}{2} \Rightarrow a_{1} = \frac{15}{2}$
 $a_{15} = \frac{15}{2} + (15-1)\frac{1}{2}$
 $= \frac{15}{2} + 7 = \frac{29}{2}$
 $S_{15} = 15\left(\frac{15+29}{2}\right)$
 $= 15\left(11\right) = 165$

<u>Practice Problems</u>: A partial sum of an arithmetic series is given. Find the sum.

LESSON 12.3 – GEOMETRIC SEQUENCES

Definition of a Geometric Sequence	A <u>geometric sequence</u> is a sequence in which the ratio between consecutive terms is constant. That ratio is called the <u>common</u> <u>ratio</u> .	Example: 2, 4, 8, 16,, an r = 2
Geometric	The nth term of a geometric sequence is	Example:
Sequence Formula	$a_n = a_1 \cdot r^{n-1}$	$a_n = 2(2)^{n-1} = 4^{n-1}$

<u>Practice Problems</u>: Find the nth term of the geometric sequence with the given first term a and common ratio r.

1.
$$a = -6 \text{ and } r = 3$$

 $a_n = -6 (3)^{n-1}$
2. $a = 12 \text{ and } r = -2$
 $a_n = 12 (-2)^{n-1}$

<u>Practice Problems</u>: Determine the common ratio, the fifth term, and the nth term of the geometric sequence.

3.
$$7, \frac{14}{3}, \frac{28}{9}, \frac{56}{27}, \dots$$

 $r = \frac{14}{3}, \frac{1}{7} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$
4. $-8, 2, -\frac{1}{2}, \frac{1}{8}, \dots$
 $r = \frac{5}{2}, \frac{1}{5}, \frac{5}{5}, \frac{5}$

<u>Practice Problems</u>: Find the first term of each sequence described. Then find a_{10} .

6.
$$a_2 = 5, a_4 = \frac{1}{5}$$

 $a_n = a_1 r^{n-1}$
 $a_4 = a_2 (r)^2$
 $\frac{1}{5} = r^2 \Rightarrow r = \pm \frac{1}{5}$
 $s = a_1 (\frac{1}{5})' \Rightarrow a_1 = 25$
Mrs. Nguyen - Honors Algebra II - Chapter 12 Notes - Page 6
 $a_n = 2 \le (\frac{1}{5})^n \Rightarrow a_b = 2 \le (\frac{1}{5})^n = \frac{25}{5} = \frac{25}{5} = \frac{1}{57} = \frac{1792}{5}$
8. $a_3 = 8, a_6 = -64$
 $-64 = 8 r^3 \Rightarrow r^3 = -8$
 $r = -2$
 $8 = a_1 (-4)^{'}$
 $a_2 = a_1 (-4)^{'}$
 $a_2 = a_1 (-4)^{'}$
 $a_3 = 8, a_6 = -64$
 $-64 = 8 r^3 \Rightarrow r^3 = -8$
 $r = -2$
 $8 = a_1 (-2)^2 \Rightarrow a_1 = 2$
 $a_{10} = 2(-2)^9$
 $= 2(-5)^2$
 $= (-1024)$
Mrs. Nguyen - Honors Algebra II - Chapter 12 Notes - Page 6
 $a_n = 2 \le (\frac{1}{5})^n \Rightarrow a_b = 2 \le (\frac{1}{5})^n = \frac{25}{5} = \frac{1}{57} = \frac{1}{78(25)}$

Geometric Series Formula	The sum S_n of the first n terms of a geometric series with common ratio		
	$r \neq 1$ is:		
	$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}$		

<u>**Practice Problems:**</u> Find the partial sum S_n of the geometric sequence that satisfies the given conditions.

9.
$$a = \frac{2}{3}, r = \frac{1}{3}, n = 4$$

 $S_{4} = \frac{\frac{2}{3}\left(1 - \left(\frac{1}{3}\right)^{4}\right)}{1 - \frac{1}{3}}$
 $= \frac{2}{3}\left(\frac{1 - \frac{1}{3}}{1 - \frac{1}{3}}\right)$
 $= \frac{2}{3}\left(\frac{1 - \frac{1}{3}}{1 - \frac{1}{3}}\right)$
 $= \frac{2}{3}\left(\frac{1 - \frac{1}{3}}{1 - \frac{1}{3}}\right)$
 $= \frac{1 - \frac{1}{81}}{\frac{2}{3}}$
 $= \left(\frac{80}{81}\right)$
10. $a = -4, r = 4, n = 10$
 $S_{10} = -\frac{4(1 - 4^{10})}{-3}$
 $= -\frac{1398100}{-3}$
 $a_{7} = \frac{-4}{3}, r = \frac{1}{4}, n = 12$
 $a_{7} = a_{3}, r = \frac{1}{4}, n = 12$
 $a_{7} = a_{3}, r = \frac{1}{4}, n = 12$
 $a_{7} = a_{3}, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = 12$
 $a_{7} = -64, r = \frac{1}{4}, n = \frac{$

<u>Practice Problems</u>: Find the sum.

$$\begin{array}{c} 12. \quad 2-4+8+-16+\ldots-65536 \\ r = \frac{-4}{2} = -2 \\ a_{n} = 2(-2)^{n-1} = -66536 \\ (-2)^{n-1} = -32768 \\ (-2)^{n-1} = (-2)^{16} \Rightarrow \frac{n-1}{n} = \frac{15}{16} \\ S_{16} = \frac{2(1-(-2)^{16})}{1+2} = \frac{2(1-65536)}{3} = \frac{-43690}{2} \\ 14. \quad \sum_{i=0}^{15} 4\left(\frac{1}{2}\right)^{i} \quad r = \frac{1}{2} \quad a_{0} = 4 \\ n = 16 \\ a_{0} + a_{i} + a_{2} + \cdots + a_{15} \\ S_{16} = \frac{4(1-(\frac{1}{2})^{16})}{\frac{1}{2}} = \overline{7.99987793} \\ \end{array}$$

$$\begin{array}{c} 13. \quad -60+20-\frac{20}{3}+\ldots-\frac{20}{2187} \quad r = -\frac{1}{3} \\ -\frac{20}{2187} = -60\left(\frac{-1}{3}\right)^{n-1} \\ -\frac{20}{2187} = -60\left(\frac{-1}{3}\right)^{n-1} \Rightarrow n = 9 \\ \frac{4(1-(\frac{1}{2})^{16})}{1+2} = \overline{7.99987793} \\ \end{array}$$

$$\begin{array}{c} 13. \quad -60+20-\frac{20}{3}+\ldots-\frac{20}{2187} \quad r = -\frac{1}{3} \\ -\frac{20}{2187} = -60\left(\frac{-1}{3}\right)^{n-1} \Rightarrow n = 9 \\ \frac{-420}{2187} = -60\left(\frac{-1}{3}\right)^{n-1} \Rightarrow n = 9 \\ \frac{-420}{3} = -\frac{40}{3}\left(\frac{-1}{3}\right)^{n-1} \Rightarrow n = 9 \\ \frac{-420}{3} = -\frac{40}{3}\left(\frac{-1}{3}\right)^{n-1} \Rightarrow n = 9 \\ \frac{-1}{6561} = \left(\frac{-1}{3}\right)^{n-1} \Rightarrow \left(\frac{-1}{3}\right)^{n-1} \Rightarrow n = 9 \\ \frac{-4369}{2187} = -\frac{60}{43690} = \frac{-43690}{2187} \Rightarrow \frac{-436$$

<u>Practice Problems</u>: Find n for the given sum S_n of each geometric series.

Infinite Geometric	If $ r < 1$, then the sum of an infinite	If $ r \ge 1$, the series has no sum.
Series Formula	geometric series is:	$2 + 4 + 8 + 16 + \cdots$
$\sum_{i=1}^{\infty} a_i r^{i-1}$	$S = \frac{a_1}{1-r}$ $r = \frac{1}{2}$	r = 2

<u>Practice Problems</u>: Find the sum of the infinite geometric series if it has one.

LESSON 12.6 – THE BINOMIAL THEOREM

Pascal's Triangle	(a+b) = 1	N=0]
Note: The values in Pascal's Triangle are the coefficients in a binomial expansion.	$(a+b)^{2} = a+b$ $(a+b)^{2} = a^{2} + 2ab+b^{2}$ $(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$	n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 1 n = 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
The Binomial Theorem	The binomial expansion of (a	$(a+b)^n$ for any	positive integer n is:
$n^{C}r = C(n,r)$ $= \frac{n!}{(n-r)!r!}$	$(a+b)^{n} = {}_{n}C_{0}a^{n}b^{0} + {}_{n}C_{1}a^{n-1}$	${}^{1}b^{1} + {}_{n}C_{2}a^{n-1}$	$a^{2}b^{2} + {}_{n}C_{3}a^{n-3}b^{3} + \dots + {}_{n}C_{n}a^{0}b^{n}$

<u>Practice Problems</u>: Use Pascal's Triangle to expand the expression.

1.
$$(x+2)^4$$
 Degree = 4 $ums = 5$
 $[x^4 2^\circ + 4x^3 2' + 6x^2 2^2 + 4x^2 2^3 + 1x^\circ 2^4]$
 $[x'^4 + 8x^3 + 24x^2 + 32x + 16]$
2. $(u+v^2)^5$ D = 5 $Tums = 6$
 $[u^5(v^2)^\circ + 5u^4(v^2)^4 + 10u^3(v^2)^2 + 10u^2(v^2)^4 + 5u^2(v^2)^4 + 10u^2(v^2)^5]$
 $u^5 + 5u^4v^2 + 10u^3v^4 + 10u^2v^6 + 5uv^8 + v^{10}$
3. $(a+2b^3)^4$
 $[a^4x + 4a^3(2b^3)^4 + 6a^2(2b^3)^4 + 4a^2(2b^3)^4 + 1(2b^3)^4]$
 $a^4 + 8a^3b^3 + 24a^2b^6 + 32ab^7 + 16b^{12}$

4.
$$(2x-y^2)^3$$
 $D = 3$ $Term = 4$
 $1(2x)^3(-y^2)^6 + 3(2x)^2(-y^2)^1 + 3(2x)^4(-y^2)^2 + 1(2x)^6(-y^2)^3$
 $y = \frac{1}{8x^3 - 12x^2y^2} + 6xy^4 - y^6$
5. $(\sqrt{a}+\sqrt{b})^6$ $D = C$ $Term = 7$
 $15a^3b^6 + C5a^3b^4 + 155a^4b^2 + 205a^3b^3 + 155a^2b^4 + C5a^3b^5 + 15a^3b^6$
 $a^3 + 6a^{5/2}b^{1/2} + 15a^2b + 20a^{3/2}b^3 + 15ab^2 + 6a^2b^{5/2} + b^3$

<u>Practice Problems</u>: Find the given term in the expansion of the given binomial.

6. Binomial: $(x+3)^4$, Term: x^2	7. Binomial: $(x-2y)^6$, Term: x^3y^3
$4^{c}_{0\chi}$ $4^{c}_{1\chi}$ $3^{c}_{4}_{2\chi}$ $6^{c}_{2\chi}$ $3^{c}_{2}_{2} = 54\chi^{2}_{2\chi}$ $4^{c}_{2\chi}$	$6^{\circ}3 x^{3}(-2y)^{3}$
$4^{c} 2 = \frac{4!}{2! 2!} = \frac{4! \cdot 3 \cdot 2 \cdot 1}{4! \cdot 1 \cdot 4!}$	$\frac{6!}{3! \ 3!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3! \ 3 \cdot 2 \cdot 1} = 20$
= 6	$20 x^{3}(-8y^{3}) = (-160 x^{3}y^{3})$
8. Binomial: $(3x-2y^2)^{10}$, Term: y^6	9. Binomial: $(3x^2 + y)^6$, Term: x^8
$10^{\circ}3(3x)^{7}(-2y^{2})^{3}$	$6^{2} (3x^{2})^{4} y^{2}$ $6 \cdot 5 \cdot 4!$
$10^{\circ}_{3} = \frac{10!}{7! 3!} = \frac{10 \cdot 9 \cdot 8 \cdot 7!}{7! 3 \cdot 2 \cdot 1}$ $10 - 3 : 4 = 120$	$62 = \frac{8}{4!2!} = \frac{4!2}{4!2} = 15$ $15(81\times8)y^{2} = (1215\times8y^{2})$
$= 1010 + 1 = 10$ $120 (2187 x^{7})(-8y^{6}) = -2099520 x^{7}$	7 G Y