Topic A

Place Value of Multi-Digit Whole Numbers

4.NBT.1, 4.NBT.2, 4.OA.1

Focus Standard:	4.NBT. 12 4.NBT. 2	Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>==$, and < symbols to record the results of comparisons.
Instructional Days:	4	
Coherence -Links from:	G3-M2	Place Value and Problem Solving with Units of Measure
-Links to:	G5-M1	

In Topic A, students build the place value chart to 1 million and learn the relationship between each place value as 10 times the value of the place to the right. Students manipulate numbers to see this relationship, such as 30 hundreds can be composed as 3 thousands. Conversely students decompose numbers to see that 7 thousands is the same as 70 hundreds. As students build the place value chart into thousands and up to 1 million, the sequence of 3 digits will be emphasized. They become familiar with the base thousand unit names up to 1 billion. Students fluently write numbers in multiple formats: as digits, in unit form, as words, and in expanded form up to 1 million.

A Teaching Sequence Towards Mastery of Place Value of Multi-Digit Whole Numbers

Objective 1: Interpret a multiplication equation as a comparison.
(Lesson 1)
Objective 2: Recognize a digit represents 10 times the value of what it represents in the place to its right.
(Lesson 2)

Objective 3: Name numbers within 1 million by building understanding of the place value chart and placement of commas for naming base thousand units.
(Lesson 3)

Objective 4: Read and write multi-digit numbers using base ten numerals, number names, and expanded form.
(Lesson 4)

Lesson 1

Objective: Interpret a multiplication equation as a comparison.

Suggested Lesson Structure

\square	Fluency Practice
(13 minutes)	
Application Problem	(5 minutes)
Concept Development	(35 minutes)
Student Debrief	(7 minutes)
Total Time	(60 minutes)

Fluency Practice (13 minutes)

- Multiply and Divide by 10 4.NBT. 1
- Place Value 4.NBT. 2
(10 minutes)
(3 minutes)

Sprint: Multiply and Divide by 10 (10 minutes)

Materials: (S) Multiply and Divide by 10 Sprint
Note: Reviewing this fluency will acclimate students to the Sprint routine, a vital component of the fluency program.

Place Value (3 minutes)

Materials: (S) Personal white boards, place value chart
Note: Reviewing and practicing place value skills in isolation will prepare students for success in multiplying different place value units during the lesson.

T: (Project place value chart to the thousands.) Show 4
ones in number disks. Write the number below it.
S: (Students draw 4 ones disks and write 4 below it.)
T: Show 4 ten disks and write the number below it.
S: (Students draw 4 ten disks and write 4 at the bottom of the tens column.)
T: Say the number in unit form.

S: 4 tens 4 ones.

For the place value fluency drill, students may represent ones, etc., using counters rather than drawing.

Others may benefit from the opportunity to practice simulataneously speaking and showing units (e.g., tens).

Provide sentence frames to support oral response, such as
\qquad tens \qquad ones is \qquad (standard form) \qquad ."

NOTES ON
 MULTIPLE MEANS FOR ACTION AND EXPRESSION:

 -
\qquad

T: Say the number in standard form.
S: 44.
Continue for the following possible sequence: 2 tens 3 ones, 2 hundreds 3 ones, 2 thousands 3 hundreds, 2 thousands 3 tens, and 2 thousands 3 hundreds 5 tens and 4 ones.

Application Problem (5 minutes)

Ben has a rectangular area 9 meters long and 6 meters wide. He wants a fence that will go around it as well as grass sod to cover it. How many meters of fence will he need? How many square meters of grass sod will he need to cover the entire area?

Ben needs 30 m of fence.

$9 \times 6=54 \quad$ Ben needs 54 square meters of grass.

NOTES ON MULTIPLE MEANS OF ENGAGEMENT:

Enhance the relevancy of the Application Problem by substituting names, settings, and tasks to reflect your students and their experiences.
Set individual student goals and expectations. While some students may successfully solve for area and perimeter in 5 minutes, others may solve for one, while others may solve for both and compose their own Application Problem.

Note: As the first lesson of the year, this application problem reviews area and perimeter, multiplication, and addition-all important concepts from Grade 3. This problem can be extended after the Concept Development by asking students to find an area 10 times as much as the grass sod, or to find a perimeter 10 times as wide and 10 times as long.

Concept Development (35 minutes)

Materials: (T) Base ten disks: ones, tens, hundreds, and thousands (S) Personal white boards

Problem 1

1 ten is 10 times as many as 1 one.

$$
\begin{aligned}
& \text { [} \begin{array}{l}
\text { T: (Have a place value chart ready. Draw or place } 1 \text { unit } \\
\mathrm{T}: \text { How many units do I have? } \\
\mathrm{S}: 1 .
\end{array} \\
& \mathrm{T}: \text { What is the name of this unit? } \\
& \mathrm{S}: \text { A one. } \\
& \mathrm{T}: \text { Count the ones with me. (Draw ones as they do so.) } \\
& \mathrm{S}: 1 \text { one, } 2 \text { ones, } 3 \text { ones, } 4 \text { ones, } 5 \text { ones... } 10 \text { ones. }
\end{aligned}
$$

Lesson 1:
Date:

T: 10 ones. What larger unit can I make?
S: 1 ten.
T : I change 10 ones for 1 ten. We say, "1 ten is 10 times as much as 1 one." Tell your partner what we say and what that means. Use the model to help you.
$\mathrm{S}: 10$ ones make 1 ten. $\rightarrow 10$ times 1 one is 1 ten or 10 ones. \rightarrow We say 1 ten is 10 times as many as 1 one.

Problem 2

One hundred is 10 times as much as 1 ten.
Quickly repeat the above process with 10 copies of 1 ten.

Problem 3

One thousand is 10 times as much as 1 hundred.

Quickly repeat the above process with 10 copies of 1 hundred.
T: Discuss the patterns you have noticed with your partner.
S: 10 ones makes 1 ten. 10 tens make 1 hundred.
10 hundreds make 1 thousand. \rightarrow Every time we get 10 we bundle and make a bigger unit. \rightarrow We copy a unit 10 times to make the next larger unit. \rightarrow If we take any of the place value units, the next unit on the left is ten times as many.
T : Let's review the multiplication pattern that matches our models and 10 times as many words.

Display the following information for student reference:

```
1 ten = 10 x 1 one
1 hundred = 10 x 1 ten
1 thousand = 10 x 1 hundred
```

(Read, as " 1 ten is 10 times as much as 1 one.")
(Say, "1 hundred is 10 times as much as 1 ten.")
(Say, " 1 thousand is 10 times as much as 1 hundred.")

Problem 4

Model on the place value chart and as equations 10 times as much as 2 ones.

Note: Number disks are used as models throughout the curriculum and can be represented in two different ways. A disk with a value labeled inside of it, such as in Problem 1, should be drawn or placed on a place value chart with no headings. The value of the disk in its appropriate column indicates the column heading. A number disk drawn as a dot should be used on place value charts with headings, as in Problem 4. The dot is a faster way to represent the number disk and is used as students move further away from a concrete stage of

| 1000s | 1005 | $\begin{aligned} & 105 \\ & 004 \end{aligned}$ | |
| :---: | :---: | :---: | :---: | learning.

T: Draw place value disks as dots. Because you are using dots, label your columns with the unit value.
T: Represent 2 ones. Solve to find 10 times as many as 2 ones. Work together.
S: (Students work. Circulate as they do so.)
T: 10 times as many as 2 ones is?
S: 20 ones $\rightarrow 2$ tens.
T: Explain this number sentence to your partner using your model.

$$
10 \times 2 \text { ones }=20 \text { ones }=2 \text { tens }
$$

Repeat the process with 10 times as many as 4 tens.

$$
10 \times 4 \text { tens }=40 \text { tens }=4 \text { hundreds }
$$

Problem 5

Model as an equation 10 times as many as 7 hundreds.

T: Write an equation and solve for 10 times as many as 7 hundreds.
Circulate and assist students as necessary.
T: Show me your boards. Read your equation.
S: 10 times 7 hundreds equals 70 hundreds equals 7 thousands.
10×7 hundreds $=70$ hundreds $=7$ thousands

Problem Set (10 minutes)

Students should do their personal best to complete the Problem Set within the allotted 10 minutes. Some problems do not specify a method for solving. This is an intentional reduction of scaffolding that invokes MP.5, Use Appropriate Tools Strategically. Students should solve these problems using the RDW approach used for Application Problems.
For some classes, it may be appropriate to modify the assignment by specifying which problems students should work on first. With this option, let the careful sequencing of the Problem Set guide your selections so that problems continue to be scaffolded. Balance word problems with other problem types to ensure a range of practice. Assign incomplete problems for homework or at another time during the day.

Challenge quick finishers to write their own 10 times as many statements similar to Problems 2 and 5.

Student Debrief (7 minutes)

Lesson Objective: Interpret a multiplication equation as a comparison.

Invite students to review their solutions for the Problem Set and the totality of the lesson experience. They should check work by comparing answers with a partner before going over answers as a class. Look for misconceptions or misunderstandings that can be addressed in the Debrief. Guide students in a conversation to debrief the Problem Set. You may choose to use any combination of the questions below to lead the discussion.

- What relationship do you notice between the problem of Matthew's stamps and 1(a) and 1(b)?
- How did Problem 1(c) help you to solve Problem 4 about Jane's savings?
- In Problem 5 which solution proved most difficult to find? Why?
- How does the answer about Sarah's age and her grandfather's age relate to our lesson's objective?

- What are some ways you could model 10 times as many? What are the benefits and drawbacks of each way of modelling? (Money, base ten materials, disks, labeled drawings of disks, dots on a labeled place value chart, tape diagram.)
- Take 2 minutes to explain to your partner what we learned about the value of each unit as we move from right to left.
- Write and complete the following statements in your math journal:
\qquad ten is \qquad times as many as \qquad one
\qquad hundred is \qquad times as many as \qquad ten
\qquad thousand is \qquad times as many as \qquad hundred

Exit Ticket (3 minutes)

After the Student Debrief, instruct students to complete the Exit Ticket. A review of their work will help you assess the students' understanding of the concepts that were presented in the lesson today and plan more effectively for future lessons. You may read the questions aloud to the students.

A
\# Correct \qquad

Multiply or divide.				
1	$2 \times 10=$	23	$x 10=100$	
2	$3 \times 10=$	24	x $10=20$	
3	$4 \times 10=$	25	x $10=30$	
4	$5 \times 10=$	26	$100 \div 10=$	
5	$1 \times 10=$	27	$50 \div 10=$	
6	$20 \div 10=$	28	$10 \div 10=$	
7	$30 \div 10=$	29	$20 \div 10=$	
8	$50 \div 10=$	30	$30 \div 10=$	
9	$10 \div 10=$	31	x $10=60$	
10	$40 \div 10=$	32	x $10=70$	
11	$6 \times 10=$	33	x $10=90$	
12	$7 \times 10=$	34	x $10=80$	
13	$8 \times 10=$	35	$70 \div 10=$	
14	$9 \times 10=$	36	$90 \div 10=$	
15	$10 \times 10=$	37	$60 \div 10=$	
16	$80 \div 10=$	38	$80 \div 10=$	
17	$70 \div 10=$	39	$11 \times 10=$	
18	$90 \div 10=$	40	$110 \div 10=$	
19	$60 \div 10=$	41	$30 \div 10=$	
20	$100 \div 10=$	42	$120 \div 10=$	
21	$\mathrm{x} 10=50$	43	$14 \times 10=$	
22	_ $\times 10=10$	44	$140 \div 10=$	

© Bill Davidson

B
Improvement \qquad \# Correct \qquad
Multiply or divide.

1	$1 \times 10=$		23	$\times 10=20$	
2	$2 \times 10=$		24	$\times 10=100$	
3	$3 \times 10=$		25	$\times 10=30$	
4	$4 \times 10=$		26	$20 \div 10=$	
5	$5 \times 10=$		27	$10 \div 10=$	
6	$30 \div 10=$		28	$100 \div 10=$	
7	$20 \div 10=$		29	$50 \div 10=$	
8	$40 \div 10=$		30	$30 \div 10=$	
9	$10 \div 10=$		31	$\times 10=30$	
10	$50 \div 10=$		33	$\times 10=40$	
11	$10 \times 10=$		34	$\times 10=70$	
12	$6 \times 10=$		35	$80 \div 10=$	
13	$7 \times 10=$		36	$90 \div 10=$	
14	$8 \times 10=$		37	$60 \div 10=$	
15	$9 \times 10=$		38	$70 \div 10=$	
16	$70 \div 10=$		39	$11 \times 10=$	
17	$60 \div 10=$		40	$110 \div 10=$	
18	$80 \div 10=$		41	$120 \times 10=$	
19	$100 \div 10=$		42	$120 \div 10=$	
20	$90 \div 10=$		$13 \times 10=$		
21	$\times 10=10$		$130 \div 10=$		
22	$\times 10=50$				

(C) Bill Davidson

Name \qquad Date \qquad

1. Label the place value charts. Fill in the blanks to make the following statements true. Draw disks in the place value chart to show how you got your answer, using arrows to show any bundling.
a. 10×3 ones $=$ \qquad ones $=$ \qquad

b. 10×2 tens $=$ \qquad tens $=$ \qquad

C. 4 hundreds $\times 10=$ \qquad hundreds = \qquad

2. Complete the following statements using your knowledge of place value:
a. $\quad 10$ times as many as 1 ten is \qquad tens.
b. 10 times as many as \qquad tens is 30 tens or \qquad hundreds.
c. \qquad as 9 hundreds is 9 thousands.
d. \qquad thousands is the same as 20 hundreds.

Use pictures, numbers, and words to explain how you got your answer for Part (d).
3. Matthew has 30 stamps in his collection. Matthew's father has 10 times as many stamps as Matthew. How many stamps does Matthew's father have? Use numbers and words to explain how you got your answer.
4. Jane saved $\$ 800$. Her sister has 10 times as much money. How much money does Jane's sister have? Use numbers and words to explain how you got your answer.
5. Fill in the blanks to make the statements true.
a. 2 times as much as 4 is \qquad .
b. 10 times as much as 4 is \qquad .
c. 500 is 10 times as much as \qquad -
d. 6,000 is \qquad as 600.
6. Sarah is 9 years old. Sarah's grandfather is 90 years old. Sarah's grandfather is how many times as old as Sarah?

Sarah's grandfather is \qquad times as old as Sarah.

Name \qquad Date \qquad

1. Use the number disks in the place value chart below to complete the following problems.

a. Label the place value chart.
b. Tell about the movement of the disks in the place value chart by filling in the blanks to make the following equation true and match what is happening in the place value chart.
\qquad $\times 10=$ \qquad $=$ \qquad
c. Write a statement about this place value chart using the words "10 times as many."
